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Abstract

This paper investigates an approach for generating two

grating images so that the moiré pattern of their superpo-

sition resembles the target image. Our method is grounded

on the fundamental moiré theorem. By focusing on the vi-

sually most dominant (1,−1)-moiré component, we obtain

the phase modulation constraint on the phase shifts between

the two grating images. For improving visual appearance

of the grating images and hiding capability the embedded

image, a smoothness term is added to spread information

between the two grating images and an appearance phase

function is used to add irregular structures into grating im-

ages. The grating images can be printed on transparencies

and the hidden image decoding can be performed optically

by overlaying them together. The proposed method enables

the creation of moiré art and allows visual decoding with-

out computers.

1. Introduction

Moiré patterns are interference patterns created when

repetitive structures are overlaid. One property that makes

moiré patterns mysterious and interesting is that they con-

sist of new patterns which are clearly visible in the superpo-

sition but never appear in any of the original structures [1].

For computer graphics and computer vision, moiré pat-

terns are often unwanted artifacts produced by rendering

programs or digital cameras, due to undersampling or un-

expected interaction between overlaid structures. Several

techniques have been proposed for removing or alleviat-

ing their visual impacts. In this paper, we study an oppo-

site problem where moiré phenomenon is not abandoned

but utilized for synthesizing the desired patterns. More for-

mally, given a target image, we want to find two grating

images so that their superposition resembles the target im-

age through moiré effects but none of each reveals the target

image individually.

The moiré phenomenon is intriguing because it is mys-

terious and unexpected. It seems difficult to control the

∗This work was partly supported by grants NSC101-2628-E-002-031-
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synthesis of the moiré patterns. Fortunately, for years, sci-

entists have developed techniques for analyzing moiré pat-

terns with the given structures, such as frequency-domain

analysis, geometrical approaches and interferometric meth-

ods. Our method is grounded on the fundamental moiré

theorem which, through frequency-domain analysis, pro-

vides a mathematical formulation of the moiré components

between curvilinear grating images, one kind of repeti-

tive non-periodic grating images (such as L1 and L2 in

Figure 1). By focusing on the visually most dominating

(1,−1)-moiré component, we obtain the phase modulation

constraint which gives the condition of the phase shifts be-

tween the two grating images for synthesizing the required

target image. Direct application of the phase modulation

constraint generates two grating images whose superposi-

tion resembles the desired target image. Unfortunately, the

grating image alone could also reveal the target image al-

though only obscurely. To make the grating images more

uncorrelated to the target image, a smoothness term is used

to enforce information spread between the two grating im-

ages. Furthermore, an appearance phase function is added

for imposing unrelated structures into the grating images

and controlling their appearances, making the target image

more invisible in each of them.

Our method can be used for several applications such as

creating moiré art, in which two seemingly unrelated grat-

ing images are superposed to reveal an unexpected target

image. Figure 1 gives an example1. Given “The Starry

Night” and “The Scream” as the target images, our method

generates two grating images L1 and L2. When overlay-

ing L1 over L2 with their top edges aligned, the occurred

moiré pattern resembles “The Starry Night”. When mov-

ing L1 downwards to align its bottom edge with L2’s, “The

Scream” shows up. In addition to inciting sense of won-

der by moiré art, due to its information hiding nature, our

method can also be used for steganography in which the

message image is hidden and embedded, and can only be

revealed with the key image. Our grating images can be

printed on separated transparencies and the decoding can

be simply performed by overlaying them together.

1The pdf file or printed version could suffer from the sampling problem.

The original images of all results can be found in the supplementary.
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target image I1 target image I2 grating image L1 grating image L2 superposition #1 superposition #2

Figure 1: An example of moiré art created by our method. Given two target images I1 and I2, we generate two grating

images L1 and L2. When overlaying L1 over L2 with their top edges aligned, the interference pattern incurred by the moiré

phenomenon resembles I1. By moving L1 downwards to align its bottom edge with L2’s, the moiré pattern looks like I2.

2. Related work

Amidror’s book “The Theory of the Moiré Phenomenon”

provides a comprehensive and thorough treatment of the

theory behind moiré phenomenon [1]. It applies Fourier

domain approaches to give a detailed analysis for moiré

phenomenon caused by periodic patterns and repetitive non-

periodic patterns. Our method is built upon the fundamental

moiré theorem described in this book.

Lebanon and Bruckstein [6] pioneered in studying syn-

thesis of the desired moiré pattern caused by superposing

two generated images. Although both their method and our

method build upon the fundamental moiré theorem, with

the proposed smoothness term and appearance phase func-

tion, the results of our method are visually more promising.

Thus, our contributions are the new formulation for opti-

mization and exploration of different schemes for improv-

ing visual appearance and hiding capability. Hersch and

Chosson [3] proposed a moiré synthesis method for creating

dynamic moving moiré patterns when shifting the base band

stripe-like layer slowly. Some focused on image hiding in

time-averaged moiré [9, 10], the moiré pattern appeared on

a fast oscillating image due to persistence of vision.

Huang and Wu [4] proposed a novel visual information

concealing technique called “Optical watermarking” where

a printed image contains a grid of fine dots and the key con-

tains many vertical stripes. The printed image with the hid-

den binary image can be decoded by superposing a transpar-

ent key image onto it. Our technique shares similarity with

optical watermarking. Both use superposition and enhance

security by adding irregular structures. However, optical

watermarking uses occlusion while our method uses moiré

phenomenon. In addition, our method can handle grayscale

images while optical watermarking only deals with binary

images. Visual cryptography is a technique which allows

visual information to be encrypted in such a way that its

decryption does not require a computer [11]. Conventional

visual cryptography schemes use simple “OR” operation for

encryption [7, 2, 5]. They allow the binary share images to

be printed on transparencies and decode the binary secret

image by overlaying transparencies.

3. Fundamental moiré theorem

This paper takes the spectral approach for analysing the

moiré phenomenon [1]. Assume r is the superposition pat-

tern generated by multiplying two layers r1 and r2, i.e.,

r(x, y) = r1(x, y) r2(x, y). (1)

Using Fourier transform, in the frequency domain, the spec-

trum of r can be written as:

R(u, v) = R1(u, v) ∗R2(u, v), (2)

where the symbol ∗ is the convolution operator and R, R1

and R2 are the spectra of r, r1 and r2 respectively. Figure 2

gives an example for superposition of two cosine functions

with frequency vectors f1 and f2. Because of the convolu-

tion, the resultant spectrum R contains components whose

frequencies do not exist in any of the original spectra R1

and R2. The geometric locations of these components in

the frequency domain are f1 + f2, f1 − f2, f2 − f1, and

−f1−f2. Because human vision system is more sensitive to

low-frequency contents, a new component becomes notice-

able if its frequency is lower than the cutoff and the mag-

nitude is significant enough. These visible components are

called moiré patterns.

In this paper, we consider the moiré pattern between

repetitive non-periodic grating layers, called curvilinear

gratings. The curvilinear gratings r1 and r2 can be writ-

ten in the following form:

r1(x, y) = p1(φ1(x, y)), r2(x, y) = p2(φ2(x, y)), (3)

where p1 and p2 are two one-dimensional periodic profile

functions with the period T (we assume T = 1 without

losing generality); φ1 and φ2 are two phase functions which

bend p1 and p2 into curvilinear gratings r1 and r2. Here, the

periodic function p determines the intensity behaviour while

the bending function φ determines the geometric layout of

the grating r. Figure 3 gives examples of gratings in this

form. By assigning φ1 and φ2, one can warp the periodic

profile p into different gratings r1 and r2.

19131913



Figure 2: An example of superposition of two cosine func-

tions r1(x, y) = 0.5 + 0.5 cosx (a) and r2(x, y) = 0.5 +
0.5 cos(x cos 15◦ + y sin 15◦) (b). In the superposition (c),

some low-frequency, nearly horizontal moiré patterns are

noticeable. (d) and (e) show the spectra of r1 and r2. The

dot size indicates the magnitude of a component while the

location represents its frequency f and direction θ. The

spectrum of the superposition (f) contains additional fre-

quency components due to the convolution. The two com-

ponents close to the origin (f1−f2 and f2−f1) correspond

to the visible moiré patterns as they are of low-frequency

and significant enough.

The fundamental moiré theorem [1] states that the peri-

odic profile and the geometric layout of the moiré are com-

pletely independent to each other. Mathematically, it says

that the (k1, k2)-moiré component mk1,k2
of the superpo-

sition r (here, k1, k2 are integers indicating the different

moiré components, called moiré index) is given by

mk1,k2
(x, y) = pk1,k2

(φk1,k2
(x, y)). (4)

The bending function φk1,k2
brings pk1,k2

into the (k1, k2)-

moiré appearance and is given by

φk1,k2
(x, y) = k1φ1(x, y) + k2φ2(x, y). (5)

The 1-D periodic profile function pk1,k2
of the (k1, k2)-

moiré is given by

pk1,k2
(x′) =

∞
∑

n=−∞

c
(1)
k1n

c
(2)
k2n

ei2πnx
′

, (6)

where c
(1)
j and c

(2)
j are Fourier coefficients of p1 and p2

at frequency j; since p1 and p2 are periodic functions with

periods T = 1, their Fourier coefficients are non-zero only

when j is an integer. In other words, we have pk1,k2
(x′) =

F−1{F{p1}(k1u)F{p2}(k2u)}(x
′). With the fundamen-

tal moiré theorem, we can decompose the moiré pattern into

several (k1, k2)-moiré components whose periodic profiles

and bending phase functions can be treated independently.

x
0 1

0

1

p(x)=1
2
+1

2
cos(2πx) φ1(x,y)=x r1=p(φ1(x,y)) φ2(x,y)=x2+y2 r2=p(φ2(x,y))

Figure 3: The phase functions φ1 and φ2 bend the profile p
into different geometric layouts for the gratings r1 and r2.

4. Moiré pattern synthesis

We attempt to solve the following problem: Given a tar-

get image I , find two curvilinear grating images L1 and L2

such that the moiré pattern of their superposition is close to

I . We will impose some desired properties of the gratings

for different applications in Section 5, but focus on the basic

moiré pattern synthesis problem in this section.

4.1. Moiré pattern of the superposition

We limit our discussions to (1,−1)-moiré in this paper

because it is visually more dominant than high-order moiré

components with |k1| > 1 and |k2| > 1. There are sev-

eral reasons. First, the high-frequency components of pro-

file functions usually have smaller magnitudes. Therefore,

the Fourier coefficients c
(1)
k1n

and c
(2)
k2n

usually decay very

fast with k1 and k2. Thus, the periodic profile pk1,k2
for

the (k1, k2)-moiré usually has a much smaller range for

larger k1 and k2, making them less noticeable in the super-

position. This indicates that we only need to consider four

moiré components, (1, 1), (−1,−1), (1,−1) and (−1, 1).
Note that (1, 1) and (−1,−1) moiré are equivalent as they

just swap the roles of L1 and L2; similar for (1,−1) and

(−1, 1) moiré components. Therefore, it leaves us (1, 1)
and (1,−1) moiré components which are opposite to each

other. Thus, if one is of low frequency, the other will be of

high frequency, making it less visually sensible. Therefore,

we only manipulate the (1,−1) moiré component and leave

other components for free as they are less visually notice-

able because of high frequency or low magnitude.

Let L1(x, y)=p1(φ1(x, y)) and L2(x, y)=p2(φ2(x, y)),
where the ranges of the profiles are [0, 1] with 2π periods.

According to fundamental moiré theorem (Equation 4), the

(1,−1)-moiré component of their superposition S is:

m1,−1(x, y) = p1,−1(φ1,−1(x, y)), (7)

where the corresponding phase function φ1,−1 and periodic

profile p1,−1 are given by:

φ1,−1(x, y) = φ1(x, y)− φ2(x, y), (8)

p1,−1(x
′) = F−1{F{p1}(u)F{p2}(−u)}. (9)

For simplicity, we define m(x, y) ≡ m1,−1(x, y), pm(x′) ≡
p1,−1(x

′) and φm(x, y) ≡ φ1,−1(x, y) as the moiré compo-

nent, intensity profile and phase function for the (1,−1)-
moiré of the superposition S respectively.
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(a) I (b) Î

(c) L1 (d) L2 (e) superposition

Figure 4: A simple example for moiré pattern synthesis.

The target image I (a) is first converted into an image Î (b)

with lower contrast by tone mapping. In this example, we

used p1(x) = p2(x) = 1
2 + 1

2 cosx as periodic profiles.

The phase difference Ψ can then be calculated using Equa-

tion 12. We fix φ1(x, y) =
1
2πx as the carrier wave L1 (c).

Thus, L2 can be uniquely determined using Equation 12 and

the result is shown in (d). When superposing L1 and L2 to-

gether, the generated moiré pattern (e) looks similar to the

target image Î . Note that, in this example, the target image

is slightly visible in L2. It can be alleviated by distributing

the phase difference into L1 later.

We only discuss grayscale images here. For color im-

ages, the same idea is applied to each color channel. Given

the target image I and user-specified periodic profiles p1
and p2 (their choices will be discussed in Section 4.2), we

want that the appearance of (1,−1)-moiré m looks similar

to I . However, because the range of function pm is usually

smaller than [0, 1], the synthesized moiré cannot match the

intensity range of I . Thus, it is necessary to compress the

range of I first by some tone mapping operator Γ. Option-

ally, a low-pass filter f could be applied to prevent messy

artifacts in the synthetic images due to high-frequency part

in I . Thus, in the following, we use the modified image

Î = Γ(f ∗ I) as the target image. The goal is then to syn-

thesize the (1,−1)-moiré m such that

m(x, y) = pm(φ1(x, y)− φ2(x, y)) = Î(x, y). (10)

Thanks to the fundamental moiré theorem, the periodic pro-

file pm can be pre-determined by the Fourier coefficients of

p1 and p2 using Equation 9. For (1,−1)-moiré component,

the periodic profile pm(x′) is a periodic even function for

any p1 and p2. Thus, the solutions of φ1 and φ2 must sat-

isfy the following equation:

φ1(x, y)−φ2(x, y) = ±p−1
m (Î(x, y))+2kπ, k ∈ Z , (11)

where p−1
m is the inverse function of pm, which maps an

intensity value to the corresponding phase within [0, 2π].
Note that the 2kπ term in the above equation has no influ-

ence on the appearance of L1 and L2 because both have

the period 2π. In addition, the “±” sign can be interpreted

as exchange of φ1 and φ2. Thus, the constraint on phase

difference can be simplified as:

φ1(x, y)− φ2(x, y) = p−1
m (Î(x, y))

.
= Ψ(x, y). (12)

We call it phase modulation constraint. From this con-

straint, we can interpret L1(x, y) as a 2D carrier wave and

L2(x, y) as a phase-modulated signal with Ψ(x, y) phase

shift. Note that we have the freedom to choose the phase

functions φ1 and φ2 as long as their phase shift satisfies the

constraint in Equation 12. We will utilize this flexibility for

designing better grating images for different applications

later. Figure 4 gives an example of the proposed scheme

for grayscale images. Note that the target image is slightly

visible (although very obscurely) in one of the grating im-

ages. We will show how to improve this in Section 5.

4.2. Periodic profile functions

When choosing periodic profiles, we consider the fol-

lowing three factors.

Range of periodic profile of the (1,-1)-moiré compo-

nent. The most important factor is probably the range of

the resulting periodic profile because it directly affects the

range of the intensity of the hidden moiré pattern. The peri-

odic profile pm with a larger range potentially gives a moiré

image with better contrast. Figure 5 shows the resulting

pm’s for some combinations of different periodic profiles.

Among them, pm from superposing two square wave func-

tions has the largest range. The range of pm using two co-

sine functions is not as wide, but good enough in practice.

Magnitude of high-order moiré components. From

Equation 6, the periodic profiles p1 and p2 not only influ-

ence the range of (1,−1)-moiré but also magnitude of high-

order moiré components. If the periodic profiles p1 and p2
contain high-frequency components, they will have more

significant high-frequency Fourier coefficients and also sig-

nificant amplitudes of pk1,k2
for high-order moiré (where

|k1| > 1 and |k2| > 1). Since we ignore high-order moiré

in our framework, significant high-order moiré components

could inference the target moiré pattern and make it less

noticeable. When using square waves as periodic profiles,

the amplitude of high-order moiré components are not neg-

ligible. Thus, the superposition could contain undesired

high-frequency moiré patterns. On the other hand, cosine

waves do not have high-frequency components and there is

no high-order moiré components when using as profiles.

Appearance of grating images. The periodic profiles

also directly affects the appearance of the resultant grat-

ing images. Users can design the stripe pattern style of the
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x
0 2π

0
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x
0 2π

0

1

(a) cosine f1 (b) square f2

x
0 2π

0

1

x
0 2π

0

1

(c) triangle f3 (d) log-triangle f4

x
0 2π

0

0.5

pm{cos, cos}

pm{⊓,⊓}

pm{cos,∧}

pm{∧, log}

(e) pm

Figure 5: Impacts of periodic functions on the (1,−1)-
moiré component. (a) a cosine wave f1(x) =

1
2 +

1
2 cosx,

(b) a square wave with the period 2π, f2(x) = ⊓2π(x),
(c) a triangle wave with the period 2π, f3(x) = ∧2π(x),
and (d) a triangle wave with the log magnitude, f4(x) =
log4(3 ∧2π (x) + 1). In (e), we show pm’s of the super-

posed periodic profiles from some combinations of these

functions. The notation pm{fa, fb} in (e) denotes the cor-

responding pm for periodic profiles fa and fb.

grating images by choosing different profiles. For example,

some applications might require binary grating images and

the square waves become more suitable.

We used two cosine functions f(x) = 1
2+

1
2 cosx as the

profiles for most cases because they contain less artifacts

due to high-order moiré components and have an acceptable

range to represent the hidden image with good contrast.

5. Applications and results

The previous section introduces the basic method for

synthesizing the moiré pattern so that it looks similar to the

target image. Note that we have the luxury to control grat-

ing images’ appearances by adjusting the phase functions as

long as their phase difference satisfies the phase modulation

constraint (Equation 12). This section utilizes the luxury to

impose desired properties for different applications.

5.1. Moiré art

In the moiré art application, given two target images I1,

I2 and an offset value ∆y, we would like to find two grating

images L1 and L2 such that (1) the superposition of L1 and

L2 looks similar to I1 and (2) after shifting L1 vertically

by ∆y pixels, the superposition becomes similar to I2. Fig-

ure 1 gives such an example. Note that, although we only

discuss the vertical translation, the same technique could be

applied to horizontal shift. By formulating these require-

ments using Equation 12, we have

{

φ1(x, y)− φ2(x, y) = Ψ1(x, y)
φ1(x, y)− φ2(x, y −∆y) = Ψ2(x, y),

(13)

where Ψ1 = p−1
m (Î1) and Ψ2 = p−1

m (Î2) are the required

phase shifts for appearance resemblance. From this, we

can define the appearance resemblance term EA using the

phase modulation:

EA =
∑

x,y

‖φ1(x, y)− φ2(x, y)−Ψ1(x, y)‖
2

+
∑

x,y

‖φ1(x, y)− φ2(x, y−∆y)−Ψ2(x, y)‖
2
. (14)

Note that minimization of EA does not have a unique solu-

tion. If (φ1, φ2) is a solution, then (φ1 + c, φ2 + c) is also a

solution, where c is a constant. To restrict the linear system

to have a unique solution, we add an additional constraint E
which requires the first three rows of φ1 and φ2 are as small

as possible:

E =
∑

x,0�y�2

‖φ1(x, y)‖
2
+

∑

x,0�y�2

‖φ2(x, y)‖
2
. (15)

However, minimizing EA + E could lead to vertical dis-

continuities for every ∆y pixels in the grating images as

Figure 6(b) shows. Similar discontinuity appears in the su-

perposition as well (Figure 6(c)). It is because we do not

enforce the continuity between rows and the constraint of

small magnitude cannot propagate from the top to the bot-

tom. Thus, we add a vertical smoothness term ES :

ES =

∥

∥

∥

∥

∂2φ1

∂y2

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∂2φ2

∂y2

∥

∥

∥

∥

2

. (16)

The problem is thus formulated as an energy minimiza-

tion problem defined as: E = EA + λES + E , where

we used λ = 1 for most cases. Figure 6(d) and (e) show

that the smoothness term improves the visual appearance of

the grating and superposed images. However, the images

could become too blurry if the smoothness term is over-

emphasized as shown in Figure 6(f) and (g) with λ=10.

One nice property of the system in Equation 13 is that,

once we find a set of solution φ1 and φ2, the phase modu-

lation constraint still holds by adding an phase function φA

to both as long as φA satisfies the following condition:

φA(x, y) = φA(x, y +∆y) + 2kπ, k ∈ Z. (17)

This property allows use to design the appearance of the

grating images by adding an appearance phase function

φA. Because the human visual system tends to ignore

high-frequency patterns, adding high-frequency appearance

phase functions often results in better image hiding qual-

ity, as shown in Figure 6(h) and (i). However, when the

frequency of φA is too high, undesired moiré will become

noticeable on the grating images due to gridded sampling

pattern of image pixels. Adding the appearance phase func-

tion could also distort the appearance of the grating im-

ages, making the target images even less noticeable. Fig-

ure 7 shows an example for controlling the appearance of

the grating images and better image hiding with a diagonal

stripe pattern as the appearance phase function.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 6: The vertical smoothness term ES ensures appearance smoothness of the grating and the superposed images. Given

the portraits of Newton and Beethoven as targets (a), without ES (λ=0), both the grating images (b) and the superposed

images (c) contain visually disturbing discontinuity. Adding the smoothness term with λ=1 helps reducing the discontinuity

as shown in the grating images (d) and superposed images (e). The images could become too blurry if the smoothness is

emphasized too much as shown in (f) and (g) with λ=10. An appearance phase function with a higher frequency helps hiding

the target images better as seen in the gratings (h) and results (i). However, when the frequency is too high, moiré effects

could be observed in the grating images due to insufficient sampling limited by the image resolution.

target images L1 and L2 superposition

Figure 7: An example of using a diagonal stripe pattern

φA(x, y) = 0.4πx + 12πy/∆y as the appearance phase

function.

5.2. Moiré cryptography

Cryptography hides information within a carrier. The

proposed method can also be used for hiding a secret im-

age within two grating images. The secret image can only

be uncovered by their superposition. For this application, it

is important to hide the image well so that the secret image

cannot be visible with only one of the two grating images.

For achieving this goal, in addition to using the smoothness

term to spread the information into two gratings, we have

also added noise appearance phase functions to make the

grating images more difficult to decrypt.

We would like to generate a key image K and a set of

information images L1 to LN such that, when superposing

K on Li, the moiré pattern looks like the target image Ii.
That is, we want φK(x, y)−φi(x, y) = Ψi(x, y), where φK

and φi are the phase functions for the key image and the i-

th information image; and Ψi is the required phase shift for

synthesizing the i-th target image Ii.
In order to spread information to both K and Li so that

the hidden information is not obvious in either, similar to

moiré art, we add a smoothness term and have the following

energy function: E = EA + λES + E , where the appear-

ance term EA is given by:

EA =
N
∑

i=1

∑

x,y

‖φK(x, y)− φi(x, y)−Ψi(x, y)‖
2
; (18)

the smoothness term ES is given by:

ES=

(

∥

∥

∥

∥

∂2φK

∂x2

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∂2φK

∂y2

∥

∥

∥

∥

2
)

+
N
∑

i=1

(

∥

∥

∥

∥

∂2φi

∂x2

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∂2φi

∂y2

∥

∥

∥

∥

2
)

;

(19)

and E restricts the problem to have a unique solution by

requiring small values in the upper-left 3 × 3 corner in φK

and φi:

E=

N
∑

i=1

∑

0�x,y�2

‖φi(x, y)‖
2
+

∑

0�x,y�2

‖φK(x, y)‖
2
. (20)

A larger λ in the energy function helps hiding the target

images better, but resulting in more blur moiré pattern as

well.

Even with the smoothness term, the target image could

still be slightly visible in the grating images as shown in

Figure 8(b) especially when the secret image contains dis-

continuities. We address this problem by adding an appear-

ance phase function φA to φK and φi’s. Unlike moiré art,

φA does not have the requirement in Equation 17 and can

be an arbitrary phase function. For better hiding images,
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(a) target images

(b) without noise

(c) with noise

Figure 8: Adding noise phase functions hides the target im-

ages better. In each sub-figure, the first row shows K, L1

and L2 and the second row shows superposed images.

we add a noise function as the appearance phase function.

Since the phase functions φi have been smoothed by the

smoothness term, we prefer smooth noise for better visual

appearance. We used 2D Perlin noise [8] for this purpose as

it is smooth, adjustable and contains visual structures which

could better hide the real information. Figure 8 shows the

results with the noise appearance function added. With-

out noise, the embedded images could become visible (Fig-

ure 8(b)). With noise, they are better hidden (Figure 8(c)).

Figure 9 shows an example in which a wood-grain-like Per-

lin noise was added as the appearance phase function, mak-

ing the target even more unrecognizable.

5.3. Optical superposition

One advantage of the proposed approach is that the moiré

superposition can be performed without computers. Grating

images can be printed on separate transparencies. Super-

position can be performed by overlaying the transparencies

and the target image will emerge when they are aligned ap-

propriately. We printed L1 in Figure 6(d) on a transparency

and L2 on a paper. When the transparency was overlaid

on the top of the paper at the correct position, the hidden

(a) input secret images I1 and I2

(b) key K and information images L1, L2

(c) superposition KL1 and KL2

Figure 9: Image hiding using a wood-grain-like Perlin ap-

pearance function.

image appears. Figure 10 displays the photographs of su-

perposition. Although in principle, grating images need to

be perfectly aligned, in practice, we found that the hidden

images are still recognizable with imperfect alignments.

Another interesting application would be decrypting

with a given pattern. For example, the sampling pattern of

the color filter array (CFA) in a digital camera serves as a

grating pattern G due to sampling. Given a target image

I and a known grating pattern G, we can find the image

L = pL(φL(x, y)) by obtaining φL with

φL(x, y) = φG(x, y) + Ψ(x, y), (21)

where φG is the phase function of G and Ψ = p−1
m (Î).

Therefore, given a camera whose CFA sampling pattern

G is known, we can obtain L using the above procedure.

When displaying L on the screen and capturing it with the

camera, we can see the hidden message I in the captured

images at proper positions. However, because one of the

grating image is given, we do not have the freedom to add

appearance phase functions. Thus, the hidden image could

be easily recognized from L. Figure 11 shows an example

with a RICOH R7 digital camera. The video in the supple-

mentary better demonstrates the result.
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Figure 10: Optical superposition. We printed the two grat-

ing images of Figure 6 on a transparency and a paper respec-

tively. When overlaying the transparency on the paper with

the top edges aligned, Newton’s portrait showed up while

Beethoven’s emerged when aligning the bottom edges. We

show the photographs of superposition here.

(a) grating image (b) screen captured by the camera

Figure 11: With the known Bayer pattern G of the RICOH

R7 digital camera, we can obtain the grating image (a).

When displaying it on a LCD screen and capturing with the

camera from a proper distance, the hidden image appears in

the captured image. Note that the hidden image seems rec-

ognizable in the grating image because in this scenario we

cannot add a noise phase function.

5.4. Implementation and limitations

The resultant energy functions can be optimized by solv-

ing linear systems. For the images shown in the paper, our

current unoptimized Matlab implementation (with the stan-

dard backslash solver) took roughly two minutes for syn-

thesizing the results.

Because of the limited range of pm, our method can only

generate moiré images with lower contrast. Although tone

mapping could enhance the visual quality, the limited range

remains a limitation in both theory and practice. Such a

limitation could make the hidden images difficult to recog-

nize for some target images. The problem could be made

worse when printing out grating images. In addition, we

only consider (1,−1)-moiré and ignore visual impacts of

high-order moiré components. In practice, it is often a valid

assumption, especially for the periodic profiles we used.

However, in the cases when high-order moiré components

become significant, they could disturb the appearance of the

target images and make them less recognizable. Finally, the

resolution and frequency content of the hidden images are

limited by the process of moiré phenomenon.

6. Conclusions

This paper addresses the problem of designing moiré

patterns. We derive the phase modulation constraint and

formulate the problem as an energy minimization problem.

In addition, we introduce the phase appearance function to

further decorrelate the grating images and the target image,

making target image invisible in the grating images. Our

optimization function is customized for each problem and

the phase function can be controlled to decorrelate the tar-

get images and grating images. These are the contributions

of our paper. While successful in many ways, the effective

resolution of the synthesized moiré image is less than the

resolution of the target image. In addition, the moiré image

has lower contrast and brightness. Nevertheless, even with

these limitations, we still find the proposed method useful

in many applications.
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