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Abstract

Sea clutter refers to the radar returns from a patch of ocean surface. Accurate modelling of

sea clutter and robust detection of low observable targets within sea clutter are important prob-

lems in remote sensing and radar signal processing applications. Due to lack of fundamental

understanding of the nature of sea clutter, however, no simple and effective methods for de-

tecting targets within sea clutter have been proposed. To help solve this important problem,

we apply three types of fractal scaling analyses, fluctuation analysis (FA), detrended fluctua-

tion analysis (DFA), and the wavelet-based fractal scalinganalysis to study sea clutter. Our

analyses show that sea clutter data exhibit fractal behaviors in the time scale range of about

0.01 sec to a few seconds. The physical significance of these time scales is discussed. We

emphasize that time scales characterizing fractal scalingbreak are among the most important

features for detecting patterns using fractal theory. By systematically studying 392 sea clutter

time series measured under various sea and weather conditions, we find very effective methods

for detecting targets within sea clutter. Based on the data available to us, the accuracy of these

methods is close to 100%.

Keywords: Fractal, Pattern Recognition, Sea Clutter, Target Detection

1



1 Introduction

Sea clutter is the backscattered returns from a patch of the sea surface illuminated by a radar pulse.

Accurate modelling of sea clutter and robust detection of low observable targets within sea clutter

are important problems in remote sensing and radar signal processing applications, for a number

of reasons: (i) identifying objects within sea clutter suchas submarine periscopes, low-flying air-

crafts, and missiles can greatly improve coastal and national security; (ii) identifying small marine

vessels, navigation buoys, small pieces of ice, patches of spilled oil, etc. can significantly reduce

the threat to the safety of ship navigation; (iii) monitoring and policing of illegal fishing is an im-

portant activity in environmental monitoring. Since sea clutter is a type of electromagnetic wave,

sea clutter study may also help understand fading and non-Gaussian noise in wireless communica-

tions, so that wireless communication channel characterization and signal detection can be greatly

improved.

Due to massive reflection of radar pulses from wavy or even turbulent ocean surfaces, sea

clutter is often highly non-Gaussian [1–8], even spiky [9],especially in heavy sea conditions.

Hence, sea clutter modelling is a very difficult problem, anda lot of effort has been made to study

sea clutter. Traditionally, sea clutter is often studied interms of certain simple statistical features,

such as the marginal probability density function (pdf). The non-Gaussian feature of sea clutter

has motivated researchers to employ Weibull [1], log-normal [2–4], K [5–7, 10], and compound-

Gaussian [8] distributions to model sea clutter. However, such simple phenomenological modelling

of sea clutter only offers limited analytical or physical understanding.

To gain deeper understanding of the nature of sea clutter, the concept of fractal has been em-

ployed for the modelling of the roughness of sea surface and investigation of scattering from rough

surface [11–13]. Possible chaotic behavior of sea clutter has also been studied [14–21].

Since the ultimate goal of sea clutter study is to improve detection of targets embedded within

clutters, a lot of effort has been made to design innovative methods for target detection within

sea clutter. Notable methods include time-frequency analysis techniques [22], wavelet based ap-

proaches [23], neural network based approaches [24–26], and wavelet-neural net combined ap-
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proaches [27], as well as utilizing the concept of fractal dimension [28] and fractal error [29, 30],

and multifractal analysis [31, 32]. Note that most of the above works were based on the analysis

of radar images. To improve detection accuracy, some researchers resort to higher resolution more

powerful millimeter wave radars [33]. The status of the fieldclearly indicates that one needs to

adopt a systematic approach, work on a large number of datasets measured under various sea and

weather conditions, and design a few readily computable parameters that can accurately and easily

detect targets within sea clutter.

In this paper, we employ methods from random fractal theory to study sea clutter. Specifically,

we apply three types of fractal scaling analyses, fluctuation analysis (FA), detrended fluctuation

analysis (DFA), and the wavelet-based fractal scaling analysis to analyze three types of data, the

measured sea clutter amplitude datau(n), the datav(n) obtained by integratingu(n), and the data

w(n) obtained by differencingu(n). These analyses show that sea clutter data exhibit fractal be-

haviors in the time scale range of about 0.01 sec to a few seconds. By systematically studying 392

sea clutter time series measured under various sea and weather conditions, we find very effective

methods for detecting targets within sea clutter by applying FA tou(n), DFA to bothu(n) andv(n),

and the wavelet-based approach to all three types of data. Based on the available data, the accuracy

of these detectors is found to be close to 100%.

The remainder of the paper is organized as follows. In Sec. 2,we briefly describe the sea clutter

data. In Sec. 3, we introduce the three types of fractal scaling analyses, FA, DFA and the wavelet-

based fractal scaling analysis. In Sec. 4, we apply the threetypes of fractal scaling analyses to

analyze the three types of data mentioned above, and make careful comparisons among the three

types of analyses. Finally, some concluding remarks are made in Sec. 5.

2 Sea clutter data

14 sea clutter datasets were obtained from a website maintained by Professor Simon Haykin:

http://soma.ece.mcmaster.ca/ipix/dartmouth/datasets.html. The measurement was made using the

McMaster IPIX radar at the east coast of Canada, from a clifftop near Dartmouth, Nova Scotia.

The operating (or carrier) frequency of the radar was 9.39 GHz (and hence a wavelength of about
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3 cm). The grazing angle varied from less than 10 to a few degrees. The wave height in the ocean

varied from 0.8 m to 3.8 m (with peak height up to 5.5 m). The wind conditions varied from still

to 60 km/hr (with gusts up to 90 km/hr). Data of two polarizations, HH (horizontal transmission,

horizontal reception) and VV (vertical transmission, vertical reception), were analyzed here. Each

dataset contains 14 spatial range bins of HH as well as 14 range bins of VV datasets. Therefore,

there are a total of 392 sea clutter time series. A few of the range bins hit a target, which was made

of a spherical block of styrofoam of diameter 1 m, wrapped with wire mesh. This is a very small

target, more difficult to detect than, say, a ship. Usually, the range bin where the target is strongest

is labeled as primary target bin, and the neighboring range bins where the target may also be visible

labeled as secondary target bins. However, due to the drift of the target, it is possible that the target

in a primary range bin may not be the strongest and some secondary target bins may not hit the

target at all. Each range bin data contains 217 complex numbers, with a sampling frequency of

1000 Hz. We analyze the amplitude data. Fig. 1 shows two examples of the sea clutter amplitude

data without and with target. Note that similar signals havebeen observed in many different fields.

Therefore, the analysis used in this paper may also be applicable to those fields.

3 Fractal scaling analysis

In this section, we describe one of the prototypical models for random fractals — the fractional

Brownian motion (fBm) model, then present the three types offractal scaling analyses.

3.1 Fractional Brownian motion (fBm)

FBm BH(t) is a Gaussian process with mean 0, stationary increments, variance

E[(BH(t))2] = t2H (1)

and covariance:

E[BH(s)BH(t)] =
1
2
{s2H + t2H −|s− t|2H} (2)

whereH is the Hurst parameter. The increment process of fBm,Xi = BH(i +1)−BH(i), i ≥ 1, is

called fractional Gaussian noise (fGn) process. It is a zeromean, stationary Gaussian time series.
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Noting that

E(XiXi+k) = E{[BH(i +1)−BH(i)][BH(i +1+k)−BH(i +k)]},

by Eq. (2), one can easily obtain the autocovariance function γ(k) for the fGn process:

γ(k) =
1
2
{(k+1)2H −2k2H + |k−1|2H}, k≥ 0 (3)

hence,

γ(k) ∼ k2H−2 as k→ ∞, (4)

WhenH = 1/2, the process is called memoryless or short range dependent, the most well-known

example being white Gaussian noise and its integration being the standard Brownian motion

process. When 0< H < 1/2, we have negatively correlated increments; a jump up is more likely

followed by a jump down and vice-versa. When referring to fBm, this is called “anti-persistence”

by Mandelbrot [34]. For 1/2 < H < 1, we have positively correlated increments. This means

that a jump tends to be followed by another jump in the same direction. In fBm, this is called

“persistence” [34]. Such processes have long memory properties.

By the Wiener-Khinchin theorem, one finds that the power spectral density (PSD) for the fGn

process follows a power-law,

EX( f ) ∼ 1/ f 2H−1. (5)

Furthermore, the PSD for the fBmBH(t) time series is of the form

EBH(t)( f ) ∼ 1/ f 2H+1. (6)

The processes under study are thus often called 1/ f α noise. Such type of noise is very ubiqui-

tous. For classic examples, we refer to [35–37]. More recently, it has been found that network

traffic [38–40], DNA sequence [41–43], human cognition [44], ambiguous visual perception [45],

coordination [46], posture [47], dynamic images [48, 49], the distribution of prime numbers [50],

etc., all belong to such type of stochastic processes. It is further observed that principle component

analysis of such processes leads to power-law decaying eigen-value spectrum [51].
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For a general random-walk-type 1/ f α process (i.e., not necessarily Gaussian process) with

1 < α < 3, it can be proven that [52,53]

α = 2H +1 (7)

We shall see later that Eq. (7) may hold for a wider range ofα or H, depending on which method

is employed to analyze a dataset. However, whenH does not belong to the unit interval, then one

cannot say the process to have persistent or anti-persistent correlations.

Note that while in principle Eq. (5) or (6) may be used to estimate the Hurst parameter, when

the power-law-like PSD is only valid for a limited frequencyrange, it may be difficult to determine

a suitable region to define the power-law scaling by this approach. This point will be made more

concrete later.

3.2 Fluctuation analysis (FA)

FA characterizes the second order statistic—the correlation, in a time series. It works as fol-

lows. We consider a covariance stationary stochastic process X = {X(i), i = 1,2, · · ·}. A sto-

chastic process is covariance stationary if it has constantmeanµ = E[X(i)], finite varianceσ2 =

E[(X(i)−µ)2], and covariance E[(X(i)−µ)(X(i +k)−µ)] that depends only onk. We first subtract

the meanµ from the time series. Denote the new time series asx = {x(i), i = 1,2, · · ·}, where

x(i) = X(i)−µ.

Then we form the partial summation ofx to construct a new time seriesy = {y(n),n = 1,2, · · ·},

where

y(n) =
n

∑
i=1

x(i). (8)

Often,y is called a “random walk” process ofx, whilex an “increment” process. One then examines

whether the following scaling laws hold or not,

F(m) =
√

〈|y(n+m)−y(n)|2〉 ∼ mH , (9)

where the average< · > is taken over all possible pairs of(y(n+ m),y(n)). The parameterH is

called the Hurst parameter. When the scaling law described by Eq. (9) holds, the process under

investigation is said to be a fractal process.
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3.3 Detrended fluctuation analysis (DFA)

When a measured dataset contains some trends (say, linear),it is advantageous to employ DFA [54,

55] instead of FA. Since a lot of ocean waves of different wavelength contribute to the complexity

of sea clutter, it is desirable to examine whether DFA may give additional information on the

nature of sea clutter. When applying DFA, one works on a random-walk-type process, as described

by Eq. (8). It involves the following steps. First one divides the time series into⌊N/m⌋ non-

overlapping segments (where the notation⌊x⌋ denotes the largest integer that is not greater thanx),

each containingm points; then one calculates the local trend in each segment to be the ordinate of

a linear least-squares fit for the random walk in that segment, and computes the “detrended walk”,

denoted byym(n), as the difference between the original walky(n) and the local trend; finally, one

examines if the following scaling behavior (i.e., fractal property) holds or not:

Fd(m) =

√

<
m

∑
n=1

|ym(n)|2 > ∼ mH (10)

where the angle brackets denote ensemble average of all the segments. For ideal fractal processes,

FA and DFA yield equivalent results [52]. In practice, when the data under study contains certain

trends or is non-stationary, DFA often works more reliably.

3.4 Wavelet-based fractal scaling analysis

The wavelet-based fractal scaling analysis is based on the coefficients of a discrete wavelet de-

composition. It involves a scaling functionφ0 and a mother waveletψ0. The scaling function

satisfies Z ∞

−∞
φ0(n)dn= 1.

The waveletψ0 must have zero average and decay quickly at both ends [56]. The scaled and shifted

versions ofφ0 andψ0 are given by

φ j ,k(n) = 2− j/2φ0(2
− jn−k), ψ j ,k(n) = 2− j/2ψ0(2

− jn−k), j,k∈ Z,

where j andk are the scaling (dilation) and the shifting (translation) index, respectively. Different

value of j corresponds to analyzing a different resolution level of the signal. One popular technique
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used to perform the discrete wavelet transform (DWT) is the multiresolution analysis (MRA). The

procedure of performing MRA is detailed as follows [56]:

(1) At the j = 1– th resolution, for eachk = 0,1,2, · · ·, compute the approximation coefficient

ax( j,k) and the detailed coefficientdx( j,k) according to the following formula:

ax( j,k) = ∑
n

x(n)φ j ,k(n) = ∑
n

x(n)2− j/2φ0(2
− jn−k)

dx( j,k) = ∑
n

x(n)ψ j ,k(n) = ∑
n

x(n)2− j/2ψ0(2
− jn−k)

(2) The signal approximationSAj and the signal detailSDj at the j-th resolution level are com-

puted as

SAj = ∑
k

ax( j,k)φ j ,k(n)

SDj = ∑
k

dx( j,k)ψ j ,k(n)

(3) Repeat steps (1) and (2) for the( j + 1)-th resolution level, using the signal approximation

SAj obtained in step (2) as the input signal.

Let the maximum scale resolution level chosen for analysis be J. The signal can be reconstructed

using the following equation [56]:

x(n) = SAJ +
J

∑
j=1

SDj = ∑
k

ax(J,k)φJ,k(n)+
J

∑
j=1

∑
k

dx( j,k)ψ j ,k(n). (11)

The first term represents the approximation at levelJ, and the second term represents the details at

resolution levelJ and lower. MRA builds a pyramidal structure that requires aniterative application

of the scaling and the wavelet functions, respectively. This is schematically shown in Fig. 2.

To make the above procedure more concrete, let us take the Haar wavelet as an example. The

scaling function and the mother wavelet of the Haar wavelet are defined as

φ0(n) =

{

1, 0≤ n < 1,
0, elsewhere.

ψ0(n) =







1, 0≤ n < 1/2,
−1, 1/2≤ n < 1,
0, elsewhere.
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They are shown in Fig. 3. We consider the signalx(n) consisting of noisy blocks, as shown in

Fig. 4(a). The signal approximations and details at resolution levels 1 through 3 are shown in

Figs. 4(b,d,f) (left column) and Fig. 4(c,e,g) (right column), respectively. We have

x(n) = SA1+SD1 = SA2+SD2+SD1 = SA3+SD3+SD2+SD1.

Let

Γ( j) =
1
n j

n j

∑
k=1

|dx( j,k)|2 ,

wheren j is the number of coefficients at levelj, then the Hurst parameter is given by

log2 Γ( j) = (2H −1) j +c0, (12)

wherec0 is some constant. When log2 Γ( j) vs. the scalej curve is approximately linear for certain

range of j, the processx(t) is said to be fractal, with slope being 2H − 1. In particular, a flat

horizontal line corresponds toH = 1/2.

Recalling that when applying FA or DFA, one works on a random-walk-type process. When

one employs the wavelet-based fractal scaling analysis, one works on the original time series.

When this is the case, the Hurst parameters estimated by the three methods would be consistent.

However, if one also applies the wavelet-based fractal scaling analysis to the random walk process,

then the estimated scaling exponent would beH + 1, whereH is obtained by either FA or DFA

(when they are equivalent). This point will be made clearer in Sec. 4.

4 Fractal scaling analyses of sea clutter

Given a measured sea clutter data, one does not know a priori whether the original data should

be treated as a random-walk-type process or as an increment process. For this reason, we analyze

three types of data, the original data, the integrated data,and the differenced data. Let us denote

the original sea clutter amplitude data byu(n),n= 1,2, · · ·. The integrated datav(n) is obtained by

first removing the mean value ¯u and then forming the partial summation,

v(n) =
n

∑
i=1

[u(i)− ū], n = 1,2, · · · . (13)
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The differenced dataw(n) is defined as

w(n) = u(n+1)−u(n), n = 1,2, · · · . (14)

We first discuss FA of these three types of data.

4.1 Fluctuation analysis of sea clutter

For notational clarity, we re-denoteF(m) in Eq. (9) byF(u)(m), F(v)(m), or F(w)(m), depending on

whether FA is applied to theu(n), v(n), or w(n) time series.

4.1.1 Analysis of original sea clutter data

Let us apply FA to the original sea clutter amplitude datau(n) first. We can directly apply Eq. (9)

by replacingy(n) by the sea clutter datau(n). Representative results of log2F(u)(m) vs. log2m for

the 14 range bins of one measurement are shown in Fig. 5(a), where the curves denoted by open

circles are for data with the target, while the curves denoted by asterisks are for data without the

target. We observe the curves are fairly linear in the range of m = 24 to aboutm = 212. They

correspond to the time scale range of about 0.01 sec to 4 seconds, since the sampling frequency of

the sea clutter data is 1000 Hz. Thus in this time scale range the sea clutter data can be classified

as fractal. TheH parameter of each curve is estimated by fitting a straight line to the log2F(u)(m)

vs. log2m curve in the range ofm= 24 to m= 212. The estimated parameter is explicitly shown

in Fig. 5(b). We notice that theH parameters of the curves for the data with the target are much

larger than those for the data without the target. It turns out this is a generic feature for all the

measurements.

What is the physical significance of the two time scales, one about 0.01 sec and the other

around a few seconds, identified in FA? We observe that for time scale up to 0.01 sec, the amplitude

waveform of sea clutter is fairly smooth, as can be evidentlyseen from Fig. 6. The time scale of a

few seconds may correspond to how fast the wave pattern on thesea surface changes. These time

scales may slightly vary with sea and weather conditions. Interestingly, these two time scales have

been explicitly accounted for by the compound-Gaussian model [57], where the time scale of a

few seconds is considered as the decorrelation time of the texture.
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FA suggests that the sea clutter data is a type of 1/ f α noise for the time scale range of around

0.01 sec to a few seconds. It is interesting to estimate the PSD of sea clutter data to check whether

it indeed decays as a power-law in the frequency range corresponding to the time scale range

identified, and if yes, to check whether the relation ofα = 2H +1 holds.

We have systematically estimated the PSD from all the sea clutter data. Two representative

PSD curves are shown in Fig. 7 in log-log scale. The dashed straight lines in Fig. 7 are in the

frequency range of 1 to 100 Hz, which corresponds to the time scale range of around 0.01 sec to a

few seconds. Those two straight lines are obtained by the least-squares fit to the PSD curves in that

frequency range. The slopes are 1.14 and 1.72, which are equivalent toH = 0.07 and 0.36. The

Hurst parameters for the same datasets estimated by FA are 0.07 and 0.37. Hence, FA and spectral

analysis are very consistent. It is worth noting, though, that it is not easy to identify the scaling

range by spectral analysis alone.

Next, let us examine if a robust detector for detecting targets within sea clutter can be devel-

oped based onH estimated in the time scale range of 0.01 sec to a few seconds identified. We

have systematically studied 392 time series of the sea clutter data measured under various sea and

weather conditions. To better appreciate the detection performance, we have first only focused on

primary target bins, but omitted those secondary target bins, since sometimes it is hard to deter-

mine whether a secondary target bin really hits a target or not. After omitting those secondary

target range bins, the histograms (equivalent to pdfs) for theH parameter under the two hypothe-

ses (the bins without targets and those with primary targets) for HH and VV datasets are shown in

Figs. 8(a, b), respectively. We observe that the histogramscompletely separate for the HH datasets.

This means the detection accuracy can be 100%. The accuracy for the VV datasets is also very

good, except for two measurements. Interestingly, those measurements correspond to the two HH

measurements with the smallestH values. We suspect there might be some kind of experimental

error in those two measurements.

Before proceeding, we make a comment. If one tries to estimate H from other intervals of

time by using maximum likelihood estimation, thenH fails to detect targets within sea clutter.

This makes it clear that characterization of fractal scaling break is among the most important when
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detecting patterns using fractal theory. This feature is particularly important in practice, since

experimental data is finite, and therefore, may not confirm toideal mathematical definition of

fractal processes with long range correlations.

4.1.2 Analysis of the integrated data

Now we apply FA to the datav(n) obtained by integratingu(n). A typical result of log2F(v)(m)

vs. log2m is shown in Fig. 5(c) and theH values (estimated by fitting a straight line to log2F(v)(m)

vs. log2m in the range ofm = 24 to m = 212) for the 14 range bins shown in Fig. 5(d). From

Fig. 5(c), one would conclude that the data have excellent fractal scaling behavior. However, this

is an illusion due to the largey-axis range in the figure. This point will be further discussed in

Sec. 5. While the variation ofH vs. the range-bin number still indicates which bins hit the target,

overall, theH values are very close to 1. Because of this, FA-based fractalscaling analysis becomes

ineffective for the purpose of distinguishing sea clutter data with and without targets. This can be

readily seen from Figs. 8(c, d), where we observe that the histogram for theH parameters for the

data without targets significantly overlaps with that for the data with primary targets for both HH

and VV datasets.

Let us explain why FA may fail for detecting targets within sea clutter. This lies in the ob-

servation that the largest Hurst parameter given by FA is 1. To explain this idea, let us assume

y(n) ∼ nβ,β > 1. Then
〈

|y(n+m)−y(n)|2
〉

=
〈

[(n+m)β−nβ]2
〉

is dominated by the terms with

largen. When this is the case,(n+ m)β = [n(1+ m/n)]β ≈ nβ[1+ βm/n]. One then sees that
〈

|y(n+m)−y(n)|2
〉

∼ m2, i.e., H = 1. We call this the saturation phenomenon associated with

FA. An important implication of this discussion is that whenever one observes a Hurst parameter

very close to 1, one has to be alerted that it may be advantageous to re-do the analysis by treating

the original time series as a “random walk” process instead of an “increment” process. In other

words, apply FA on the original data instead of the integrated data. It should be noted that one can

similarly prove thatH estimated by FA cannot be negative.
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4.1.3 Analysis of the differenced data

We now apply FA to the dataw(n) obtained by differencingu(n). A representative result of

log2F(w)(m) vs. log2m for one single measurement is shown in Fig. 5(e) and the variation of

H vs. the range-bin number shown in Fig. 5(f). we observe that all the curves are almost flat in

the range of aboutm= 24 to m= 216, thus theH values for the 14 range bins are all very close

to 0. Since the difference between theH parameters for the range bins with and without the target

is very small, FA-based fractal scaling analysis again becomes ineffective for the purpose of de-

tecting targets within sea clutter data. This can be readilyappreciated from Figs. 8(e, f), where we

observe that for both HH and VV datasets, the histograms of the H parameters for the sea clutter

data with and without targets significantly overlap.

4.1.4 Brief summary

It is evident from the above analyses that the sea clutter data should be treated as a random-walk-

type process. Realizing this, one can then readily develop amethod for detecting targets from sea

clutter radar returns.

4.2 Detrended fluctuation analysis of sea clutter

Let us now discuss DFA of sea clutter. We also re-denoteFd(m) in Eq. (10) byFd(u)(m), Fd(v)(m),

or Fd(w)(m), depending on whether DFA is applied to theu(n), v(n), or w(n) time series.

4.2.1 Analysis of original sea clutter data

Let us start with applying DFA to the original sea clutter amplitude datau(n). We analyze the same

measurement that has been studied by FA earlier. Representative results of log2Fd(u)(m) vs. log2m

for the 14 range bins are shown in Fig. 9(a). We observe that the curves for data with and without

the target are all very similar to those obtained by FA. We also identify the two time scales, one

about 0.01 sec and the other around a few seconds. Again we notice that theH values for the data

with the target are much larger than those for the data without the target. This is explicitly shown

in Fig. 9(b). It turns out that this feature is also generically true for all the measurements.
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Since the difference between the results given by DFA and FA is very minor when the original

sea clutter datau(n) is considered, we thus conclude that the sea clutter data does not contain any

significant trends, especially linear.

Let us now carefully examine if theH parameter estimated by DFA can be developed into

a robust target detector within sea clutter. We have also systematically studied 392 time series

of the sea clutter data measured under various sea and weather conditions, by focusing on bins

with primary targets. The histograms forH under each hypothesis (the bins without targets and

those with primary targets) for HH and VV datasets are shown in Figs. 10(a, b), respectively. We

observe that the detection accuracy for both HH and VV datasets is very high, except for two

measurements. Interestingly, those measurements correspond to the two measurements where FA

works on the HH but fails in the VV measurements.

4.2.2 Analysis of the integrated data

Let us now apply DFA to the datav(n) obtained by integratingu(n). Fig. 9(c) shows a representa-

tive example of log2Fd(v)(m) vs. log2m for one single measurement, where the curves denoted by

open circles are for data with the target, while the curves denoted by asterisks are for data without

the target. As will be discussed in Sec. 5, the seemingly goodfractal scaling behavior is also an

illusion. TheH value for each curve is estimated by fitting a straight line tolog2Fd(v)(m) vs. log2m

in the range ofm= 24 to m= 212. The variation ofH vs. the range-bin number for the 14 range

bins is shown in Fig. 9(d). We observe that theH value can be used for separating sea clutter data

with and without the target.

Comparing Figs. 9(b) and (d), one notices that theH values estimated fromu(n) andv(n) time

series differ by around 1. How may we understand this feature? Notice that when the processu(n)

has a PSD of the form 1/ f α, whereα = 2H +1, 0 < H < 1, then the integrated processv(n) has a

PSD of the form 1/ f α+2. If we still haveα+2= 2H∗+1, thenH∗ = H +1. Therefore, when DFA

is used, the relation ofα = 2H +1 [52] holds regardless of whetherH being larger than 1 or not.

We thus have an interesting observation that DFA can overcome the saturation problem associated

with FA.
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We have also examined the performance of target detection within 392 time series of the sea

clutter data measured under various sea and weather conditions. Our analysis shows that this

method is very effective for distinguishing sea clutter data with and without targets. This can be

evidently seen from Fig. 10(c), where we observe that the histograms ofH for the sea clutter data

with and without targets for HH datasets are completely separated. In fact, the separation is larger

than that revealed by FA. The detection accuracy for VV datasets is also very good, except for two

measurements, as shown in Fig. 10(d). Again, those VV measurements correspond to the two VV

measurements where FA is not very effective either.

It is worth pointing out that if one tries to estimateH from other intervals of time, then DFA

fails to detect targets within sea clutter, eitheru(n) or v(n) data. This very fact again shows that

fractal scaling break is at least as important as fractal scaling behavior for pattern recognition

purposes.

4.2.3 Analysis of the differenced data

Finally, we apply DFA to the dataw(n) obtained by differencingu(n). A representative result of

log2F(w)(m) vs. log2m for one single measurement is shown in Fig. 9(e) and the variation of H

vs. the range-bin number shown in Fig. 9(f). Similar to the results obtained by applying FA to the

w(n) time series, we observe from Fig. 9(e) that the curves for thesea clutter data with and without

the target are all flat in the range ofm= 24 to m= 216, thus theH values for the 14 range bins

are all very close to 0, and this is explicitly shown in Fig. 9(f). Since the difference between theH

values for the sea clutter data with and without the target isvery minor, DFA-based fractal scaling

analysis fails for the purpose of distinguishing sea clutter data with targets from those without

targets. This can be readily seen from Figs. 10(e, f), where the histograms for theH parameter

under the two hypotheses (the range bins without targets andthose with primary targets) for HH

and VV datasets are shown respectively. We observe that the histogram for the data with primary

targets significantly overlaps with that for the data without targets. The reason is of course that all

theH values are very close to 0.
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4.2.4 Brief summary

Our DFA of sea clutter clearly indicates that two robust detectors, with accuracy close to 100%,

can be readily developed by applying DFA to the original dataand the integrated data.

4.3 Wavelet-based fractal scaling analysis of sea clutter

Let us now apply the wavelet-based fractal scaling analysisto the three types of data, the original

sea clutter datau(n), the datav(n) obtained by integratingu(n) and the dataw(n) obtained by

differencingu(n). Again, for notational clarity, we re-denoteΓ( j) by Γ(u)( j), Γ(v)( j), or Γ(w)( j),

depending on whether the wavelet-based fractal scaling analysis is applied to theu(n), v(n), or

w(n) time series. Representative results for log2Γ( j) vs. j curves for the three types of data are

shown in Figs. 11(a, c, e), while theH values for the three types of data are shown in Figs. 11(b,

d, f), respectively. For the purpose of comparing with FA andDFA, we focus on the time scale

range from about 0.01 sec to a few seconds. It is obvious from Figs. 11(b, d, f) that theH values

estimated by the wavelet-based fractal scaling analysis can separate the sea clutter data with and

without targets very well, no matter which type of data is considered.

Let us now understand the meanings of these computations. Wehave noted that theH value

estimated by applying the wavelet-based fractal scaling analysis to the increment processw(n)

should be consistent with that obtained by applying either FA or DFA to the random-walk-type

processu(n). Comparing Fig. 11(f) with Fig. 5(b) and Fig. 9(b), we see that this is indeed the

case, except an interesting feature from the wavelet-basedmethod: the estimatedH values can be

negative. This feature can be viewed as an improvement of thewavelet-based method over both

FA and DFA: theH values estimated by the latter two methods have to be non-negative, regardless

of the process under investigation.

Interestingly, theH parameters calculated fromv(n), u(n) andw(n) time series differ by around

1 in turn. This is understandable, noticing thatv(n) is the “random walk” process ofu(n), while

u(n) is the “random walk” process ofw(n). When the processu(n) has a power-law PSD of the

form 1/ f α, this means the PSD forw(n) andv(n) has the form 1/ f α−2 and 1/ f α+2, respectively.

The fact that the estimatedH differs by around 1 indicates that the relation ofα = 2H + 1 holds
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without any constraint on the admissible range ofα or H.

Finally, we examine the performance of target detection within 392 time series of the sea clutter

data measured under various sea and weather conditions. Theresults are summarized in Figs. 12(a-

f). Since the histograms of theH parameter for the sea clutter data with and without targets for HH

datasets are completely separated, we conclude that the wavelet-based fractal scaling analysis is

very effective in detecting targets within sea clutter data, regardless of which process is analyzed.

The detection accuracy for VV datasets is also very good, except for two measurements, as shown

in Figs. 12(b, d, f).

It is interesting to make comparisons about the performanceof target detection by applying FA

to u(n), DFA tou(n), and the wavelet-based fractal scaling analysis to thew(n) data. By comparing

Figs. 8(a, b), 10(a, b) and 12(e, f), we observe that the sea clutter data with and without targets

can be best separated by the wavelet-based approach, especially for the HH datasets, since the gap

between the histograms ofH for the range bins with primary targets and those without targets is the

biggest. The detection accuracy of the FA-based fractal scaling analysis is also as high as 100%,

since the histograms for the sea clutter data with and without targets are completely separated for

the HH datasets. The detection performance of the DFA-basedfractal scaling analysis is also very

good, except for two measurements.

Why does the wavelet-based approach give the best detectionperformance? This is because

theH values estimated by the wavelet-based approach can be negative, while those estimated by

both FA and DFA have to be non-negative. Thus the difference betweenH values for the sea clutter

data with and without targets is best represented by the wavelet-based approach.

We also compare the performance of target detection by applying DFA tov(n) and the wavelet-

based approach tou(n). By comparing Figs. 10(c,d) with 12(a,b), we observe that the detection

performance is very similar for the two methods (the wavelet-based approach is slightly better).

5 Conclusion and Discussions

In this paper, we have examined three types of fractal scaling analyses, FA, DFA, and the wavelet-

based, for detecting small low observable targets within sea clutter. We have applied these methods

17



to analyze three types of data, the measured sea clutter amplitude datau(n), the datav(n) obtained

by integratingu(n), and the dataw(n) obtained by differencingu(n). We find that sea clutter

data exhibit fractal behaviors in the time scale range of about 0.01 sec to around a few seconds.

By systematically studying 392 sea clutter time series measured under various sea and weather

conditions, we find very effective methods for detecting targets within sea clutter by applying FA

to u(n), DFA to bothu(n) andv(n), and the wavelet-based approach to all three types of data.

Based on the limited data available to us, the accuracy of these detectors is found to be close to

100%.

We emphasize that the fractal scaling behavior identified from sea clutter data is only valid

within the time scale range of about 0.01 sec and a few seconds. By applying FA or DFA tou(n),

and the wavelet-based approach to bothu(n) andw(n), one can readily identify these two time

scales. When applying the three methods tov(n) (Figs. 5(c), 9(c) and 11(c)), one might think that

sea clutter data have excellent fractal scaling behavior over the entire range of time. However, this

is an illusion due to the largey-axis range in the figures. To better see this, as an example, we reduce

the y-axis range by plotting log2[Fd(v)(m)/m] vs. log2m, as shown in Fig. 13 (corresponding to

Fig. 9(c)). Now it is clear that the curves for sea clutter data without target change abruptly around

m= 24 ndm= 212, which correspond to the time scale range of about 0.01 sec and 4 seconds. We

have pointed out that the two time scales have specific physical meanings: below 0.01 sec, the data

is fairly smooth, hence cannot be fractal; above a few seconds, the wave pattern on the sea surface

may change, hence, the data may change to a different behavior (possibly another type of fractal).

With the available length of the data (about 2 min), the latter cannot be resolved, however. It is

possible that these time scales may slightly change with seaand weather conditions.

We have mentioned that if one tries to estimateH from other intervals of time, thenH fails to

detect targets within sea clutter. This very fact makes it clear that fractal scaling break is at least as

important as fractal scaling behavior for pattern recognition purposes. This feature is particularly

important in practice, since experimental data is finite, and therefore, may not confirm to ideal

mathematical definition of fractal processes with long range correlations.

To facilitate application of these methods in practice, we emphasize that FA gives 0≤ H ≤ 1,
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DFA gives 0≤ H, while the wavelet-based method gives an estimatedH that can not only be

larger than 1, but also be negative. Therefore, the wavelet-based method appears the easiest to use

in practice. Finally, readers interested in these methods are strongly encouraged to contact with

the authors to obtain the codes.
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Figure Captions

Fig. 1: Examples of the sea clutter amplitude data (a) without and (b) with target.

Fig. 2: Pyramidal structure of the output of wavelet multiresolution analysis.

Fig. 3: The scaling functionφ0(n) and the mother waveletψ0(n) of the Haar wavelet.

Fig. 4: (a) The input signalx(n), (b,d,f) and (c,e,g) are the signal approximations and the signal

details at resolution levels 1 through 3, respectively.x(n) = SA1 + SD1 = SA2 + SD2 + SD1 =

SA3+SD3+SD2+SD1.

Fig. 5: The left column (a,c,e) shows the results by FA (log2F(m) vs. log2m) for the 14 range

bins for the original sea clutter datau(n), the integrated datav(n), and the differenced dataw(n),

respectively. The correspondingH values are shown in (b,d,f). Open circles denote bins with

target, while * denote bins without target. This rule applies to all other figures.

Fig. 6: Two short segments of the sea clutter amplitude data.

Fig. 7: (a) and (b) show the PSD of the two sea clutter data shown in Figs. 1(a) and (b), respectively.

Fig. 8: The left column (a,c,e) shows the results by FA (histograms of the bins without targets and

those with primary targets of HH datasets) foru(n), v(n) andw(n), respectively. The histograms

of VV datasets are shown in (b,d,f). Open boxes denote the range bins without targets, while solid

black boxes denote the bins with primary targets. This rule applies to all other figures.

Fig. 9: The left column (a,c,e) shows the results by DFA (log2F(m) vs. log2m) for the 14 range

bins foru(n), v(n) andw(n), respectively. The correspondingH values are shown in (b,d,f).

Fig. 10: The left column (a,c,e) shows the results by DFA (histograms of the bins without and with

targets for HH datasets) foru(n), v(n) andw(n), respectively. The histograms for VV datasets are

shown in (b,d,f).

Fig. 11: The left column (a,c,e) shows the results by the wavelet-based fractal scaling analysis

(log2F(m) vs. log2m) for the 14 range bins foru(n), v(n) andw(n), respectively. The correspond-

ing H values are shown in (b,d,f).
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Fig. 12: The left column (a,c,e) shows the results by the wavelet-based fractal scaling analysis (his-

tograms of the bins without and with targets for HH datasets)for u(n), v(n) andw(n), respectively.

The histograms for VV datasets are shown in (b,d,f).

Fig. 13: The log2[Fd(v)(m)/m] vs. log2m curves for the 14 range bins forv(n) using DFA.
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