
 

Article

Reference

Target genes, variants, tissues and transcriptional pathways
influencing human serum urate levels

TIN, Adrienne, et al.

Abstract

Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via
poorly understood mechanisms. We performed a trans-ancestry genome-wide association
study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that
improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate
showed significant genetic correlations with many cardiometabolic traits, with genetic causality
analyses supporting a substantial role for pleiotropy. Enrichment analysis, fine-mapping of
urate-associated loci and colocalization with gene expression in 47 tissues implicated the
kidney and liver as the main target organs and prioritized potentially causal genes and
variants, including the transcriptional master regulators in the liver and kidney, HNF1A and
HNF4A. Experimental validation showed that HNF4A transactivated the promoter of ABCG2,
encoding a major urate transporter, in kidney cells, and that HNF4A p.Thr139Ile is a functional
variant. Transcriptional coregulation within and across organs may be a general mechanism
underlying the observed pleiotropy between [...]

TIN, Adrienne, et al. Target genes, variants, tissues and transcriptional pathways influencing
human serum urate levels. Nature Genetics, 2019, vol. 51, no. 10, p. 1459-1474

DOI : 10.1038/s41588-019-0504-x
PMID : 31578528

Available at:
http://archive-ouverte.unige.ch/unige:147158

Disclaimer: layout of this document may differ from the published version.

 1 / 1

http://archive-ouverte.unige.ch/unige:147158


Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
* atin1@jhu.edu, anna.koettgen@uniklinik-freiburg.de.
Author contributions
Manuscript writing group: Adrienne Tin, Jonathan Marten, Victoria L. Halperin Kuhns, Yong Li, Matthias Wuttke, Holger Kirsten, 
Karsten B. Sieber, Chengxiang Qiu, Mathias Gorski, Markus Scholz, Adriana M. Hung, Alexander Teumer, Cristian Pattaro, Owen M. 
Woodward, Veronique Vitart, Anna Köttgen
Design of this study: Adrienne Tin, Jonathan Marten, Matthias Wuttke, Mathias Gorski, Christian Fuchsberger, Alexander Teumer, 
Cristian Pattaro, Owen M. Woodward, Veronique Vitart, Anna Köttgen
Management of an individual contributing study: Adam S. Butterworth, Adriana M. Hung, Adrienne Tin, Afshin Parsa, Aiko P. J. 
de Vries, Alan B. Zonderman, Alessandro De Grandi, Andres Metspalu, Andrew A. Hicks, Anke Tönjes, Anna Köttgen, Annette 
Peters, Antje Körner, Antonietta Robino, Archie Campbell, Belen Ponte, Bernhard K. Krämer, Bettina Jung, Brenda W. J. H. Penninx, 
Bruce M. Psaty, Caroline Hayward, Carsten A. Böger, Cassandra N. Spracklen, Christian Gieger, Christopher J. O’Donnell, Cornelia 
M. van Duijn, Cristian Pattaro, Daniela Toniolo, Daniele Cusi, Deborah Mascalzoni, Eric Boerwinkle, Erik Ingelsson, Florian 
Kronenberg, Gardar Sveinbjornsson, Georg Ehret, Gerard Waeber, Ginevra Biino, Girish N. Nadkarni, Grant W. Montgomery, Harold 
Snieder, Helena Schmidt, Igor Rudan, J. Michael Gaziano, James F. Wilson, James G. Wilson, Jaspal S. Kooner, Jeffrey OConnell, 
Joachim Thiery, Johanne Tremblay, John B. Whitfield, John C. Chambers, Josef Coresh, Kai-Uwe Eckardt, Karen L. Mohlke, Kari 
Stefansson, Kevin Ho, Koichi Matsuda, Konstantin Strauch, M. Arfan Ikram, Marcus E. Kleber, Marina Ciullo, Mario Pirastu, Markus 
Loeffler, Markus Scholz, Martin H. de Borst, Matthias Wuttke, Michael Stumvoll, Michele K. Evans, Michiaki Kubo, Mika Kähönen, 
Murielle Bochud, Myriam Rheinberger, Nicholas G. Martin, Olivier Devuyst, Olli T. Raitakari, Ozren Polasek, Paolo Gasparini, Peter 
P. Pramstaller, Peter Vollenweider, Pim van der Harst, Qiong Yang, Rainer Rettig, Reinhold Schmidt, Renée de Mutsert, Robert J. 
Carroll, Ron T. Gansevoort, Ruth J. F. Loos, Sarah A. Pendergrass, Sarah H. Wild, Stephan J. L. Bakker, Tamara B. Harris, Terho 
Lehtimäki, Thomas Perls, Ton J. Rabelink, Uwe Völker, Vilmantas Giedraitis, Vilmundur Gudnason, Weihua Zhang, Wieland Kiess, 
Winfried März, Wolfgang Koenig, Yong Li, Yuri Milaneschi
Critical review of manuscript: Adam S. Butterworth, Adriana M. Hung, Adrienne Tin, Afshin Parsa, Aiko P. J. de Vries, Alan B. 
Zonderman, Albert V. Smith, Alexander Teumer, André G. Uitterlinden, Anke Tönjes, Anna Köttgen, Annette Peters, Anselm 
Hoppmann, Antje Körner, Antonietta Robino, Anubha Mahajan, Audrey Y. Chu, Ayush Giri, Bernhard K. Krämer, Bettina Jung, 
Boting Ning, Bram Prins, Brenda W. J. H. Penninx, Brigitte Kühnel, Bruce M. Psaty, Caroline Hayward, Carsten A. Böger, Cassandra 
N. Spracklen, Chengxiang Qiu, Christa Meisinger, Christian Fuchsberger, Christian Gieger, Christopher J. O’Donnell, Cristian Pattaro, 
Daniel F. Gudbjartsson, Daniela Ruggiero, Deborah Mascalzoni, Dennis O. Mook-Kanamori, Erik Ingelsson, Erwin P. Bottinger, 
Eulalia Catamo, Florian Kronenberg, Gardar Sveinbjornsson, Ginevra Biino, Giorgia Girotto, Girish N. Nadkarni, Graciela Delgado, 
Grant W. Montgomery, Harold Snieder, Harry Campbell, Helgi Jonsson, Hilma Holm, Igor Rudan, Ilja M. Nolte, Ingileif Jonsdottir, 
Iris M. Heid, James F. Wilson, James G. Wilson, Johanna Jakobsdottir, Johanne Tremblay, John B. Whitfield, Jonathan Marten, Josef 
Coresh, Kai-Uwe Eckardt, Karen L. Mohlke, Karlhans Endlich, Karsten B. Sieber, Katalin Susztak, Kenneth M. Rice, Kevin Ho, Kjell 
Nikus, Konstantin Strauch, Laura M. Raffield, Leo-Pekka Lyytikäinen, Leslie A. Lange, Luke J. O’Connor, Man Li, Marcus E. Kleber, 
Marina Ciullo, Markus Loeffler, Markus Scholz, Martin H. de Borst, Martina La Bianca, Martina Müller-Nurasyid, Mary L. Biggs, 
Mathias Gorski, Matthias Nauck, Matthias Wuttke, Melanie Waldenberger, Michael H. Preuss, Michele K. Evans, Mika Kähönen, 
Mike A. Nalls, Myriam Rheinberger, Nicholas G. Martin, Niek Verweij, Nina Hutri-Kähöne, Nisha Bansal, Olivier Devuyst, Olli T. 
Raitakari, Otis D. Wilson, Ozren Polasek, Patrick Sulem, Pavel Hamet, Peter K. Joshi, Pim van der Harst, Qiong Yang, Rainer Rettig, 
Ravchel M. Lewis, Raymond Noordam, Renée de Mutsert, Ruth J. F. Loos, Sahar Ghasemi, Sala Cinzia Felicita, Salman M. Tajuddin, 
Sanaz Sedaghat, Sarah A. Pendergrass, Sarah H. Wild, Scott D. Gordon, Shih-Jen Hwang, Shona M. Kerr, Stephan J. L. Bakker, 
Tamara B. Harris, Teresa Nutile, Terho Lehtimäki, Thibaud S. Boutin, Thomas Meitinger, Todd L. Edwards, Ton J. Rabelink, Unnur 
Thorsteinsdottir, Uwe Völker, Veronique Vitart, Wei Huang, Winfried März, Wolfgang Koenig, Yong Li, Zhi Yu
Statistical methods and analysis: Albert V. Smith, Alexander Teumer, Anna Köttgen, Anselm Hoppmann, Anubha Mahajan, Audrey 
Y. Chu, Ayse Demirkan, Ayush Giri, Bettina Jung, Boting Ning, Bram Prins, Brigitte Kühnel, Carsten A. Böger, Cassandra N. 
Spracklen, Chengxiang Qiu, Chris H. L. Thio, Christian Fuchsberger, Cristian Pattaro, Damia Noce, Daniel F. Gudbjartsson, Edith 
Hofer, Erika Salvi, Federica Rizzi, Gardar Sveinbjornsson, Ginevra Biino, Graciela Delgado, Holger Kirsten, Ilja M. Nolte, Iris M. 
Heid, Johanna Jakobsdottir, Johanne Tremblay, Jonathan Marten, Jun Liu, Karsten B. Sieber, Katalin Susztak, Kathleen A. Ryan, 
Katrin Horn, Kenneth M. Rice, Laura M. Raffield, Leo-Pekka Lyytikäinen, Leslie A. Lange, Man Li, Marco Brumat, Marcus E. 
Kleber, Maria Pina Concas, Markus Scholz, Martin Gögele, Mary L. Biggs, Masahiro Kanai, Masato Akiyama, Massimiliano Cocca, 
Mathias Gorski, Matthias Nauck, Matthias Wuttke, Michael H. Preuss, Mike A. Nalls, Myriam Rheinberger, Navya Shilpa Josyula, 
Nicola Pirastu, Niek Verweij, Nina Mononen, Pashupati P. Mishra, Pavel Hamet, Peter J. van der Most, Peter K. Joshi, Pim van der 
Harst, Qiong Yang, Raymond Noordam, Rico Rueedi, Robert J. Carroll, Sahar Ghasemi, Salman M. Tajuddin, Sanaz Sedaghat, Sarah 
A. Pendergrass, Shih-Jen Hwang, Tanguy Corre, Teresa Nutile, Thibaud S. Boutin, Todd L. Edwards, Toomas Haller, Veronique Vitart, 
Weihua Zhang, Winfried März, Yasaman Saba, Yizhe Xu, Yoichiro Kamatani, Yong Li, Yukinori Okada
Subject recruitment: Aiko P. J. de Vries, Alan B. Zonderman, Andrej Teren, Andres Metspalu, Anke Tönjes, Anna Köttgen, Archie 
Campbell, Belen Ponte, Bettina Jung, Blair H. Smith, Brenda W. J. H. Penninx, Carsten A. Böger, Christa Meisinger, Cristian Pattaro, 
Daniela Ruggiero, Daniele Cusi, David J. Porteous, Erwin P. Bottinger, Florian Kronenberg, Gerard Waeber, Harry Campbell, Helgi 
Jonsson, Igor Rudan, Isleifur Olafsson, James F. Wilson, James G. Wilson, Jaspal S. Kooner, Johan Ärnlöv, Johanne Tremblay, John 
B. Whitfield, John C. Chambers, Katalin Dittrich, Kjell Nikus, Koichi Matsuda, Marina Ciullo, Michele K. Evans, Michiaki Kubo, 
Mika Kähönen, Myriam Rheinberger, Nicholas G. Martin, Nina Hutri-Kähöne, Olli T. Raitakari, Ozren Polasek, Patrick Sulem, Peter 
Vollenweider, Reinhold Schmidt, Renée de Mutsert, Ron T. Gansevoort, Saima Afaq, Sandosh Padmanabhan, Sarah A. Pendergrass, 
Sarah H. Wild, Simona Vaccargiu, Tanja Poulain, Terho Lehtimäki, Ton J. Rabelink, Vilmundur Gudnason, Wei Huang, Winfried 
März

HHS Public Access
Author manuscript
Nat Genet. Author manuscript; available in PMC 2020 April 02.

Published in final edited form as:
Nat Genet. 2019 October ; 51(10): 1459–1474. doi:10.1038/s41588-019-0504-x.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Target genes, variants, tissues and transcriptional pathways 

influencing human serum urate levels
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Abstract

Elevated serum urate levels cause gout and correlate with cardio-metabolic diseases via poorly 

understood mechanisms. We performed a trans-ethnic genome-wide association study of serum 

urate among 457,690 individuals, identifying 183 loci (147 novel) that improve prediction of gout 

Bioinformatics: Albert V. Smith, Anna Köttgen, Anselm Hoppmann, Audrey Y. Chu, Ayush Giri, Benjamin Lehne, Bram Prins, 
Carsten A. Böger, Cassandra N. Spracklen, Chengxiang Qiu, Christian M. Shaffer, Daniela Baptista, Dennis O. Mook-Kanamori, 
Edith Hofer, Eric Campana, Erika Salvi, Federica Rizzi, Georg Ehret, Giorgio Pistis, Holger Kirsten, Iris M. Heid, James F. Wilson, 
Johanna Jakobsdottir, Johanne Tremblay, Jonathan Marten, Karen L. Mohlke, Karsten B. Sieber, Katalin Susztak, Katrin Horn, Leo-
Pekka Lyytikäinen, Man Li, Marcus E. Kleber, Maria Pina Concas, Markus Scholz, Massimiliano Cocca, Mathias Gorski, Matthias 
Wuttke, Michael H. Preuss, Navya Shilpa Josyula, Nicola Pirastu, Pashupati P. Mishra, Pavel Hamet, Peter J. van der Most, Raymond 
Noordam, Reedik Magi, Rico Rueedi, Robert J. Carroll, Sahar Ghasemi, Sanaz Sedaghat, Sarah A. Pendergrass, Scott D. Gordon, 
Sven Bergmann, Tanguy Corre, Teresa Nutile, Weihua Zhang, Winfried März, Yasaman Saba, Yizhe Xu, Yong Li, Yuri Milaneschi, 
Zhi Yu
Interpretation of results: Adrienne Tin, Alexander Teumer, André G. Uitterlinden, Anna Köttgen, Ayush Giri, Bettina Jung, Carsten 
A. Böger, Cassandra N. Spracklen, Chengxiang Qiu, Christian Gieger, Christopher J. O’Donnell, Cristian Pattaro, Helgi Jonsson, 
Holger Kirsten, Iris M. Heid, Johanne Tremblay, Jonathan Marten, Karen L. Mohlke, Karlhans Endlich, Karsten B. Sieber, Katalin 
Dittrich, Katalin Susztak, Katrin Horn, Kevin Ho, Luke J. O’Connor, Man Li, Markus Scholz, Mathias Gorski, Matthias Wuttke, 
Myriam Rheinberger, Niek Verweij, Owen M. Woodward, Pavel Hamet, Pim van der Harst, Sahar Ghasemi, Sanaz Sedaghat, Sarah A. 
Pendergrass, Shih-Jen Hwang, Veronique Vitart, Victoria L. Halperin Kuhns, Wei Huang, Wolfgang Koenig, Yizhe Xu, Yong Li
Genotyping: Alan B. Zonderman, Alexander Teumer, André G. Uitterlinden, Antje Körner, Archie Campbell, Ayse Demirkan, Blair 
H. Smith, Brenda W. J. H. Penninx, Caroline Hayward, Carsten A. Böger, Cassandra N. Spracklen, Christian Fuchsberger, Cornelia M. 
van Duijn, Daniela Baptista, Daniela Ruggiero, Daniela Toniolo, David J. Porteous, Dennis O. Mook-Kanamori, Erik Ingelsson, Erika 
Salvi, Federica Rizzi, Florian Kronenberg, Georg Ehret, Grant W. Montgomery, Harry Campbell, James F. Wilson, James G. Wilson, 
Jaspal S. Kooner, Johan Ärnlöv, Johanne Tremblay, John C. Chambers, Karen L. Mohlke, Leo-Pekka Lyytikäinen, Leslie A. Lange, 
Marcus E. Kleber, Melanie Waldenberger, Michael H. Preuss, Michele K. Evans, Michiaki Kubo, Mika Kähönen, Mike A. Nalls, 
Najaf Amin, Nina Mononen, Olli T. Raitakari, Patrick Sulem, Pavel Hamet, Peter Kovacs, Pim van der Harst, Ralph Burkhardt, Ron T. 
Gansevoort, Salman M. Tajuddin, Sandosh Padmanabhan, Scott D. Gordon, Simona Vaccargiu, Terho Lehtimäki, Thomas Meitinger, 
Uwe Völker, Wei Huang, Winfried März, Wolfgang Koenig, Yuri Milaneschi
Functional study: Victoria Halperin Kuhns, Raychel Lewis, Owen M. Woodward

Competing interests
Dennis O. Mook-Kanamori works as a part-time clinical research consultant for Metabolon, Inc. Brenda W. J. H. Penninx has received 
research funding (unrelated to the work reported here) from Jansen Research and Boehringer Ingelheim. Karsten B. Sieber is full-time 
employee of GlaxoSmithKline. Gardar Sveinbjornsson, Daniel F. Gudbjartsson, Ingileif Jonsdottir, Hilma Holm, Patrick Sulem, Unnur 
Thorsteinsdottir, and Kari Stefansson are full time employees of deCODE genetics, Amgen Inc. Audrey Y. Chu is an employee of 
Merck & Co., Kenilworth NJ USA. Wolfgang Koenig received modest consultation fees for advisory board meetings from Amgen, 
DalCor, Kowa, Novartis, Pfizer and Sanofi, and modest personal fees for lectures from Amgen, AstraZeneca, Novartis, Pfizer and 
Sanofi. Daniele Cusi is scientific consultant for Bio4Dreams. Winfried März is employed with Synlab Services GmbH and holds 
shares of Synlab Holding Deutschland GmbH. Mike A. Nalls’ participation in this project is supported by a consulting contract 
between Data Tecnica International LLC and the National Institute on Aging (NIA), National Institutes of Health (NIH), Bethesda, 
MD, USA and consults or has consulted for during this time for Lysosomal Therapeutics Inc, Neuron23 Inc, Illumina Inc., the Michael 
J. Fox Foundation, and the University of California Healthcare. Ozren Polasek is an owner of the Gen-info Ltd, Zagreb, Croatia. Kevin 
Ho disclosed a research and financial relationship with Sanofi-Genzyme. Bruce M. Psaty serves on the DSMB of a clinical trial funded 
by the manufacturer (Zoll LifeCor) and on the Steering Committee of the Yale Open Data Access Project funded by Johnson & 
Johnson. Adam S. Butterworth received grants from MSD, Pfizer, Novartis, Biogen and Bioverativ and personal fees from Novartis. 
Markus Scholz consults for and received grant support from Merck Serono not related to this project. Anna Köttgen received grant 
support from Gruenenthal not related to this project. Other authors declare no competing interests.

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this 
article.

Data availability
Genome-wide summary statistics for this study are shared at http://ckdgen.imbi.uni-freiburg.de and will be made publicly available 
through dbGaP accession number phs000930.v6.p1.

Tin et al. Page 2

Nat Genet. Author manuscript; available in PMC 2020 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ckdgen.imbi.uni-freiburg.de/


in an independent cohort of 334,880 individuals. Serum urate showed significant genetic 

correlations with many cardio-metabolic traits, with genetic causality analyses supporting a 

substantial role for pleiotropy. Enrichment analysis, fine-mapping of urate-associated loci, and co-

localization with gene expression in 47 tissues implicated kidney and liver as main target organs 

and prioritized potentially causal genes and variants, including the transcriptional master 

regulators in liver and kidney, HNF1A and HNF4A. Experimental validation showed that HNF4A 

trans-activated the promoter of the major urate transporter ABCG2 in kidney cells, and that 

HNF4A p.Thr139Ile is a functional variant. Transcriptional co-regulation within and across organs 

may be a general mechanism underlying the observed pleiotropy between urate and cardio-

metabolic traits.

Editorial summary:

A trans-ethnic genome-wide association study of serum urate levels identifies 183 loci influencing 

this trait. Enrichment analyses, fine mapping and co-localization with gene expression in 47 

tissues implicate kidney and liver as key target organs and prioritize potential causal genes.

Serum urate levels reflect a balance between uric acid production and its renal and intestinal 

excretion. Elevated serum urate levels define hyperuricemia, which is associated with 

metabolic, cardiovascular and kidney-related conditions. Hyperuricemia can cause kidney 

stones and gout, the most common inflammatory arthritis1,2. Gout attacks are a highly 

painful response to the deposition of urate crystals, and are a significant cause of morbidity 

and related health care costs3. Although gout has become a major public health issue, it is 

undertreated due to low awareness, poor patient adherence4, and inappropriate prescription 

practices of the most commonly used drug, allopurinol5. A better understanding of the 

mechanisms controlling serum urate may help to develop novel medications for gout 

treatment and prevention and provide insights into regulatory mechanisms shared between 

urate and cardio-metabolic traits.

Heritability of serum urate varies between 30% and 60%6-11. Candidate gene and genome-

wide associations studies (GWAS) have identified three genes as major determinants of urate 

levels: SLC2A9, ABCG2, and SLC22A127,12-18. While SLC2A9 and ABCG2 harbor 

common variants of relatively large effect19, SLC22A12 contains many rare or low-

frequency variants20. The largest GWAS meta-analyses performed to date identified 28 loci 

among European ancestry (EA)21 and 27 among Japanese individuals22. Many genes in the 

associated loci encode renal and intestinal urate transporters or their regulators, while others 

are relevant to glucose and lipid metabolism, functions of the liver, where uric acid is 

generated. With increased public availability of large annotation and gene expression 

datasets23,24, fine-mapping associated loci to prioritize target tissues, pathways, and 

potentially causal genes and variants has become possible.

Here, we perform a trans-ethnic meta-analysis of GWAS of serum urate among 457,690 

individuals and identify 183 associated loci that improve gout risk prediction in an 

independent sample of 334,880 UK Biobank (UKBB) participants. We evaluate the genetic 

correlation of serum urate with hundreds of cardio-metabolic traits and diseases, and use a 

recently developed latent causal variable model to examine the contribution of causality 
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versus pleiotropy. We prioritize target variants, genes, tissues and pathways that contribute to 

the complex regulation of urate levels through comprehensive data integration. Lastly, we 

conduct proof-of-principle experimental studies showing that HNF4A, a transcriptional 

master regulator in liver and kidney proximal tubule, can regulate transcription of the major 

urate transporter ABCG2 in kidney cells and that the fine-mapped HNF4A variant 

p.Thr139Ile is functional. Transcriptional co-regulation of processes linked to energy 

metabolism within and across organs may underlie the pleiotropy observed between urate 

levels and numerous cardio-metabolic traits.

Results

Trans-ethnic meta-analysis identifies 183 urate-associated loci

Trans-ethnic meta-analyses were conducted to maximize the sample size for locus discovery, 

and EA-specific analyses were used where population-specific linkage disequilibrium (LD) 

was required to characterize loci (Supplementary Fig. 1). The primary trans-ethnic meta-

analysis included 457,690 individuals (EA, n = 288,649; East Asian ancestry (EAS), n = 

125,725; African Americans (AA), n = 33,671; South Asian ancestry (SA), n = 9,037; and 

Hispanics (HIS), n = 608) from 74 studies. Mean urate levels ranged from 4.2 to 7.2 mg/dl 

(Supplementary Table 1). GWAS were performed based on genotypes imputed using the 

1000 Genomes Project or Haplotype Reference Consortium reference panels (Methods and 

Supplementary Table 2). Results were combined through inverse-variance weighted fixed 

effect meta-analysis after central study-specific quality control. There was no evidence of 

inflation due to unmodeled population structure (LD score regression intercept = 1.01; 

genomic inflation factor λGC = 1.04). Post-meta-analysis variant filtering left 8,249,849 

high-quality SNPs for downstream analyses (Methods).

We identified 183 loci that contained at least one genome-wide significant SNP (P ≤ 5 × 

10−8, Fig. 1 and Supplementary Table 3). Of these, 36 contained an index SNP reported in 

previous GWAS of serum urate13,15,17,18,21,22,25,26, and 147 were considered novel (Fig. 1). 

Allelic effects on serum urate ranged from 0.28 to 0.017 mg/dl (mean 0.038 mg/dl, standard 

deviation (SD) 0.033). Regional association plots are shown in the Supplementary Data Set.

The index SNPs at all 183 loci explained 7.7% of the serum urate variance (Methods), 

compared to 5.3% explained by index SNPs previously reported from GWAS in EA 

populations21. In a large participating general population-based pedigree study, the 183 

index SNPs explained 17% of serum urate genetic heritability (h2 = 37%, 95% credible 

interval: 29%, 45%), with 5% attributed to the index SNPs at SLC2A9, ABCG2 and 

SLC22A12 (Supplementary Fig. 2 and Methods).

Characterization of ancestry-related heterogeneity

For the 183 index SNPs, we observed no evidence of systematic between-study 

heterogeneity (median I2 = 2%, interquartile range 0-14%; Supplementary Table 3). 

Fourteen index SNPs showed significant evidence of ancestry-associated heterogeneity 

(Panc-het < 2.7 × 10−4 = 0.05/183) when tested using meta-regression (Supplementary Fig. 3 

and Methods), consistent with their higher measures of between-study heterogeneity (I2 > 
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25%, Fig. 1 and Supplementary Table 3). The most significant ancestry-associated 

heterogeneity was observed for rs3775947 at SLC2A9 (Panc-het = 1.5 × 10−127, allelic effect 

0.34 (EA), 0.26 (AA), 0.17 (EAS), 0.41 (HIS), and 0.21 (SA) mg/dl), consistent with 

previous reports of population heterogeneity at this locus27. Nine genome-wide significant 

loci identified through meta-regression did not overlap with the 183 loci, including SLC2A2 

and KCNQ1 that were genome-wide significant in EAS (Supplementary Table 4). Ancestry-

specific meta-analyses of EA, AA, EAS and SA are summarized in Supplementary Table 

5-8, respectively, and in the Supplementary Note.

Sex-stratified meta-analyses of serum urate GWAS

Mean serum urate levels and gout risk are higher in men than in women28. We therefore 

tested whether the 183 urate-associated index SNPs showed sex-specific differences. Six 

SNPs showed significant effect differences (Pdiff < 2.7 × 10−4 = 0.05/183), at SLC2A9, 

ABCG2, CAPN1, GCKR, IDH2, and SLC22A12 (Supplementary Table 9). The genome-

wide test for differences in genetic effects on urate levels between men and women 

identified only SNPs at SLC2A9 and ABCG2 (Pdiff < 5 × 10−8, Methods and Supplementary 

Fig. 4), consistent with previous reports7,14,15,21, and several suggestive loci (Pdiff < 1 × 

10−5, Supplementary Table 10).

Urate index SNPs are associated with gout

We next assessed the association of the 183 trans-ethnic urate index SNPs with gout in a 

trans-ethnic meta-analysis of 20 studies comprising 763,813 participants with 13,179 gout 

cases (Methods, Fig. 1 and Supplementary Table 1). Consistent with the causal role of 

hyperuricemia in gout, genetic effects were highly correlated (Spearman correlation 

coefficient 0.87, Supplementary Fig. 5a; 0.82 for SNPs with urate association P-values 

between 5 × 10−8 and 1 × 10−8). Fifty-five SNPs were significantly associated with gout (P 

< 2.7 × 10−4 = 0.05/183). In agreement with previous findings29, the largest odds ratio (OR) 

for gout was observed at ABCG2 (OR 2.04, 95% confidence interval (CI) 1.96-2.12, P = 7.7 

× 10−299). Genetic effects were generally larger among index SNPs with lower minor allele 

frequency (MAF), with the exception of a few common large-effect SNPs in known major 

urate loci SLC2A9, ABCG2, and SLC22A1230 (Supplementary Fig. 5b).

A genetic risk score for urate improves gout risk prediction

We evaluated whether a weighted urate genetic risk score (GRS) improved gout risk 

prediction when added to demographic information in a large, independent sample of 

334,880 UKBB participants, including 4,908 gout cases (Methods). Across categories of the 

GRS, gout prevalence increased from 0.1% to 12.9% (Fig. 2a and Supplementary Table 11). 

Compared to the most common GRS category, the age- and sex-adjusted OR of gout ranged 

from 0.09 (95% CI 0.02-0.37, P = 7.8 × 10−4) in the lowest to 13.6 (95% CI 7.2-25.7, P = 

1.4 × 10−15) in the highest GRS category (Fig. 2b and Supplementary Table 11). The 3.5% 

of individuals in the three highest GRS categories had a >3-fold increase in gout risk 

compared to individuals in the most common GRS category. This risk is comparable to a 

monogenic disease of modest effect size31, but affects a higher proportion of the population.
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We additionally constructed gout risk prediction models in the UKBB sample, which was 

not part of the discovery analysis of serum urate-associated variants. Gout status was 

regressed on the GRS alone (“genetic model”), on age and sex (“demographic model”), and 

on the GRS, age, and sex (“combined model”) in a model development subset of 90% of the 

individuals to obtain precise estimates. These models were then used to predict gout status in 

the remaining 10%, the validation sample. The genetic model was a weaker predictor (area 

under the receiver operating characteristic curve (AUC) = 0.68) than the demographic model 

(AUC = 0.79). Addition of the GRS (combined model) significantly increased prediction 

accuracy (AUC = 0.84, DeLong’s test P < 2.2 × 10−16; Fig. 2c) and achieved a sensitivity of 

84% and specificity of 68%. Ten-fold cross-validation of the regression models provided 

mean AUCs of 0.67 (s.d. 0.011), 0.78 (s.d. 0.006) and 0.83 (s.d. 0.008) for the genetic, 

demographic and combined models, respectively (Methods). The GRS represents a life-long 

predisposition to higher urate levels and can be calculated at birth. Thus, the GRS may help 

to identify individuals with a high genetic predisposition for gout, allowing for 

compensatory lifestyle choices to reduce the risk of gout.

High genetic correlations of serum urate with cardio-metabolic traits

Serum urate is positively correlated with many cardio-metabolic risk factors and diseases32. 

We assessed genetic correlations between urate and 748 complex traits using cross-trait LD 

score regression (Methods). Serum urate levels were significantly (P < 6.6 × 10−5 = 

0.05/748) genetically correlated with 214 complex traits and diseases (Supplementary Table 

12). The highest positive genetic correlation (rg) was with gout (rg = 0.92, P = 3.3 × 10−70), 

followed by traits representing components of the metabolic syndrome such as HOMA-IR 

(rg = 0.49) and fasting insulin (rg = 0.45, Fig. 3). The largest negative correlations were 

observed with HDL cholesterol-related measurements (rg up to −0.46), and with estimated 

glomerular filtration rate (rg = −0.38 and −0.26 for cystatin C and creatinine-based estimated 

glomerular filtration rate (eGFR), respectively), consistent with the known role of the 

kidneys in urate excretion. Overall, the genetic correlations were consistent with 

observational associations from epidemiological studies32.

To examine whether these genetic correlations reflect causal relationships or pleiotropy, we 

applied a recently developed latent causal variable (LCV) model to estimate the genetic 

causality proportion (GCP) for seven commonly studied cardio-metabolic traits (Methods). 

As a positive control, we analyzed gout, confirming a genetically causal effect of urate on 

gout (GCP = 0.79; Supplementary Table 13), consistent with Mendelian randomization 

(MR) studies33,34. The seven cardio-metabolic traits showed a GCP range consistent with 

mostly or partially genetically causal effects on serum urate. The largest GCP estimates were 

observed for adiposity-related traits (e.g. GCP = −0.84 for waist circumference; 

Supplementary Table 13), where higher cell numbers should result in higher purine and 

consequently urate production. A bi-directional MR study reported a causal effect of 

adiposity on serum urate levels35. While the GCP and MR methods estimate different 

quantities to assess causality, the direction of effect can be compared and was consistent 

with a positive causal effect of obesity on serum urate. Smaller GCP estimates for HDL 

cholesterol levels (GCP < 0.5; Supplementary Table 13) on the other hand suggest the 

existence of a genetic process with a causal effect on both HDL cholesterol and serum urate, 
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for example co-regulated metabolic processes in the liver. These processes may explain a 

large fraction of heritability for cholesterol levels and a modest fraction for urate, a type of 

asymmetry expected to produce a partially genetically causal relationship consistent with the 

one observed. MR studies did not support a causal relationship between cholesterol levels 

and serum urate36.

Enriched tissues and pathways

To identify tissues and molecular mechanisms relevant for urate metabolism and handling, 

and to provide potential clues to the observed genetic correlations, we investigated which 

tissues, cell types and systems were significantly enriched for the expression of genes 

mapping into urate-associated loci (Methods). Based on all SNPs with P < 1 × 10−5, we 

identified significant enrichment (false discovery rate (FDR) < 0.01) for 19 physiological 

systems, three tissues, and two cell types (Supplementary Table 14). The strongest 

enrichment was observed for kidney (P = 9.5 × 10−9) and urinary tract (P = 9.9 × 10−9), 

consistent with the kidney’s prominent role in controlling urate levels. Additional significant 

enrichments were observed for endocrine and digestive systems, including liver, the major 

site of urate production. Interestingly, a novel significant enrichment was also observed in 

the musculoskeletal system, specifically for synovial membrane, joint capsule, and joints 

(Fig. 4a), the sites of gout attacks.

We next tested for cell-type groups with evidence for enriched heritability based on cell-

type-specific functional genomic elements using stratified LD score regression (Methods). 

The strongest enrichment was observed for kidney (11.5-fold), followed by liver (5.39-fold; 

Supplementary Table 15).

Lastly, we tested whether any gene sets were enriched for variants associated with urate at P 

< 10−5 (Methods). Significant enrichment (FDR < 0.01) was observed for 383 reconstituted 

gene sets (Supplementary Table 16). Since many of these contained overlapping groups of 

genes, we used affinity propagation clustering to identify 57 meta gene sets (Methods and 

Supplementary Table 17), including a prominent group of inter-correlated gene sets related 

to kidney and liver development, morphology and function (Fig. 4b). Together, these results 

underscore the prominent roles of the kidney and liver in regulating serum urate levels and 

implicate the kidney as a major target organ for lowering serum urate.

Prioritization via fine-mapping, functional annotation, and gene expression

We established a workflow that combined fine mapping of urate-associated loci with 

functional annotation and a systematic evaluation of tissue-specific differential gene 

expression to prioritize target SNPs and genes for translational research.

Statistical fine-mapping prioritizes candidate SNPs.—Statistical fine-mapping was 

performed starting from the 123 genome-wide significant loci identified in the EA-specific 

meta-analysis, because the workflow included methods that used LD estimates from an 

ancestry-matched reference panel (Methods)37. After LD-based combination into 99 larger 

genomic regions, stepwise model selection in each region identified 114 independent SNPs 

(r2 < 0.01, Methods). Overall, 87 regions contained one independent SNP, ten contained two 
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independent SNPs, the ABCG2 locus contained three and the SLC2A9 locus four 

independent SNPs (Supplementary Table 18). We computed 99% credible sets representing 

the smallest set of SNPs which collectively account for 99% posterior probability of 

containing the variant(s) driving the association signal (PPA)38. The 99% credible sets 

contained a median of 16 SNPs (Q1, Q3: 6, 57), and six of them only a single SNP, mapping 

in or near INSR, RBM8A, MPPED2, HNF4A, CPT1C, and SLC2A9 (Supplementary Table 

18). Among 28 small credible sets (≤ 5 SNPs), several mapped in or near genes with an 

established role in urate handling such as SLC2A9, PDZK1, ABCG2, SLC22A11, and 

SLC16A920. These credible sets contain the most supported SNPs and greatly reduce the 

number of candidate variants for experimental follow-up.

Credible set SNPs were annotated for their functional consequence and regulatory potential 

(Methods). Missense SNPs with PPA > 50% or belonging to small credible sets were 

identified in ABCG2, UNC5CL, HNF1A, HNF4A, CPS1, and GCKR (Fig. 5a and 

Supplementary Table 19). All missense SNPs except the one in GCKR had a CADD score > 

15, supporting them as potentially deleterious. Indeed, functional effects have already been 

demonstrated experimentally for rs2231142 (Gln141Lys, r2 = 1 to the index SNP 

rs74904971) in ABCG2, rs742493 (p.Arg432Gly) in UNC5CL, and rs1260326 

(p.Leu446Pro) in GCKR (Table 1). Non-exonic variants with PAA > 90% and mapping into 

open chromatin in enriched tissues were identified in RBM8A, SLC2A9, INSR, HNF4A, 

PDZK1, NRG4, UNC5CL, and AAK1 (Methods, Supplementary Fig. 6 and Supplementary 

Table 19). When complemented by evidence of gene expression co-localization, these SNPs 

may represent causal regulatory variants and highlight their potential effector genes.

We compared our fine-mapping workflow (“Wakefield”), established in previous 

studies39,40, to an alternative approach implemented in FINEMAP (Methods)41. FINEMAP 

identified 152 credible sets (median of 7 SNPs). With respect to known causal variants in 

ABCG2 (rs2231142), GCKR (rs1260326), HNF4A (rs1800961) and PDZK1 (rs1967017), 

the Wakefield approach identified the causal variants in ABCG2, GCKR, and HNF4A as 

credible set members, whereas FINEMAP found those in ABCG2 and HNF4A. A 

comparison of all SNPs mapping into small credible sets (≤ 5 SNPs) identified through both 

approaches found highly correlated posterior probabilities (Pearson correlation coefficient 

0.86, Supplementary Table 19).

Gene prioritization via gene expression co-localization analyses.—The urate 

association signals were next tested for co-localization with expression quantitative trait loci 

(eQTL) in cis across three kidney tissue resources and 44 GTEx tissues (Methods). High 

posterior probability of co-localization (H4 ≥ 0.8, Methods) supports a trait-associated 

variant acting through gene expression in the tissue where co-localization is identified. We 

identified co-localization with the expression of 13 genes in kidney (Fig. 6), the organ with 

the strongest enrichment for urate-associated variants. Whereas co-localization of some 

genes was only observed in kidney (SLC17A4, BICC1, UMOD, GALNTL5, NCOA7), 

others showed co-localization in several tissues (e.g., ARL6IP5). The direction of change in 

gene expression with higher urate levels could vary for the same gene across tissues. For 

instance, the allele associated with higher serum urate at SLC16A9 was associated with 

higher gene expression in kidney, consistent with a regulatory variant in a transporter 
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mediating the reabsorption of urate. This same allele was associated with lower gene 

expression in other tissues such as aorta, pointing towards tissue-specific regulatory 

mechanisms42. Details of the 13 genes with evidence for co-localization with gene 

expression in kidney are summarized in Supplementary Table 20. Significant co-

localizations across all 47 tissues (Supplementary Fig. 7) revealed additional insights such as 

co-localization of the urate association signal with NFAT5 expression in subcutaneous 

adipose tissue, emphasizing its role in adipogenesis43, or PDZK1 expression in colon and 

ileum, important sites of urate excretion.

Lastly, we investigated whether any trans-ethnic index SNPs or their proxies (r2 > 0.8) were 

reproducibly associated with gene expression in trans in several large eQTL studies 

(Supplementary Table 21 and Supplementary Note). We identified inter-chromosomal 

associations between five index SNPs and 16 transcripts that were enriched in the term 

“cardiovascular disease” based on the Human Disease Ontology database (Supplementary 

Note and Supplementary Table 22).

HNF4A activates ABCG2 transcription and HNF4A p.Thr139Ile is a functional variant

The gene and variant prioritization workflow was validated using the identified candidates 

HNF1A and HNF4A. Co-regulation of target genes by these transcriptional master 

regulators in kidney proximal tubule and liver could potentially explain observed genetic 

correlations44.

We first tested whether HNF1A and HNF4A affect transcription of ABCG2, which encodes 

for a major human urate transporter and represented the locus with the highest gout risk in 

our screen. The ABCG2 promoter region contains several predicted HNF1A and HNF4A 

binding sites (Fig. 5b). A luciferase reporter assay in the human embryonic kidney cell line 

HEK 293 was used to assess transactivation of the human ABCG2 promoter by HNF4A and 

HNF1A proteins (Methods and Supplementary Fig. 8a). Co-expression of HNF4A 

significantly increased the ABCG2 promoter-driven luciferase activity in a transfection 

dose- and HNF4A protein abundance-dependent manner (Fig. 5c and Supplementary Fig. 

8b). No increase of luciferase activity occurred with the negative-control vector devoid of 

the ABCG2 promoter (Supplementary Fig. 8d,e). Results for HNF1A indicated that the 

observed association with serum urate is unlikely to occur via activation of ABCG2 in 

kidney cells (Fig. 5c), but HNF1A has been reported to activate transcription of PDZK1, 

which encodes a regulatory protein for several other renal urate transporters45,46 also 

identified in this study.

Next, we tested the functional relevance of the prioritized p.Thr139Ile allele in HNF4A 

(NM_178849.2, isoform 1, Methods). Its location within the hinge/DNA binding domain 

(Fig. 5d and Supplementary Fig. 8f) supports potentially altered interactions with targeted 

promoter regions. The isoleucine substitution at position 139 significantly increased the 

transactivation of the ABCG2 promoter as compared to the wild-type threonine (Fig. 5e), 

without altering HNF4A protein abundance (Supplementary Fig. 8c). Thus, HNF4A can 

activate ABCG2 transcription in a kidney cell line, and HNFA4 p.Thr139Ile is a functional 

variant. Increased activation of the urate excretory protein ABCG2 by the allele encoding the 
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isoleucine residue should result in lower serum urate levels, consistent with the observed 

negative association in our GWAS.

Discussion

This trans-ethnic GWAS meta-analysis of serum urate based on 457,690 individuals 

represents a four-fold increase in sample size over previous studies21,22,47 and identified 183 

urate-associated loci, 147 of which are novel. A genetic urate risk score led to significant 

improvements of gout risk prediction among 334,880 UKBB participants: 3.5% had a risk of 

gout comparable to a Mendelian disease effect size. Genetic correlation and causality 

analyses confirmed the causal effect of urate on gout, and were consistent with 

transcriptional co-regulation as a source of pleiotropy in the widespread genetic correlations 

between serum urate and cardio-metabolic traits. Tissue and cell type-specific enrichment 

analyses supported kidney and liver, the sites of urate excretion and generation, as key target 

tissues. Comprehensive fine-mapping and co-localization analyses with gene expression 

across 47 tissues delivered an extensive list of target genes and SNPs for follow-up studies, 

of which we experimentally confirmed HNF4A p.Thr139Ile as a functional allele involved in 

transcriptional regulation of urate homeostasis.

Major challenges of GWAS are to pinpoint causal genes and variants, and to provide 

actionable insights into disease-relevant mechanisms. This study developed a comprehensive 

resource of urate-related candidate SNPs, genes, tissues and pathways that will enable a 

wide range of follow-up studies. Out of the many novel and biologically plausible findings, 

we highlight two instances in which co-localization analyses provided new insights. First, 

co-localization helped to prioritize genes in association peaks that previous GWAS could not 

resolve. For example, the locus at chromosome 6p22.2 contains genes encoding for four 

members of the SLC17 transporter family (SLC17A1-SLC17A4). Systematic testing of co-

localization across genes and tissues identified evidence only for SLC17A4 in kidney, with 

higher expression associated with higher serum urate. Previous experimental studies have 

implicated SLC17A4 as a urate exporter in intestine48, and our data support its yet 

unappreciated role in renal urate transport. Second, co-localization with MUC1, BICC1 and 

UMOD expression in kidney suggests a shared biological mechanism. Rare mutations in all 

three genes underlie monogenic cystic kidney diseases49-51.

Another noteworthy finding is the significant genetic correlations with many cardio-

metabolic traits, consistent with observational associations52. Many of these traits are 

influenced by liver metabolism. The estimated genetic causality proportions supported their 

genetic correlations to be partly driven by overlapping or co-regulated metabolic pathways 

and not only by a fully causal effect of e.g. cholesterol or insulin levels on urate. Likewise, 

significant genetic correlations with kidney-related traits such as eGFR may reflect shared 

regulatory processes in the kidney. The observed pleiotropic effects of many urate-associated 

variants could thus be the potential manifestation of co-regulation of processes that occur 

within and across tissues relevant to the implicated traits, a mechanism likely to be 

prevailing in metabolic but also other traits.

Tin et al. Page 10

Nat Genet. Author manuscript; available in PMC 2020 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the kidney, nuclear HNF4A is exclusively detected in the proximal tubule53, where it has 

been reported to regulate the expression of SLC2A9 isoform 154 and PDZK155. Kidney-

specific deletion of Hnf4a in mice phenocopies Fanconi renotubular syndrome56. 

Transcriptomic analyses support HNF4A to drive a proximal tubule signature cluster of 221 

co-expressed genes, including many candidate genes for urate metabolism and transport53. 

In addition to HNF4A, HNF4G, and HNF1A, ten genes in this cluster also map into urate-

associated loci we identified (A1CF, CUBN, LRP2, PDZK1, SERPINF2, SLC2A9, 

SLC16A9, SLC17A1, SLC22A12 and SLC47A1). In addition, our study establishes that 

HNF4A can trans-activate transcription of ABCG2 in a kidney cell line, the key urate 

secretory transporter in gut and kidney epithelium57. The genetic variant encoding the 

p.Thr139Ile substitution is located in a region of the HNF4A protein harboring many 

causative mutations for monogenic maturity onset diabetes of the young (MODY type 1)58. 

Yet, unlike the severe MODY1 missense mutations p.Arg127Trp, p.Asp126Tyr, 

p.Arg125Trp,59 p.Thr139Ile has not been reported to cause MODY1. Instead, it has been 

reported to increase the risk of type 2 diabetes, possibly through a liver-specific loss of 

HNF4A phosphorylation at p.Thr139, and to associate with HDL-cholesterol levels58,60. 

These data point to additional complexities when interpreting pleiotropic effects, because 

there may be several tissue-specific mechanisms by which genetic variants in transcriptional 

regulators influence metabolic pathways and urate homeostasis.

Some limitations warrant mention. The numbers of individuals of ancestries other than 

European or East Asian were small, and the generalizability of the gout prediction models 

should be assessed in future independent studies of non-European ancestry. Focusing on 

SNPs present in the majority of studies emphasizes those that may be of greatest importance 

globally over population-specific variants. General limitations of the field include that 

statistical fine-mapping approaches based on meta-analysis summary statistics cannot 

clearly prioritize functional variants in regions of tight LD, and that they are influenced by 

the availability and imputation quality of SNPs in the contributing studies. Only few 

regulatory maps from important target tissues such as synovial membrane and kidney are 

available, but we were able to evaluate differential gene expression in three kidney datasets. 

Generating additional regulatory and expression datasets across disease states, 

developmental stages and additional cell types in kidney and other metabolically active 

organs constitutes an important future research avenue. Lastly, a large independent sample 

for adequately powered replication testing was unavailable and represents a future endeavor. 

However, high correlations between genetic effects on serum urate and gout even for SNPs 

with the weakest significant urate associations as well as no indication of significant 

heterogeneity reduce concerns about false positives.

In summary, this large-scale study generated an atlas of candidate SNPs, genes, tissues and 

pathways involved in urate metabolism and its shared regulation with multiple cardio-

metabolic traits that will enable a wide range of follow-up studies.
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Online Methods

Phenotype definition, genotyping and imputation in participating studies

The primary study outcome was serum urate in mg/dl. The laboratory methods for 

measuring serum urate in each study are reported in Supplementary Table 1. Prevalent gout 

was analyzed as a secondary outcome to examine whether urate-associated SNPs conferred 

gout risk. Gout cases were ascertained based on self-report, intake of urate-lowering 

medications, or International Statistical Classification of Diseases and Related Health 

Problems (ICD) codes for gout (Supplementary Table 1). The participants of all studies 

provided written informed consent. Each study had its research protocol approved by the 

corresponding local ethics committee.

Each study performed genotyping separately and imputed the genotypes to reference panels 

of the Haplotype Reference Consortium (HRC) version 1.161, 1000 Genomes Project 

(1000G) phase 3 v5 ALL, or the 1000G phase 1 v3 ALL62. Study-specific quality filters, and 

software used for phasing and imputation are provided in Supplementary Table 2 and the 

Supplementary Note. Variants were annotated using NCBI b37 (hg19).

Study-specific association analysis

Phenotype generation was standardized across studies using a common script, and study-

specific association analyses followed a centrally developed analysis plan. GWAS summary 

statistics were checked centrally using GWAtoolbox63 and custom scripts (Supplementary 

Note). Each study performed ancestry-specific association analysis of serum urate by 

generating age- and sex-adjusted residuals of serum urate and regressing the residuals on 

SNP dosage levels, adjusting for study-specific covariates such as study centers and genetic 

principal components, assuming an additive genetic model. Gout was analyzed as a binary 

outcome adjusting for age, sex, genetic principal components, and study-specific covariates. 

Software used for these regression analyses were EPACTS (q.emmax for family based 

studies and q.linear otherwise; https://genome.sph.umich.edu/wiki/EPACTS), SNPTest64, 

RegScan65, RVTEST66, PLINK 1.9067, Probabel68, GWAF69, GEMMA70, mach2qtl71 and 

R. Family-based studies used methods that accounted for relatedness.

Trans-ethnic, ancestry-specific, and sex-stratified meta-analyses

GWAS results from each study were pre-filtered to retain bi-allelic SNPs with imputation 

quality score > 0.6 and minor allele count (MAC) > 10 before inclusion into meta-analysis. 

Fixed effects inverse-variance weighted meta-analysis was performed using METAL72 with 

modifications to output higher precision (six decimal places). Genomic control was applied 

for each study. The genomic inflation factor λGC
73 was calculated to assess inflation of the 

test statistics. For each meta-analysis result (trans-ethnic, ancestry-specific, and sex-

specific), we excluded SNPs that were present in <50% of the studies and with a total MAC 

< 400. For ancestry-specific meta-analysis, we additionally excluded SNPs with a 

heterogeneity I²-statistic74 > 95%. Genome-wide significance was defined as P-value < 5 × 

10−8. The LD score regression intercept was calculated to assess the evidence for 

associations driven by population structure75. For downstream characterization, 8,249,849 

and 8,217,339 autosomal SNPs were retained in the trans-ethnic and European ancestry 
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meta-analysis, respectively. Ancestry-specific meta-analyses were conducted for European 

ancestry (EA), African Americans (AA), East Asian (EAS) ancestry, and South Asian (SA) 

ancestry using the same methods and variant filters as the trans-ethnic meta-analysis.

Secondary meta-analyses were performed separately in men and women, using the same 

analytical approaches. To test for significant difference of association between males and 

females, we used a two-sample t-test:

t =

β
M

− β
F

SE
M

2
+ SE

F
2

where βM and βF were beta coefficients in males and females, respectively, and SEM and 

SEF were the standard errors among males and females, respectively.

Initial determination and annotation of genome-wide significant loci

For each meta-analysis result, the SNP with the lowest P-value per chromosome was 

selected as an initial index SNP, and along with the +/− 500 kb surrounding was defined as 

one 1-Mb locus. This procedure was repeated with the SNP with the lowest P-value not yet 

assigned to a locus, until no genome-wide significant SNPs outside 1-Mb loci remained. To 

visualize loci, the genomic region +/− 500 kb around each index SNP was plotted and can 

contain two index SNPs when index SNPs were > 500kb but < 1 Mb apart. An ancestry-

specific locus was defined as a genome-wide significant locus in an ancestry-specific meta-

analysis of which the index SNP did not map into within the ±500 kb intervals of any 

genome-wide significant loci in the trans-ethnic meta-analysis. Index SNPs were annotated 

using its position and the nearest gene based on hg19, RefSeq genes, and dbSNP147 

downloaded from ftp://hgdownload.soe.ucsc.edu/mysql/hg19/ on 23 March 2017.

Proportion of phenotypic variance explained and estimated heritability

The proportion of phenotypic variance explained by index SNPs was calculated as the sum 

of the variance explained by each index SNP based on this formula: β2 2p(1 − p)

var
, where β is 

the beta coefficient and p is the MAF of the SNP, and var is the phenotypic variance. For this 

study, we used the variance of the age- and sex-adjusted residuals of serum urate in EA 

participants of the ARIC study as the estimate of the phenotypic variance (variance = 1.767).

Genetic heritability of age- and sex-adjusted urate levels was estimated using the R package 

‘MCMCglmm’76 in the Cooperative Health Research In South Tyrol (CHRIS) study77, a 

participating EA study with 4,373 individuals split into 186 up-to-five generation 

pedigrees78. Genetic heritability was estimated overall, after accounting for the index SNPs 

of the three major urate loci (SLC2A9, ABCG2, and SLC22A12), and after accounting for 

the index SNPs of all genome-wide significant loci for both the trans-ethnic and EA-specific 

meta-analyses. Estimates were obtained by running 1,000,000 MCMC iterations (burn in = 

500,000) based on previously described settings78. The difference between the overall 

heritability and the heritability excluding the index SNPs represents the heritability 

explained by the identified loci.
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Trans-ethnic meta-regression

Prior to conducting trans-ethnic meta-regression, we applied the same study-specific SNP 

filters as those applied to the fixed effects trans-ethnic meta-analysis (imputation quality 

score > 0.6 and MAC > 10). An additional filter for MAF > 0.0025 was also applied to 

reduce the influence of rare SNPs that passed the MAC filter in very large studies. Trans-

ethnic meta-regression was conducted using the MR-MEGA software package79, which 

models ancestry-associated heterogeneity in the allelic effect as a function of principal 

components (PCs) generated from a matrix of mean pairwise allele frequency differences 

between studies. Three principal components generated from a matrix of mean pairwise 

allele frequency differences between studies were sufficient to separate the self-reported 

ancestry groups. Due to software requirements, the minimum number of cohorts for each 

SNP had to be greater than the number of PCs plus two, resulting in the exclusion of SNPs 

present in five or fewer cohorts. In addition to genome-wide SNP associations with urate, 

MR-MEGA reports ancestry-associated (Panc-het) and residual heterogeneity (Pres-het). Index 

SNPs from the fixed effects meta-analysis with Panc-het < 2.7 × 10−4 (0.05/183) in MR-

MEGA were considered to have significant ancestry-associated heterogeneity.

Effect of urate-associated index SNPs on gout and risk prediction for gout

To evaluate the association of the trans-ethnic urate-associated index SNPs with gout, we 

conducted a trans-ethnic meta-analysis of gout with the same study-specific filtering criteria 

as for the urate trans-ethnic meta-analysis.

The association between a genetic urate risk score constructed from the 114 independent 

serum urate-associated SNPs identified among European individuals (see fine-mapping 

section below) and gout was assessed in a large, independent sample from the UKBB 

(Projects 19655 and 20272)80. We selected 334,880 unrelated individuals (pairwise kinship 

coefficient < 0.0313) of White British ancestry with sex chromosome euploidy and 

concordance of phenotypic and genotypic sex, including 4,908 with gout identified by self-

report at the inclusion visit. Individuals with an ICD10 for gout (M10) in hospital 

admissions who did not self-report gout were excluded from the analysis. A genetic risk 

score (GRS) was constructed as the sum of the imputed dosage of the allele associated with 

higher urate levels (“risk alleles”) over all SNPs, multiplied by the genetic effect of the risk 

allele on serum urate levels. The GRS distribution was divided into ten evenly spaced 

categories, and individuals assigned to a category based on their GRS. The category with the 

lowest GRS did not contain any gout cases and so was combined with its adjacent category. 

Gout status was regressed on GRS category in a logistic model, including age and sex as 

covariates, with the category containing the largest number of individuals (genetically 

predicted mean urate levels 4.74-5.02 mg/dl higher compared to individuals without any 

urate-increasing alleles) as the reference group.

The performance of the GRS for risk prediction of gout was first evaluated in a randomly 

selected model development sample comprising 90% of the participants to obtain precise 

estimates, and tested in a validation sample of the remaining 10%. Logistic regression was 

used to regress gout on the GRS alone (genetic model), age and sex (demographic model) 

and GRS with age and sex (combined model) in the model development sample. Each of 
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these models was then used to predict gout status in the validation sample. Model 

performance was assessed by comparing predicted and true gout status using Area Under the 

Curve (AUC) in a Receiver Operating Characteristic (ROC) curve. A cutoff of the ROC 

curve to report sensitivity and specificity of a combined GRS-based diagnostic test was 

determined by the maximum of the Youden’s index (sensitivity + specificity - 1). Ten-fold 

cross-validation of the models was performed by randomly dividing the UKBB sample into 

ten equally sized groups. Each group in turn was used as the validation sample for the 

estimates developed on the remaining data. The AUC the ROC curve was calculated for each 

of the three models for all ten validation samples, and the means and standard deviations are 

reported.

Genetic correlation

To assess the genetic correlation between serum urate and other traits in EA, we conducted 

cross-trait LD score regression81 using LD Hub82 with the EA-specific urate meta-analysis 

results as input. Genetic correlation estimates with 746 traits were obtained from LD Hub, 

excluding two previous serum urate GWAS results. For presentation, the 212 significantly 

correlated traits (P < 6.7×10−5 = 0.05/746) were grouped into 9 categories based on the trait 

names and labels and presented in a circos plot.

To determine whether observed genetic correlations between serum urate and cardio-

metabolic traits are likely to represent causal relationships, we used the recently developed 

latent causal variable (LCV) method to estimate the genetic causality proportion (GCP) 

between serum urate and another trait83. Compared to MR, the LCV method produces fewer 

false positive results in the setting of high genetic correlation and large sample sizes, a 

situation applicable to our analysis83. The GCP describes what proportion of the genetic 

component of one trait also affects the other trait; a positive GCP value indicates that a 

proportion of the genetic component of urate affects the other trait, and vice versa for a 

negative GCP value. LCV produces posterior mean and standard deviation estimates of the 

GCP using mixed fourth moments of the bivariate effect size distribution, based on GWAS 

summary statistics and LD scores. When using summary statistics of cardio-metabolic traits 

generated from the UKBB, we assumed non-overlapping populations, and overlapping 

populations otherwise. We selected six unique continuous cardio-metabolic traits commonly 

examined in epidemiological studies with high genetic correlation with serum urate (∣rg∣ > 

0.35). We additionally included gout as a positive control and creatinine-based glomerular 

filtration rate. EA-specific GWAS summary statistics were used as input to match the 

ancestry of the LD scores used with the method (https://data.broadinstitute.org/alkesgroup/

LDSCORE/eur_w_ld_chr.tar.bz2).

Functional enrichment

To assess gene-set and tissue enrichment, we used the Data-Driven Expression Prioritized 

Integration for Complex Traits analysis (DEPICT) version 1 release 19484, which performs 

gene set enrichment analysis by testing whether genes in 14,461 reconstituted gene sets were 

enriched for urate-associated SNPs (P-values < 1 × 10−5) from the trans-ethnic meta-

analysis results. Affinity propagation clustering (APC)85, implemented in the R package 

‘APCluster’86, was applied to all urate-associated reconstituted gene sets with false 
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discovery rates (FDR)-corrected enrichment P-value < 0.01 to cluster gene sets containing 

similar combinations of genes. More details on the methods of DEPICT and APC are 

provided in the Supplementary Note. The methods for using stratified LD score regression81 

based on cell type–specific genomic annotations to identify cell type and tissue-specific 

enrichments of serum urate heritability are reported in the Supplementary Note.

Statistical fine-mapping of genome-wide significant loci in European ancestry

Statistical fine-mapping to identify potentially causal variants was performed for the 

genome-wide significant loci from the EA-specific meta-analysis. LD was estimated based 

on 16,969,363 SNPs from 13,558 unrelated UKBB participants after quality control 

(Supplementary Note). The analyses were based on a previously described workflow39,40,87 

using GCTA (cojo-slct option) to identify independent index SNPs in each region, followed 

by using GCTA (cojo-cond option) to obtain conditional beta and standard errors for regions 

with >1 independent signal. Next, approximate Bayes factors (ABF) were calculated using 

the Wakefield’s formula38, as implemented in the R package ‘gtx’ version 2.0.1 (https://

github.com/tobyjohnson/gtx). The posterior probability for a variant being the driver of the 

association signal was calculated as the ABF of the variant divided by the sum of the ABF in 

the region. The 99% credible sets of a region is derived by summing the posterior 

probabilities in descending order until the cumulative posterior probability was > 99%. We 

prioritized variants in credible sets containing ≤ 5 SNPs or SNPs with posterior probabilities 

> 0.5. More details on statistical fine-mapping are provided in the Supplementary Note.

Annotation of the variants in the credible sets

We annotated SNPs in the credible sets for their exonic effect, Combined Annotation 

Dependent Depletion (CADD) score, and mapping into DNaseI-hypersensitive sites (DHS) 

from the Encyclopedia of DNA Elements (ENCODE) and Roadmap Epigenomics 

Consortium projects88,89. The exonic effect and CADD score were obtained using SNiPA 

v3.2 (March 2017)90. SNiPA presented the CADD score as PHRED-like transformation of 

the C score, which was based on CADD release v1.3 downloaded from http://

cadd.gs.washington.edu/download. A CADD score of 15 is used to distinguish potentially 

deleterious variants from background noise in clinical genetics, and represents the median 

value of all non-synonymous variants in CADD v1.091,92. As opposed to posterior 

probabilities of causing the association signal, CADD scores represent an integrative 

measure of predicted deleteriousness based on an ensemble of variant annotations derived by 

contrasting common variants that survived natural selection with simulated mutations. Based 

on known pathogenic variants in the ClinVar database, the performance of the CADD score 

had an AUC of 0.8893.

Co-localization analysis of cis-eQTL and urate-associated loci

Co-localization analysis of urate-associated loci with gene expression was conducted using 

EA meta-analysis results, cis-eQTL results from micro-dissected human glomerular and 

tubulo-interstitial kidney portions from 187 individuals in the NEPTUNE study94, as well as 

from 44 tissues in the GTEx Project version 6p release95. For each urate locus, we identified 

all transcripts and all tissue-transcript pairs with reported eQTLs within ±100 kb of each 

GWAS index SNP. The region for each co-localization test was defined as the eQTL cis 
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window in the underlying studies94,95. We used the default parameters and prior definitions 

set in the ‘coloc.fast’ function from the R package ‘gtx’ (https://github.com/tobyjohnson/

gtx), which is an adapted implementation of Giambartolomei’s co-localization method24. 

Evidence for co-localization was defined as H4 ≥ 0.8, which represents the posterior 

probability that the association with serum urate and gene expression is due to the same 

underlying variant. In addition, co-localization of urate-associated loci was also performed 

with gene expression quantified using RNA sequencing of the healthy tissue portion of 99 

kidney cortex samples from the Cancer Genome Atlas (TCGA)96. First, all transcripts that 

shared eQTL variants with urate index SNPs within ±100 kb were extracted. Then the 

posterior probability of co-localization was calculated including eQTLs within the cis-

window (±1 Mb from the transcription start site) for each gene using the R coloc package24 

with default values for the three prior probabilities. The methods for trans-eQTL annotation 

are reported in the Supplementary Note.

Experimental study

Promoter binding site predictions.—For promoter binding site predictions, we used 

the JASPAR 2018 database97,98. The frequency matrices were downloaded for transcription 

factor binding sites of both vertebrate and human sequences (HNF1A: MA0046.1 and 

MA0046.2; HNF4A: MA0114.1 and MA0114.2). These matrices were then used to query 

the promoter region of ABCG2 (−1285/+362, or base pairs upstream of the transcription 

start site / and downstream after transcription start site)99 by means of the LASAGNA 2.0 

transcription factor binding site search tool with default parameters and a P-value cutoff of 

0.01100.

Site-directed mutagenesis.—HNF1A and HNF4A clones were purchased from 

GeneCopoeia (EX-A7792-M02 and EX-Z5283-M02, respectively) and were mutagenized 

using the QuikChange Lightning Site Directed Mutagenesis kit (Agilent Technologies, 

#210518) per manufacturer’s instructions using PAGE purified primers, which are reported 

in the Supplementary Note.

Luciferase assay.—HEK293T cells were seeded in white-walled 96-well plates coated 

with Poly-L-lysine at roughly 12,500 cells per well. Cells were transfected 18 hours later 

with either the ABCG2 promoter (−1285/+362) upstream of a firefly luciferase in the 

pGL4.14 vector (a generous gift from Douglas D. Ross, University of Maryland School of 

Medicine), or the pGL4.14 vector (Promega, #E699A) without promoter construct, as well 

as GFP expressing vector used as an internal negative control (pEGFP-C1, Clontech)101 

using X-tremeGene™ 9 DNA Transfection Reagent (Roche Diagnostics, #6365787001). 

Transfection cocktails were prepared per manufacturer’s specifications either with or 

without transcription factor using the following ratio: 0.6 μg promoter construct, 0.2, 0.1, or 

0.05 μg transcription factor, and 0.05 μg GFP. When no transcription factor was used, 

pcDNA3.1 was substituted. Approximately 48 hours after transfection, cells were rinsed 

with 1x PBS, then lysed using Passive Lysis Buffer (Promega #E194A) for 15 minutes. 

During this incubation, GFP measurements were taken using a CLARIOstar microplate 

reader (BMG Labtech). Next, 30 μl of Luciferase Reagent (Promega, E297A&B) were 

added to each well, and the plate was incubated for an additional 20 minutes at room 
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temperature. Finally, luciferase activity was measured using the CLARIOstar microplate 

reader taking the average over 6 seconds. To evaluate the significance of transactivation of 

the ABCG2 promoter, we compared cells expressing transcription factors to those 

transfected with the empty vector (pcDAN3.1) and to evaluate TF dose responses or 

differences in TF variants all experimental conditions from one plate were compared using 

an Ordinary one-way ANOVA, accounting for multiple comparisons with a Tukey’s multiple 

comparison test. Statistical analysis was performed using Prism 7 (GraphPad Software Inc, 

USA).

Western blots.—Equal volumes of deoxycholate-RIPA buffer were added to wells 

containing desired lysates following the luciferase assay and plates were then incubated at 

4 °C overnight. Equal volumes of sample + 5x SDS loading dye + 10% β-merceptoethanol 

were then loaded into 10% Mini-PROTEAN® TGX Stain-Free™ Precast Gels (Bio-Rad, 

#4568033) and run per manufacturer’s specifications. Gels were then cross-linked for 45 

seconds and imaged to reveal total protein load, which was used as the loading control for 

each lane (representative images of these protein gels are found in Supplementary Fig. 8). 

Gels were then transferred onto nitrocellulose membranes using the Trans-Blot® Turbo™ 

Transfer System (Bio-Rad), blocked for 2 hours at room temperature in 5% milk in TBS-T, 

and incubated overnight at 4 °C with primary antibody. Membranes were then washed 3 

times with TBS-T, incubated at room temperature for 1 hour with Donkey anti-rabbit 

secondary antibody (Jackson ImmunoResearch, #111-035-144) diluted 1:5,000 in 2.5% milk 

in TBS-T. Membranes were then washed again and developed using SuperSignal™ West 

Pico PLUS Chemiluminescent Substrate (Thermo Scientific, #34577) and imaged on the 

ChemiDoc MP imaging system (Bio-Rad). All primary antibodies were diluted 1:1,000 in 

2.5% milk in TBS-T. Antibodies used included HNF4α (Cell Signaling Technology, #3113) 

and HNF1α (Cell Signaling Technology, #89670). Antibodies were validated using lysates 

of overexpressing HEK293T cells transfected with either HNF construct, demonstrating 

bands at the appropriate sizes (Supplementary Fig. 8).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 ∣. Trans-ethnic GWAS meta-analysis identifies 183 loci associated with serum urate.
Outer ring: Dot size represents the genetic effect size of the index SNP at each labeled locus 

on serum urate. Blue band: −log10(two-sided meta-analysis P-value) for association with 

serum urate (n = 457,690), by chromosomal position (GRCh37 (hg19) reference build). Red 

line indicates genome-wide significance (P = 5 × 10−8). Blue gene labels indicate novel loci, 

gray labels loci reported in previous GWAS of serum urate. Green band: −log10(two-sided 

meta-analysis P-value) for association with gout (n = 763,813), by chromosomal position. 

Red line indicates genome-wide significance (P = 5 × 10−8). Inner band: Dots represent 

index SNPs with significant heterogeneity and are color-coded according to its source: green 

for ancestry-related heterogeneity (Panc-het < 2.7 × 10−4 (0.05/183)), red for residual 

heterogeneity (Pres-het < 2.7 × 10−4), and yellow for both (Panc-het and Pres-het < 2.7 × 10−4). 

Loci are labeled with the gene closest to the index SNP. Panc-het and Pres-het were generated 

by MR-MEGA (Methods).

Tin et al. Page 31

Nat Genet. Author manuscript; available in PMC 2020 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2 ∣. A genetic risk score (GRS) for serum urate improves gout risk prediction.
a, Histogram of the urate GRS among 334,880 European ancestry participants of the UK 

Biobank. The y-axes show the number of individuals (left) and the prevalence of gout 

(right), the x-axis shows categories of the urate GRS. The units on the x-axis represent 

genetically predicted serum urate levels (mg/dl) compared to individuals without any urate-

increasing alleles. b, Age- and sex-adjusted odds ratio of gout (y-axis) by GRS category (x-

axis) among 334,880 European-ancestry participants of the UK Biobank, comparing each 

category to the most prevalent category (4.74 < GRS ≤ 5.02) with error bars representing 

95% confidence intervals; * denotes logistic regression two-sided P-value < 0.05, ** denotes 

P < 5 × 10−10, and *** P < 5 × 10−100. c, Comparison of the receiver operating characteristic 
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(ROC) curves of different prediction models of gout: genetic (GRS only; red), demographic 

(age + sex; green), and combined (GRS + age + sex; blue). y-axis: sensitivity, x-axis: 

specificity. At the optimal cut points determined by the maximum of the Youden’s index, the 

sensitivity of the combined model was 84% and specificity was 68%.
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Figure 3 ∣. Serum urate shows widespread genetic correlations with cardio-metabolic risk factors 
and diseases.
The Circos plot shows significant genome-wide genetic correlations between serum urate 

and 214 complex traits or diseases (genetic correlation P < 6.6 × 10−5 = 0.05/748 traits 

tested), with bar height proportional to the genetic correlation coefficient (rg) estimate for 

each trait and coloring according to its direction (dark blue, rg > 0; light blue, rg < 0). Traits 

and diseases are labeled on the outside of the plot and grouped into nine different categories. 

Each category is color-coded (inner ring, inset). The greatest genetic correlation was 

observed with gout (rg = 0.92, P = 3.3 × 10−70). Genetic correlations with multiple cardio-

metabolic risk factors and diseases reflect their known directions from observational studies. 

The serum urate association statistics for estimating genetic correlations were from the 

European-ancestry meta-analysis (n = 288,649).
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Figure 4 ∣. Genes expressed in urate-associated loci are enriched in kidney tissue and pathways.
a, Grouped physiological systems (x-axis) that were tested individually for enrichment of 

expression of genes in urate-associated loci among European-ancestry individuals (n = 

288,649) using DEPICT are shown as a bar plot, with the −log10(enrichment P-value) on the 

y-axis. Significantly enriched systems are labeled and highlighted in blue (enrichment false 

discovery rate (FDR) < 0.01). b, Correlated (r > 0.2) meta-gene sets that were strongly 

enriched (enrichment FDR < 0.01) for genes mapping into urate-associated loci among 

European-ancestry individuals (n = 288,649). Thickness of the edges represents the 

magnitude of the correlation coefficient, node size, color and intensity represent the number 

of clustered gene sets, gene set origin, and enrichment P-value, respectively.
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Figure 5 ∣. Prioritization of p.Thr139Ile at HNF4A and functional study of HNF4A regulation of 
ABCG2 transcription.
a, Graph shows credible set size (x-axis) against the posterior probability of association 

(PPA; y-axis) for each of 1,453 SNPs with PPA > 1% in 114 99% credible sets. Triangles 

mark missense SNPs, with size proportional to their Combined Annotation Dependent 

Depletion (CADD) score. Blue triangles indicate missense variants mapping into small (≤ 5 

SNPs) credible sets or with high PPA (≥ 50%). b, Predicted HNF1A or HNF4A binding sites 

in the promoter region of ABCG2 using LASAGNA 2.0, the consensus affinity sequence, 

and the P-value of likely matches based on nucleotide position within a consensus 

transcription factor binding site (Methods). c, Relative luciferase activity and transactivation 

of ABCG2 promoter in cells transfected with variable amount of HNF1A or HNF4A 

constructs (mean (line) ± s.e.m. (whiskers), n = 3 independent experiments, P-values 

calculated with ordinary one-way ANOVA with Tukey’s multiple comparison test). d, 

Position of p.Thr139Ile (T139I) in DNA binding domain/hinge region within HNF4A 

homodimer structure (PDB 4IQR). e, Relative luciferase activity and transactivation of 

ABCG2 promoter in cells transfected with variable amount of constructs (ng’s of transfected 

DNA) of wild-type HNF4A (threonine) or isoleucine at position 139 (± s.e.m., n = 3 

independent experiments, P-values calculated with ordinary one-way ANOVA with Tukey’s 

multiple comparison test).
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Figure 6 ∣. Co-localization of urate-association signals with gene expression in cis in kidney 
tissues.
Serum urate association signals identified among European ancestry individuals (n = 

288,649) were tested for co-localization with all eQTLs where the eQTL cis-window 

overlapped (±100 kb) the index SNP. Genes with ≥1 positive co-localization (posterior 

probability of one common causal variant, H4, ≥ 0.80) in a kidney tissue are illustrated with 

the respective index SNP and transcript (y-axis). Co-localizations across all tissues (x-axis) 

are illustrated as dots, where the size of the dots indicates the posterior probability of the co-

localization. Negative co-localizations (posterior probability of H4 < 0.80) are marked in 

gray, while the positive co-localizations are color-coded relative to the change in expression 

with a color gradient as indicated in the legend.
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