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Abstract: In smart cities, target detection is one of the major issues in order to avoid traffic congestion.
It is also one of the key topics for military, traffic, civilian, sports, and numerous other applications.
In daily life, target detection is one of the challenging and serious tasks in traffic congestion due to
various factors such as background motion, small recipient size, unclear object characteristics, and
drastic occlusion. For target examination, unmanned aerial vehicles (UAVs) are becoming an engaging
solution due to their mobility, low cost, wide field of view, accessibility of trained manipulators,
a low threat to people’s lives, and ease to use. Because of these benefits along with good tracking
effectiveness and resolution, UAVs have received much attention in transportation technology for
tracking and analyzing targets. However, objects in UAV images are usually small, so after a neural
estimation, a large quantity of detailed knowledge about the objects may be missed, which results
in a deficient performance of actual recognition models. To tackle these issues, many deep learning
(DL)-based approaches have been proposed. In this review paper, we study an end-to-end target
detection paradigm based on different DL approaches, which includes one-stage and two-stage
detectors from UAV images to observe the target in traffic congestion under complex circumstances.
Moreover, we also analyze the evaluation work to enhance the accuracy, reduce the computational
cost, and optimize the design. Furthermore, we also provided the comparison and differences of
various technologies for target detection followed by future research trends.

Keywords: unmanned aerial vehicles; target detection; traffic congestion; deep learning; YOLO
versions; faster R-CNN; cascade R-CNN

1. Introduction

In smart cities, the intelligent transportation network has gained much attention in
computer vision in order to avoid traffic congestion and accidents. Traffic congestion occurs
when the number of traffic increases and the speed of the object becomes slow. It causes
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several disadvantages such as fuel consumption, time loss, mental pressure, and aggravates
air pollution. Accurate and timely target detection in intelligent transportation networks
may reduce traffic congestion. Target detection is utilized to find out where targets are
located in the area and which group they are associated with such as pedestrians [1],
vehicles [2], etc. Many researchers tried to handle the target detection problem in various
fields such as solving the target detection in the form of pedestrians in autonomous vehicles
under different sub-issues such as occlusion, large and small-size objects, and complex
backgrounds with the use of various strategies [3,4]. However, in this review paper, we
study target detection through UAVs.

UAVs, which are also called “Drones” or “Unmanned Aircraft Systems”, are an airship
that works automatically through remote controls and sensors without any human aviator,
crew, or rider. There are four major types of UAVs as shown in Figure 1. Among multi-
rotor drones/UAVs, the quadcopter is much more famous due to its approachability and
virtuous camera command as compared to other types of drones/UAVs, it is easy to use
and can work in a restricted region.

Figure 1. Types of UAVs/drones.

UAVs have been integrated in different fields, for example, computer vision [5], search
and rescue operations [6], and communication systems [7–9]. UAVs play an important
role in military and non-military applications such as surveillance, filmmaking, attack,
cultivation, scientific analysis, cargo transport, and many more due to low cost, mobility,
ease to use, and accessibility [10]. The advantages of drones/UAVs lie in rescuing time and
investment, boosting the reliability of fact measurement, increasing the security of data
logging, improving the performance of complex scenarios, and making the investigation
more systematic. Despite all its advantages, UAVs also face several significant challenges
in terms of full deployment, which are given below:

• In terms of heavy mobility, UAVs have insufficient ability to mark traffic motion
evaluation at the intersection due to their dimensions, underneath stimulation, and
braking capabilities.

• In dense urban regions, UAV delivery can be impractical due to a limited utmost pay-
load (mass and volume), comparably low-range, insufficient low-elevation airspace,
insubstantial sensor’s ability, and limited battery capacity, which can cause difficulties
and security risks.
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• It has insufficient auto-navigation expertise, transmission, and energy problems to
detect different kinds of disasters such as floods, fire situations, and air tragedies.
It has insufficient facts about patrolling regions and is unable to examine and track the
informant of pollution.

• Moreover, target detection in the form of pedestrians, vehicles, and traffic signs is one
of the critical issues of UAVs in traffic congestion due to complicated environments,
small and heavy recipient size, drastic occlusion, weather and lightning variations,
and unclear object characteristics such as appearance and color as demonstrated in
Figure 2.

Figure 2. Typical challenges of UAVs with basic framework of target detection in traffic jams
through UAV.

To overcome the above-mentioned issues in UAV-based target detection, researchers
have proposed many DL-based approaches. Recent DL approaches in the area of target
detection undergoing UAVs have progressed rapidly by virtue of enormous performance.
DL is the class of artificial intelligence and machine learning and has the expertise to gather,
learn, and analyze a massive quantity of data. DL uses both graph and transfiguration
techniques to create multi-level learning models.

In this article, we review the DL approach to address problems of target detection in
traffic congestion. In the recent years, many researchers have tried to sort out this issue with
the help of different approaches. To handle the tracking and detection issues of the moving
target, there have been several tasks based on UAV-initiated cameras using traditional
approaches [11,12]. In 2016, Zhang et al. [13] presented the pixel-based adaptive segmenter
algorithm for target detection. In [14,15], fast fourier transform and kernel function were
employed on a discriminative correlation filter-based detective to perform the complex
computation in the frequency domain rather than in the spatial domain which optimized
and enhanced the performance of the detecting model. In 2018, the Kanade–Lucas–Tomasi
tracking approach was presented by Ke et al. for target detection tracking [16]. However,
traditional approaches are less precise due to bad generalization accomplishment.

For vigorous tracking achievement, DeepSort was used which further omitted the
DL properties and Kalman filter [17]. Apart from that, in image depth feature screening,
CNN unifies the feature abstraction, selection, and categorization which are superior than
traditional techniques. Its effectiveness is higher, so the scalability and correctness of the
target detection are also much better than traditional techniques.
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Furthermore, different object detection approaches have been presented based on
CNN, for instance, Region-based Convolutional Neural Network (RCNN) and Single
Shot MultiBox Detector (SSD) to perceive the small targets and perform at low elevations.
However, their performances are still not good enough in target detection in terms of accu-
racy [18–20]. In contrast, for better performance, the single-stage detector techniques such
as YOLO v3 and YOLO v4 were presented by Redmon and Boboc [21] and Alexey et al. [22],
which are better in target detection and permit excellent real-time achievement and high
precision. But it prerequisites a notable computational scheme. Besides this, in [21,23,24],
UAV-based detection and tracking methods have been presented, which merge the illusion,
KCF (kernel correlation filter) based detectors, and YOLOv3. Moreover, many review
books and articles have been found to detect targets in traffic congestion. For example,
Butilă [25] presented a review on the applications of UAVs associated with traffic atten-
tion. Srivastava et al. [26] studied important parameters to foreground the small-size
issues. Osco et al. [27] reviewed both UAV remote sensing images and DL in a review
paper. Alzahrani et al. [28] studied a review based on an extant UAV-assisted system.
Kanistras et al. [29] monitored the traffic based on the UAV system, while Outay et al. [30]
reviewed the vision processing techniques. Park et al. [31] reviewed the information and
communication technology approaches based on DL application to analyze the target in
traffic in real-time using UAVs. Zhang et al. [32] presented correlation filtering and other
tracking algorithms to solve the target occlusion problem in a review paper. From the
above body of work, it is worth noting that all the above-mentioned works consider either
only UAV-based target detection or one specific kind of DL for target detection. None of
the above-mentioned reviews considered applications of DL and UAVs in target detection
at the same time. The purpose of this review paper is to discuss different issues rather
than one specific issue using different methods in contrast to other review papers and
provide the future direction related to more preferable methods to handle those issues in the
upcoming years. It also presents a brief overview of DL-based approaches for UAV-based
target detection.

The main contribution of this review paper is to further address the target detection
problem under various circumstances with the help of DL approaches instead of exploring
one specific DL technique for target detection entirely and inspect the best execution
performance model built on current research. The statistics of this paper are taken from
different sources, for instance, conference proceedings, journals, and workshops to offer
readers a glimpse of the common relationship between DL techniques and target detection
through UAVs in traffic congestion at an advance level.

The rest of the paper is organized as follows: Section 2 narrates the concept and re-
search tasks affiliated with UAVs classifying the area of target detection in traffic congestion
along with major metrics and crucial issues. Next, Section 3 introduces DL approaches
used for handling crucial issues in target detection. Section 4 inspects the existing imple-
mentation of DL techniques in target detection. Section 5 puts forward a comprehensive
discussion on utilization of DL techniques in target detection and outlines the limitations
to denominate future research trends. Finally, Section 6 concludes this review paper. For
more clarity, the organization of the paper is presented in Figure 3.

Figure 3. Paper Organization.
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2. Target Detection Prototypes and Their Related Metrics and Crucial Issues

This section reviews research tasks that use UAV videos and images to improve target
detection in traffic congestion and management. The following subsections give detailed
studies based on different methods and metrics.

A. Target Detection Prototypes

The dominant features of UAVs in target detection are elaborated in Table 1.

Table 1. UAV features in target detection.

Features Merit

Human Workload Moderate

Financial Resources Prevent

Mobility High

Efficiency High

Battery Timing Low

Service Access Multiple Access

Validity High

Speed of Detection High

Frequency Low

Adaptability Centralized

Safety Less Secure

Resolution High

Application Range Vast

Transportability Flexible

Mobility High/Strong

1. Mobile UAV Trajectories Based on Road Traffic Monitoring Approach: Within a town, due
to the insufficient amount of UAVs, it is not appropriate to mark a comprehensive
tracking of all the targets in terms of vehicles, pedestrians, and motorbikes. To handle
this issue, a mobile UAV-based road traffic monitoring system was proposed by
Elloumi et al. [33] in 2019.

• Advantages: This mode aims to track the detection rate and the statistics of re-
strained vehicles to overcome accidents and overspeeding. Moreover, it initiates
UAV trajectories to observe targets within a town from a long distance to avoid
traffic congestion.

• Limitation: It is necessary to enhance the detection rate of an isolated vehicle
of a congested event at a low speed by sharing the facts related to dispersion
through UAVs.

2. DeepSort Approach: For electric vehicles and target detection in metropolitan surround-
ings, a DeepSORT approach based on DL has been formulated by Liu and Zhang [34]
in 2021. This approach combines YOLOv4, various tracking methods, and fuses
the target detection web to reduce the state estimation of the pursued target in the
non-uniform tactic and realized the target position through UAVs.

• Advantages: The combination of the presented model aims to significantly
enhance the performance, robustness, and positioning of numerous targets’
perception and tracking in complicated metropolitan surroundings.

• Limitation: Still, the performance is deficient when the UAVs are fluttering at a
high elevation, which may cause the problem in detecting the tiny bulk of the
ground substance.
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3. SAHER System Approach Based on UAVs: In traffic congestion, road misadventures
are caused due to energy and coverage issues. To handle this issue, Ali et al. [35]
proposed a SAHER system based on UAVs using the 5G data processing in 2020.

• Advantages: In real-time scenarios, this approach detects swiftness and alterna-
tive traffic interruptions to overcome the number of crashes.

• Limitation: The proportion of tragedies and wounds is still extremely high.

4. Traditional and UAVs Vision Approach: In 2022, Cheng et al. [36] presented a model
based on traditional and UAV approaches which mainly include YOLO 3, Mean-Shift,
Gaussian background difference approach, and Kalman filter algorithms to observe
the unauthorized behavior of the target.

• Advantages: The aim of this approach was to compare the results of UAVs and
traditional approaches on the four features: manual time, divergence results,
recognition speed, and accuracy. Therein, the target detection based on the
UAV approach performs better as compared to the traditional approach. This is
because, in the traditional approach, the computational cost is low and poor in
robustness. Furthermore, it cannot fulfill the substantial application demands in
real-time detection. The comparison results of UAVs and traditional approaches
based on four features are demonstrated in Figure 4.

• Limitation: Still, some conflicts arise. If the target detection results are not
enough, then it will create errors in the detection outcomes and may affect
future observations.

Figure 4. Average comparison of target detection based on UAVs and traditional vision.

B. Metrics

In the recent years, various researchers concentrated on the miscellaneous features of
UAVs for target detection, which include cost, safety, privacy, etc. A few dominant metrics
are shown in Figure 5 and reviewed below.
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Figure 5. Metrics of target detection through UAVs.

1. Power Consumption: For UAVs, it is difficult to detect small targets under different
weather conditions due to the restricted battery ability. Although it is not possible to
extend the size of the battery because doing this will extend the mass of the UAVs
which is one more critical consideration. Many research reviews have described
the battery demand for the UAVs through the wireless power transfer (WPT) ap-
proach [37,38]. Through an expressive connection of WPT, the charging of UAVs
can be performed to increase the flight time and dimension for the target inspection,
observation, and other surveillance assignments. Moreover, it can also overcome the
many restrictions of the current inspection approaches, for instance, costly tasks and
dangerous functions. In [39], the researchers charged the battery of the drone and
carried out the testing of presented schemes for various distances and unbalanced
cartography with the help of magnetic resonance coupling WPT. Besides this, machine
learning and DL algorithms for drones also provide a better solution in terms of energy
consumption for data collection and processing in compute-hungry realms [40].

2. Security and Privacy: Security and privacy are important key factors while detecting
targets through UAVs. This is because sometimes the attackers liberate all the ac-
cumulated information of UAVs through scareware, viruses, and keystrokes with
the help of computer streaming-assigned software. Hacking all the data will lead
to false detection of traffic congestion, convey corrupt statistics which misguide the
ground command stations, and may be used in illegal activities, for instance, using the
stolen data against military action. To save the system from such kind of hacking and
lay out the correct information about the required recipient, a model was presented
named “Privacy by Design” in [41] which provides a solution for security and pri-
vacy violations. Recently, blockchain, machine learning, DL, and watermarking have
performed an important role to secure UAV applications. These approaches aim to
supply reliable, safe, and accurate information and secure programmatically updated
facts. Further details of these approaches are presented in the research article [42].

3. Cost: To identify the targets, it is compulsory to develop low-cost UAV detectors.
Light mass and low cost are the features of UAVs to ratify the quality inspection
with extreme temporal and multidimensional resolutions without endangering the
lives of humans. In the recent years, traditional approaches have been used to detect
the targets through UAVs, but traditional approaches such as scale-invariant feature
transform features [43] have some drawbacks such as high computational cost, bulky
deployment, and unpredictable risks and cannot identify the targets in real-time
scenarios. In contrast to traditional approaches, DL approaches, such as R-FCN [44],
have considerable computational cost and meet real-time demands. However, there
is a requirement to better stabilize the dummy complexity and perception reliability
and to validate the dummy with unified data from multiple sources [45].

4. Resource Employment: For humans, it is exhausting for the crew to find the targets
only from aerial graphics which consumes extensive human resources and time. The
technology of intelligent automatic target recognition and monitoring can empower
UAVs to become more competent in rescue, tragedy response, stuff transportation,
target crushing, enemy research, and other tasks, which can tremendously decrease
the consumption of mankind’s resources and additionally stimulate the evolution
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of the UAVs’ domain. Moreover, the implementation is done based on the different
algorithms concerning resource utilization and time complexity such as the start of
Faster R-CNN which consumes extreme computing resources. Therefore, in 2016,
Jifeng Da et al. [44] presented an R-FCN approach to overcome this issue. Tradi-
tional standard approaches for screening graphic content will lead to omissions and
authorization miscalculations. Therefore, it is impossible to entirely depend on the
resources of humans for capturing, displaying, and processing large-scale video statis-
tics. To gather large-scale video statistics in real-time through UAVs, they can be
screened by DL [46] and big data algorithms to modify the traditional approaches of
target detection from a weak standard manner to a smart real-time structured one and
produce useful facts for the users which fulfill their demands, save manpower and
data resources, overcome the cost of monitoring, and upgrade the efficiency.

C. Issues in Target Detection

To tackle the target detection challenges and upgrade the above-stated metrics through
UAVs, it is necessary to sort out the following problems.

1. Small-Size Objects: In real applications, the height of the shot is high, the size of the
target is much smaller than that of the image, and the target has defective properties;
then, the target suffers a particular degree of distortion overwhelmed by the angle of
the shot and the correlative movement between the UAVs and target leads to a target
which is substantially changing in the background, etc. Besides this, some datasets
such as MS COCO characterized small targets due to limited discrete features which
remit the missing and several false target detections [47].

2. Target Occlusion: Target occlusion will occur due to target blockage and the effect of
illumination surrounding which sorely validates the tracking and identification of
targets. Further, false and missed detection is also caused due to occlusion. Many
researchers tried to solve the target occlusion issue with the help of different methods
based on various occlusion conditions. Some of the progressed methods based on DL
are discussed in the next section.

3. Joint Issues: An increased number of executions are multi-perspective. For example,
some jobs are concurrently time-sensitive and have extensive resources, such as
multi-scale appearance, spot, missed recipient and victim recognition [48,49], and
enhancement of realistic applications [50]. Scientists began to tackle various combined
problems in target detection which are called joint issues.

3. DL for Target Detection

DL has currently demonstrated excellent results in solving numerous robotic functions
in the area of awareness, planning, segmentation, and management. It has an excellent
ability to learn characterization from composite data obtained in the real-world context
which makes it ideal for several types of autonomous applications. We have concentrated
on three categories of DL approaches utilized in target detection for traffic congestion, i.e.,
one-stage detectors and two-stage detectors which are demonstrated in Figure 6.

Figure 6. The main prototype of the DL family utilized for target detection.

A. One-Stage Detectors
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The one-stage detector is also known as a regression-based approach which directly
computes the object’s correlatives and the class probability and then produces the outcomes
after an isolated detection and enormously increases the detection speed. Some frequently
used one-stage detectors for target detection through UAVs are stated below.

• YOLO was introduced by Joseph Redmon [21] in 2015. The major aim of this approach
is to detect small objects and compute their fast speed. Through an artificial neural
network ANN, this algorithm takes out the image attributes and then utilizes the
regression algorithm to execute the image detection effect. With the help of a neural
network, it can instantly extract the classification and locality of the bounding box.
As a backbone, Darknet-19 and GooleNet is used in the training network, while
confidence loss is utilized as a loss function. The grid segment is answerable for
target detection. This algorithm has vigorous generalization capabilities because it
can understand the highly versatile features to delegate to other regions.

• YOLOv3 was presented by Joseph Redmon and Farhadi [21] in 2018 which is the
updated version of YOLO. As a backbone, this version uses the Darknet53 classifier
and utilizes a multi-scale indicator. Feature extraction is carried out with the help
of Darknet-53. There are 53 convolutional layers to train ImageNet. The feature
bounding is downward-sampled because convolutional layers are a two-step process
and, at three various dimensions, it executes detection. Meanwhile, to verify the
normalization of the input in intense layers with the help of convolutional layers,
batch normalization is illustrated. In contrast to Darknet-19, Darknet53 shows superior
accuracy. Besides this, to overcome the over-fitting, Leaky RELU can be utilized.
Through extra convolutional layers, this version seized the low measure feature which
boosts the small targets and other issues as well as enhanced its speed. Moreover,
by contrasting the prediction outcomes with the actual merit of the sample class, the
loss value is gained, and the framework variables are updated with the help of a
back propagation design to get the boost network prototype for target detection. The
loss function is the aggregate of three distinct losses which are: (i) confidence loss,
(ii) classification loss, and (iii) location regression loss as shown in Equation (1).

L = λ1Losscon f + λ2Losscla + λ3Lossloc (1)

• YOLOv4 is the latest version of the YOLO group, which was presented by Alexey et al. [22]
in April 2020. This version is the improved version of YOLOv3 and is more marvelous
than YOLOv3. This model is categorized into three parts: (i) backbone grid, (ii) neck
grid, and (iii) head grid. The CSPDarnet53 classifier is utilized as a backbone grid
which is the combination of Darknet53 and CSPNet [51]. With extra modules, convo-
lutional and bath normalization layers are attached after the backbone grid. Further,
the Mish activation function and spatial pyramid pooling are manipulated to enhance
the correctness of the feature output and generalization capacity of the network [52].
Moreover, the main advantage of these layers is to enhance the difficult multi-target
depiction experiment. In the neck grid, to lessen the information trajectory for the
various detectors, a path aggregation network and FPN (feature pyramid network)
are operated as a parameter assembling approach [53]. The head grid still employs
the head grid of YOLOv3. Additionally, GIoU (Generalized Intersection over Union)
is used as a loss function to improve the evaluation consequences of the target and
optimized the model based on various factors such as illumination situation, height,
dimension of the object, occlusion gradation, etc. Moreover, GIoU measures the in-
tersection proportion between ground truth and bounding boxes of prior mount and
prediction mount. The mathematical equation of the loss function is expressed in
Equation (2) as:

LGIoU = 1− IoU +

∣∣P− X ∪Ygt
∣∣∣∣P∣∣ (2)
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where P represents the small-scale box that immerses the ground truth and the pre-
dicted bounding boxes which determine the speculated ground target.

B. Two-Stage Detectors

The two-stage detectors are also called regional proposal-based approaches. In this
approach, detection and categorization are achieved by extracting the applicant areas on
the attribute map and accomplishing DL. Some frequently used one-stage detectors for
target detection through UAVs are explained in the following.

• In 2015, Ross Girshick et al. [54] presented a Faster R-CNN which is another famous
target detector. Faster R-CNN symbolizes a “region-based Convolution neural net-
works” which works better on real images. These real images are employed to the area
of UAVs images. It can predict locality and classification of numerous bounding boxes
at the same time. Its main advantage over other similar models of this algorithm is
its high accuracy. In the beginning, the Faster-RCNN algorithm introduces a regional
proposal network (RPN) network. In the congruent classification, the target candidates
were specified in a similar classification and allocated in similar networks to execute
the outstanding detection consequences during training [19]. FPN is an attribute that
integrates various levels to make the final regression and classification more efficient
during the employment of attributes [55].

• Cascade R-CNN was presented in 2018 which is the repeated form of the Faster R-
CNN [56]. It is a cascaded structure that consists of numerous repeated structures and
is linked sequentially [19,57]. This algorithm is composed of three segments which
are: (1) feature extraction unit, (2) RPN unit, and (3) multi-stage cascade identification
unit. The Cascade R-CNN framework is a multistage augmentation that trains the
continuous detectors at various IOU thresholds [56]. For the next phase of training,
the boundary frames built by the R-CNN scene are used as input. By utilizing a
variety of special repressors, the Cascade R-CNN detects high-quality recognition
by eliminating noisy identified boundary frames while maintaining useful, adjacent,
and optimistic examples.

4. DL in Addressing Crucial Issues For Target Detection

A. One-Stage Detectors in Target Detection

In this subsection, we review the useful work of one-stage detectors in resolving the
issues of target detection through UAVs in traffic congestion, which are outlined in Table 2.

Table 2. One-stage detectors to tackle the issues in target detection.

Issue One-Stage
Detectors Measure Prototype Reference

Small-Size Objects YOLO

computing cost, time
complexity, low
efficiency, high
computing resources

Fusion of DL and
traditional model
matching for multi-target
detection

[58]

YOLOv3 computing cost, resource
utilization

YOLO-GCC and
Traffic-DQN [59]

YOLOv3
computing cost, safety
and privacy, resource
utilization

TAU and DeepSORT [60]

YOLOv3 Resource usage and time
complexity Tiny YOLOv3 [61]

YOLOv3 computing cost,
computing power

SiamMask target
tracking technique [62]

YOLOv4 computing cost

KCF tracking method
and average
peak-to-correlation
energy scheme

[63]



Appl. Sci. 2023, 13, 3995 11 of 26

Table 2. Cont.

Issue One-Stage
Detectors Measure Prototype Reference

Target Occlusion YOLOv3 computing cost,
processing speed

K-means++ algorithm,
Soft-NMS algorithm and
data augmentation
technique

[64]

Complex Background YOLO
computing cost, resource
utilization, computing
power

CSP BoT method, data
augmentation, and
Adaptive Spatial Feature
Fusion approach

[65]

Joint Issues YOLOv4 cost
K-Means Clustering,
Data Enhancement
Approach

[66]

YOLOv4
computing cost, boost
the efficiency, material
resources

RFB, ULSAM and
Soft-NMS design [67]

YOLOv4 computing cost, safety
and stability

YOLOD based on
YOLOv4 [68]

1. One-Stage Detectors for Small-Size Objects: In 2016, YOLO [18] performed real-time
target detection to simultaneously predict the probability of location reliability and
all target classes. In 2021, Sun et al. [69] proposed the YOLO approach because
this approach is easy and simple. The target detection issue has been completely
resolved by regression. The images captured from the UAVs have high-resolution
characteristics. For the target, recognition detection used the VGG16 network as
a backbone formation and the optimization scheme utilized the adaptive moment
estimation Adam [58] in the training process which aims to hasten the speed of the
prototype convergence. When data were deficient in an inadequate feature extraction
network, they introduced transfer learning to enhance the accuracy of the training
recognition estimation. Moreover, YOLO merges the target locality forecast and
grouping forecast into an isolated neural network prototype to attain quick target
recognition and detection with high reliability. In the target detection, the detection
rate of the YOLO network is extremely high with 69% and the detection speed is
40 FPS/s, apart from the detection reliability which is lower as compared to other DL
networks. Li et al. [59] proposed a global context cross (YOLO-GCC) model which
signifies the design of YOLOv3 and GCNet to handle the blurring and fuzzy features
of small objects. To extract several multi-dimensional feature maps, this model utilized
the DarkNet-53 [21] as a backbone. The global context attention segment was attached
as the latest backbone with DarkNet-53 and called GC-DarkNet to extract further
accurate and compelling features. The H-Swish activation function was used to
decrease the computing cost. In addition, an approach of intelligent traffic signal
planning called Traffic Deep-Q Network (Traffic-DQN) is introduced which is based
on deep reinforcement learning, taking the advantage of traffic flow facts gained from
the YOLO-GCC and is used as the basis for transportation planning. The Traffic-DQN
system shows apparent benefit in convergence velocity, and each diagnostic indicator
is better than the corresponding one in the other approaches. The experiment testing
was performed on four familiar UAVs datasets: (i) the UCAS-AOD dataset [70],
(ii) the VisDrone2019 dataset [71], (iii) the TSD-MAX dataset [72], and (iv) the UA-
DETRAC dataset [73] which comprises different classes such as car, bus, van, and
others. The exploratory results show that the potential of the proposed method
to identify small flow factors is clear and it is better than the YOLOv3 algorithm.
Moreover, with small targets and mixed backgrounds, the position of the bounding
box is more precise which is very essential for target detection in UAV images. In 2021,
Benjdira et al. [60] proposed a Traffic Analysis from UAVs (TAU) approach to detect
all of the existing targets inside one assembly and generated a UAV image-based
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dataset which is divided into five groupings such as pedestrian, motorcycle/bicycle,
car, truck, and bus. However, to further pursue the detecting target, an online multi-
object tracking approach called DeepSORT was utilized [74]. This approach decreases
the time consumption, guarantees safety on the highway, and somehow reduces the
computing cost. However, YOLOv3 still entails high extraction cost. In addition,
in the current genre, the TAU approach has a few limitations which are:

• The incoherence of the metrics of the x and y axis when the pixel indicator is a
multiple of the height and breadth of the rectifying frames.

• Due to the high resolution, it is unsatisfactory to pass it online.

So, it is necessary to solve these limitations with some new generic algorithms in
the future. In 2020, Feng et al. [75] presented a design composed of four segments:
(i) vehicle detection, (ii) background registration, (iii) trajectory construction and
compensation, and (iv) trajectory denoising to draw remarkably well the orbit of
highway users which include pedestrian, motor vehicles (MV) and non-motor vehicles
(NMV) such as bicycles, tricycles, and motorcycles and to track the small target
trajectories. The YOLOv3 algorithm was applied in the first segment for detection
accuracy and to get the target bounding boxes at this stage. To gain the image
locomotion in the second step, the Shi–Tomasi corner attribute is utilized. This
approach is an extremely popular corner detector and is extensively used due to
its high correctness and fast speed for numerous real-time clarification applications
and manipulated for monitoring and tracking of the target characteristics [76,77].
Trajectory construction and compensation is the third step of this design which has
three main phases: (i) data correlation, (ii) trajectory classification, and (iii) trajectory
compensation. The purpose of these phases is to configure the irregular vehicle
trajectories formed on the basis of the perception of the speed restraint, contest
the smashed trajectories, and implement the assembly tasks to rectify the omitted
components. Moreover, the ensemble empirical mode decomposition approach is
employed in the last step to remove noise and errors from arbitrary and unbalanced
signals and enhance the trajectory reliability [78]. The exploratory outcome reveals
that the presented design attains high accuracy in trajectory abstraction and detection.
Figure 7 demonstrates the recall outcome of target classes in three test videos recorded
by high-depiction cameras; similarly, Figure 8 represents the precision outcome of the
target classes in the same test record videos.

Figure 7. Recall calculation of target classes on three captured test datasets.
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Figure 8. Precision calculation of target classes on three captured test datasets.

In 2022, Tian et al. [63] presented a YOLOv4-based approach to detect small targets in
terms of cars and pedestrians on the VisDrone dataset. To enhance the performance
of the presented model, the KCF algorithm and average peak-to-correlation energy
scheme were utilized to stabilize the model and track small targets of long interspace.

2. One-Stage Detectors for Target Occlusion: In 2020, Luo et al. [64] presented a YOLOv3,
soft non-maximum suppression (Soft-NMS), and K-means++ framework to handle
the moderately occluded targets in the region of the UAV portrayal. The K-means++
method is used in the YOLOv3 algorithm to optimize the series of the first recognition
box and improve the AP estimate of the network [79]. Later, the Soft-NMS method was
executed to solve the issue of multi-box crushing by NMS to improve the AP estimate
of the network [80]. During the training operation, overfitting occurs due to some
training feature samples. To lessen this issue, data augmentation was implemented
which comprises of color oscillation, arbitrary rotation, and image flip. For validation,
three generic datasets were selected with various image characteristics to enhance the
network. Based on the experimental results, it is observed that the upgraded YOLOv3
method achieved high accuracy and a fast detection rate. The results of the three
datasets in terms of average precision (AP), precision, and recall metrics are presented
in Figure 9.

Figure 9. Result of YOLOv3 approach on different datasets.
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3. One-Stage Detectors for Complex background: In [65], Feng et al. presented a gradient
classification prophecy branch in the head network of YOLO to produce angular data
and utilize the circular rectify class to overcome gradient classification loss and detect
the target under complex circumstances. Moreover, to improve the UAV images, they
implemented the data augmentation approach which consists of rotation, arbitrary
flip, translation, and HSV augmentation. Then, they presented the cross-stage partial
bottleneck transformer (CSP BoT) segment which is a hybrid approach that uses the
multi-head self-attention process convolutions to encapsulate the latent broad spatial
correlation of the target in the UAV images and improve the critical information.
Finally, they adopted the general characteristics at various resolutions and predicted
the spatial disparity in ambiguity by the weighted cross-scale interconnection. The
adaptive spatial feature fusion-Head block was presented. The enormous experimen-
tal outcomes on UACS-AOD and UAV-ROD datasets show the presented model’s
dominance, low design complexity, and cost-effectiveness.

4. One-Stage Detectors for Joint Issues: Sun et al. [66] proposed a YOLOv4 approach based
on K-means clustering to recognize the multi-resolution detection scheme. The drone
collected data from a low-elevation aerial viewpoint which comprises of various data
such as heights, size, and positions. Moreover, they applied a data enhancement
approach to improve the robustness of the target model. This approach has two main
parts: one is color transformation such as brightness, tinge, and contrast and the other
one is geometric transformation such as rotating, arbitrarily clipping, flipping, and
splicing. A Darknet scheme is used in the training process. Mean average precision
(mAP), recall, and precision are evaluation metrics used for the assessment. During the
experiment, it was observed that the target model’s accuracy reaches up to 95% while
on the same dataset, the accuracy reaches up to 96% in cloudy weather. Moreover,
it is observed that there is a need to improve the detection of the model in terms of
a dark target, for example, black vehicles. With respect to the occlusion issue, this
approach performs the best, but there appear to be some conflicts in the huge sector
such as it shows some error that needs to be minimized.
In 2021, Tan et al. [67] presented a model named YOLOv4_Drone which contains
the YOLOv4 algorithm based on UAV images. The detection correctness of the
isolated YOLOv4 algorithm is almost low and causes errors. Therefore, to enhance
the abstraction of the small targets, the receptive field block (RFB) segment [81] is
included in the feature extraction phase of YOLOv4 to test the feature map and
withdraw the features of various scales. The RFB segment was added to the target
detection prototype and termed YOLOv4_r. There is no replication of the gradient
statistics in the system optimization because this approach provides high validity
while decreasing the computational complexity. In the UAV images, to solve the issue
of small targets and complex backgrounds, the ultra-lightweight subspace attention
mechanism (ULSAM) has been incorporated into the YOLOv4_r segment [82]. This
segment derives a feature map with various attention functions for the respective
feature map to represent the multi-scale function. A ULSAM segment connected to
the target detection approach is called YOLOv4_u. Moreover, the soft non-maximum
suppression (Soft-NMS) approach is utilized to reduce the missed target which is
caused by the occlusion [80]. This is because this approach deletes the lower count
frames of the two close targets if there is a huge overlap. Additionally, it remarkably
decreases the statistics of detection frames. In the experimental testing, the VisDrone
dataset is utilized. The various datasets of 14 areas of China based on lightning and
weather situations are collected which comprise 10 kinds of targets as outlined in
Figure 10. Moreover, mAP is used as an evaluation metric. From the testing, it is
observed that the YOLOv4_Drone target detection approach achieved a high accuracy
of 45.67% in all the weather conditions as compared to previous target detection
approaches such as RetinaNet which achieved 35.95% accuracy, SMPNet achieved
35.98% accuracy, while DPNetV3 achieved 37.37%. Moreover, it is observed that
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isolated YOLOv4 gained 40.99% accuracy which is 5% less than the YOLOv4_Drone
target detection approach. Still, the presented approach is not abundantly stable due
to a moderate runtime as compared to the other target detection paradigm.

Figure 10. Average precision of YOLOv4_Drone approach based on different target classes.

In 2022, Luo et al. [68] presented a YOLO-DRONE (YOLOD) model of UAV images
which were upgraded on the foundation of YOLOv4 to handle the small-size objects
and clustered background. To decrease the complexity of the model and obtain the
best detection consequences, different activation functions were used as a backbone
which comprise of Mish [83] and HardSwish [84] activation functions. To enhance the
location consequences, they stimulated the convergence, and summed up the loss of the
bounding box regression EIOU loss function [85]. Moreover, they utilized the pyramid
pooling module in the replacement of the SPP segment and compared the model with
the YOLOv4 algorithm. The aim of using the pyramid pooling module is to enhance
the receptive field and performance of the detection model [86]. To boost the multi-
scale feature fusion and detect the targets on various scales at the end of the model,
an adaptive spatial feature fusion segment was introduced [87]. The testing was done
with the help of three different datasets which included forklift, VEDAI, and PASCAL
VOC datasets, where the forklift is the first known dataset deployed on UAV images.
During the investigation, it was observed that the presented YOLOD model achieves
higher accuracy on all datasets and is good enough for complex backgrounds and small
targets as compared to YOLOv4, as shown in Figure 11. However, it is still necessary
to boost the performance of the model when the number of images is expanded.

Figure 11. mAP of the target model based on three datasets.
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B. Two-Stage Detectors in Target Detection

This subsection presents relative work on the adoption of two-stage detectors in
resolving the issues of target detection through UAVs in traffic congestion. The basic work
is summarized in Table 3.

Table 3. Two-stage detectors to tackle the issues in target detection.

Issue Two-Stage
Detectors Measure Prototype Reference

Small-Size Objects Faster
R-CNN

Computing complexity,
computing cost

cross-channel attributes,
RoIAlign algorithm, loss
function and data
augmentation approach

[88]

Faster
R-CNN

processing efficiency,
computing cost

GC-faster-RCNN, cluster
approach, Resnext50
feature extractor and
channel attention
mechanism

[89]

Faster
R-CNN Computing complexity

Utilized dataset of
wide-range “object
detection in Aerial
images (DOTA)” and
Annotation framework

[90]

Cascade
R-CNN Computing time and cost ECascade R-CNN

network [91]

Target Occlusion Faster
R-CNN

computing cost,
processing speed

RPN and Multi-layer
feature fusion [92]

Complex Background Faster
R-CNN

Computing cost and
complexity,

HOG+SVM, Faster
R-CNN, ViBe and
YOLOv3

[93]

Joint Issues Faster
R-CNN

computing cost and
complexity

MS-Faster R-CNN and
DeepSORT [94]

Cascade
R-CNN

computing cost,
efficiency, resource
utilization

superclass detection
design, Regression
Confidence and Loss
Function Improvements

[95]

Cascade
R-CNN

computational efficiency,
safety and privacy

Faster R-CNN design,
SSD and Cascade
R-CNN + FPN

[96]

1. Two-Stage Detectors for Small-Size Objects: Zhu et al. [88] presented a faster R-CNN-
based approach to detect the small-size target when the quantity of the corresponding
anchor is deficient or when the targets are adjacent or lightly overlapped. This is
because an insufficient quantity of the corresponding anchor increases the calculation
complexity of the network. Therefore, the proposed model is divided into five phases:

(a) As a feature extractor, ResNet101 is utilized to reduce the incline dispersion
issue while reinforcing the system depth [97].

(b) The RPN is demonstrated to produce the anchors of different sizes and dimen-
sions.

(c) By attaining the feature interconnection and cross-channel integration and
minimizing the feature portray channels, a convolution layer of 1 × 1 is used.

(d) The RoIAlign algorithm is used to prevent the loss of margin pixels. These
pixels help to track and differentiate between small targets and adjacent or
lightly overlapped targets. It also determines the misconfiguration generated
by the RoIPool.

(e) To analyze the targets and environmental situations through the image domain
and purify the target domain bounding boxes, the classification and regression
system is utilized.
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Experimental evaluation was performed on the COCO dataset, where image flick
augmentation is deployed in a horizontal position to achieve a model accuracy of
79.77%. To detect small-size objects according to different weather conditions, con-
sidered complex spots, highways, and roads, in 2022, Cheng et al. [89] presented
a GC-faster-RCNN where GC is called “Group Convolution” which is gained by
boosting the Faster R-CNN algorithm and various models. This includes a cluster
approach to examine the datasets and, in the replacement of real feature extraction,
the lattice Resnext50 is employed. Moreover, to enhance the statistics of features
depicting into the network, an output attention mechanism of the enhanced channel
is unified. During the testing, it was observed that the detection accuracy slightly
increased by 94.8% while the speed of detection was slow. Besides this, small target
detection is not fitted with a very deep network structure. Further, this approach
enhances the computing cost when a huge number of categorized datasets are used.
In the target detection work, to handle the multi-scale issue from the UAV images, in
2021, an ECascade-RCNN target detection framework was presented by Lin et al. [91],
which is the improved version of Cascade-RCNN. As a backbone, Trident-FPN is
employed to extract the attributes and to boost the execution of the detectors, a mod-
ern attention mechanism scheme is presented. In addition, the K-means technique
has been used to create anchors to refine the model detection and attain the best
regression precision. On the Visdrone dataset, testing was performed and during the
investigation, it was observed that the model achieved better accuracy in huge and
small-size objects.

2. Two-Stage Detectors for Target Occlusion: Due to occlusion, missed detection occurs.
Therefore, it is necessary to reduce this issue. In 2020, Wang et al. [92] proposed a
Faster R-CNN algorithm to handle this issue. The presented approach uses different
anchor fusions to choose the maximum anchor number and scale, which enhances the
network perception value. Further boosting the value of network perception, they
added a multi-layer feature fusion. The experimental testing was performed based on
datasets of UAV images where AP, precision, and recall are employed as evaluation
indicators. The results of these indicators are demonstrated in Figure 12. However,
it is observed that the variety of scenarios manipulated in this approach is restricted,
and changing the focus of the UAVs may cause miss-identification.

Figure 12. Result of evaluation metrics for target detection based on UAV dataset.

3. Two-Stage Detectors for Complex Background: Liu et al. [93] presented a framework com-
posed of four different models such as (i) Faster R-CNN, (ii) YOLOv3 model, (iii) his-
togram of oriented gradients (HOG) + support vector machine (SVM) algorithms
which are a form of machine learning [98], and (iv) for the background difference
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technique, they chose the visual background extractor (ViBe) method. In video pro-
gression, ViBe is a dominant stochastic approach for predicting the background [99].
This proposed model handles the complicated background under various factors, for
instance, wind, dozens of small and large-scale moving targets, unlimited speed, and
substantial scenes. From the analysis, it is observed that the ViBe and HOG+SVM
approaches do not yield satisfactory results due to restricted coherent and feature
trajectory perception while YOLOv3 and Faster R-CNN perform best as compared
to the other two approaches. In contrast to YOLOv3, Faster R-CNN yields the best
accuracy in terms of recall and precision. However, it seems that Faster R-CNN
has a crucial problem due to excessive hardware demand when implemented in the
actual landscape.

4. Two-Stage Detectors for Joint Issues: In 2021, Avola et al. [94] presented an MS-Faster
R-CNN where MS stands for multi-stream which has three stages: in the stated frame,
the multi-stream CNN abstract attributes at multiple scales from the target in the
first step by manipulating its inherent architectural model. Second, under the Faster-
CNN method, the bounding boxes close to the target are obtained using the extracted
attributes map where the backbone produces CNN capability so that the area of the
affinity group layer and region proposal network can turn the output of the classifier
into the necessary bounding boxes. In the last stage, when the targets can be detected
accurately by MS Faster-R-CNN inside of the graphical cascade, the DeepSORT [17]
technique is used to attain the real-time monitoring abilities from the UAVs perception.
The evaluation was performed on four datasets which include: (i) UAV20L [100],
(ii) UMCD [101], (iii) UAV123 [100], and UAVDT [102]. The data recorded from
the UAVs comprise different features such as weather situations, small-size objects,
lightning variations, huge occlusion, partial and full occlusion, background group,
and low rectification. It is observed that the model is slightly improved but still
the design is not fast and the detection speed is limited. In 2022, Huang et al. [95]
presented an improved innovation in accordance with the Cascade R-CNN network
where the framework of superclass detection is developed to supply the best precise
region of interest for the consequential detector to enhance the recognition of the
equivalent group. The final dependence can reflect the superior characteristics of the
detection outcome with the help of regression dependence and virtually enhance the
area accuracy. Simultaneously, to boost the detection outcome of the framework in
the inspection of small-size targets in complex backgrounds, heavy target occlusion
is used, and to lessen the phenomenon of the false alarms, the loss function is used.
Moreover, this approach aims to improve the accuracy and speed of the target. The
testing was performed on the VisDrone dataset which consists of 10 kinds of target
classes as shown in Figure 13.

Figure 13. Recall rate of Cascade R-CNN approach based on different target classes.
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5. Discussion and Future Research Trends

Current studies demonstrate that scientists show much concern for the modern use
of DL approaches to address problems in target detection through UAVs, for instance,
small-size objects, target occlusion, complex backgrounds, and joint issues. However,
to overcome these problems, there are even now obvious questions for scientists. The
data in this section reflect DL-existing conditions for target detection and indicate future
fact-finding directions.

A. Discussion

Figure 14 shows the total percentage division of DL approaches listed in Figure 6 to
solve the problems for target detection. Figure 15 describes all problems, DL approaches,
and the aggregate of the articles related to each problem in target detection. In addition,
we specified the major research findings obtained from Section 4.

Figure 14. Comprehensive percentage division of DL approaches for handling problems in target
detection.

Figure 15. Applicability of DL approaches for handling problems in target detection.

1. One-Stage Detectors: In 55% of the papers, the one-stage detectors have been manipu-
lated in contrast to other DL approaches as presented in Figure 14. From Figure 16,
we can notice that small-size objects are a trendy problem tackled by one-stage de-
tectors and YOLOv3 is commonly utilized as one-stage detector in target detection.
Figure 16 also presents the classification of one-stage detectors in problems related to
target detection.
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Figure 16. Classification of One-Stage Detectors in DL.

2. Two-Stage Detectors: From Figure 14, it is observed that 45% of the papers used two-
stage detectors to tackle the problems in target detection. Two-stage detectors have
been commonly employed for small-size objects and joint issues as demonstrated
in Figure 17. The classification of two-stage detectors for problems related to target
detection is shown in Figure 17.

Figure 17. Classification of Two-Stage Detectors in DL.

B. Remarks

Based on the previous consideration, we want to give further details to figure out
what type of DL approaches are good for resolving what types of problems:

• In Faster R-CNN, the information about small targets will moderately disappear as
the network progresses. Therefore, for very deep network structures, small target
detections are not good enough.

• The detection speed of the two-stage detectors is slow as compared to one-stage
detectors which is the major defect in target detection. On the other hand, it is
observed that YOLOv3 achieved high accuracy and a fast detection rate as compared
to other YOLO versions for small-size objects but still possesses high computing
complexity in real-world performance.

• One-stage detector performs best in the occlusion issue while in the occlusion of large
regions, the model still shows some misconception.

• In the YOLO algorithm [18], small targets in the form of groups are hard to handle
because the generalization capacities of the model are poor, and loss function issues
easily cause prominent positioning miscalculations.

• Faster R-CNN performs best compared to YOLOv3 in the complex background but
it is noticed that the excessive hardware need is a serious issue. So, according to the
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particular complex situations, how to execute the Faster R-CNN on moderate-size
hardware with wide prospects is also another issue.

• Overall, it is also observed that it is crucial to obtain real-time identification in two-
stage detectors because the accuracy is high while the calculation amount is still huge.

• For joint issues, the accuracy of the YOLOv4 algorithm is improved in contrast to
other approaches but its speed is moderately decreased.

C. Future Research Trends

• UAV’s vision-based approaches for the target detection are highly remarkable in
contrast to traditional approaches. Through UAV’s target detection, the UAV vision-
based approaches, recognition and detection encryption are important parts of it. So,
for the future direction, it is necessary to perceive more appropriate recognition and
detection encryption. Moreover, it is necessary to enhance the UAV vision-based
model accuracy for the desirable outcome and to overcome the existing conflicts.

• To reduce the number of false alarms during the tiny target detection for railing
broadcasting of surveillance, it is demanded to deploy the various visual sensors and
different perspective stereo visions with the help of multi-sensor collaboration.

• In terms of power consumption, it is compulsory to propose efficient approaches
and present the advanced function offloading methods which can discover the light-
leverage batteries that can notably increase the flight duration of UAVs, endure the
prolonged distance, and decrease the total power consumption to carry out the prede-
fined functions in the future.

• In the future, it is mandatory to optimize the proposed algorithms by the use of laser
facts and depth maps etc., to record more productive image characteristics and detect
small and dense obstacles.

• The YOLOv4_Drone approach yields a 5% to 15% higher detection accuracy as
compared to other models such as CenterNet which has 29.85% detection accuracy
but in terms of real-time implementation and speed, it is required to improve the
YOLOv4_Drone approach in the future.

• The bounding box associated with the pedestrian category is extracted from the
concluding measurement in the TAU approach and has some limitations in the current
design. In the future, it is obligatory to replace the current design of YOLOv3 with the
latest version of YOLOv4 and an online DeepSORT target tracker with a multi-object
tracker to solve these issues with efficient results.

• In the area of aerial photography, developing an extensive and versatile dataset is
a major challenge. So, it is obligatory to gather high-standard datasets to ease this
challenge. In addition, researchers are required to generate effective and surprisingly
automated approaches to classify the training data.

• In the future, it is necessary to merge the one-stage and two-stage detectors to achieve
the best outcome because both detectors have their own benefits. For instance, one-
stage algorithms are fast while two-stage algorithms have influential accuracy.

• In contrast to YOLO-based algorithms, the detection speed of Faster R-CNN still
requires to be upgraded and gradually put forward in upcoming research.

• To train a framework of high quality, in the future, there is a prerequisite to change
the portable datasets of high quality into vast datasets.

• To discuss every feature regarding the employment of UAVs in target detection, we
plan to extend the study, involve more work, and compute the latest approach in
the future.

• There are also some other YOLO versions such as YOLOv5 which were introduced in
May 2020 after two months of the YOLOv4 version. Recently, a few papers have been
published based on YOLOv5 on some custom datasets due to efficient memory in the
training process. Meanwhile, the other versions YOLOv6, YOLOv7, and YOLOv8
are still in the improvement phase in terms of training speed and computational cost.
Therefore, no paper has been published yet based on those versions. In the coming
years, our entire focus will be on these versions to handle different issues.
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6. Conclusions

In this study, we discussed the implementation of DL approaches to four crucial
problems in target detection through UAVs: small-size objects, target occlusion, complex
background, and joint issues. We inaugurated primitive ideas of DL along with crucial
problems, and metrics and then concentrated on two groups of DL approaches utilized
in target detection: one-stage detectors and two-stage detectors. Subsequently, different
designed methods depending on DL approaches were examined in the framework of target
detection based on UAVs. Further, the data about the current status quo of DL for target
detection were presented on the basis of the study gathered in this review article. We
observed that one-stage detectors were vigorously utilized in target detection due to their
fast detection rate while two-stage detectors are not extensively used in target detection
due to their low detection rate. In the end, we suggested some remarkable challenges and
upcoming research directions for DL and target detection.
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The following abbreviations are used in this manuscript:

UAVs Unmanned Aerial Vehicles
IMU Inertial Measurement Unit
GPS Global Positioning System
DL Deep Learning
RCNN Region-Based Convolutional Neural Network
SSD Single Shot MultiBox Detector
WPT Wireless Power Transfer
GIoU Generalized Intersection over Union
RPN Region Proposal Network Network
YOLO-GCC You Only Live Once-Global Context Cross
TAU Traffic Analysis from UAVs
MV Motor Vehicles
NMV Non-Motor Vehicles
KCF Kernel Correlation Filter
Soft-NMS Soft Non-Maximum Suppression
CSP BoT Cross-Stage Partial Bottleneck Transformer
mAP Mean Average Precision
RFB Receptive Field Block
ULSAM Ultra-Lightweight Subspace Attention Mechanism
GC Group Convolution
HOG Histogram of Oriented Gradients
SVM Support Vector Machines
ViBe Visual Background Extractor
MS Multi-Stream
FPN feature pyramid network
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