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Target Identification Using Harmonic
Wavelet Based ISAR Imaging
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A new approach has been proposed to reduce the computations involved in the ISAR imaging, which uses harmonic wavelet-
(HW) based time-frequency representation (TFR). Since the HW-based TFR falls into a category of nonparametric time-frequency
(T-F) analysis tool, it is computationally efficient compared to parametric T-F analysis tools such as adaptive joint time-frequency
transform (AJTFT), adaptive wavelet transform (AWT), and evolutionary AWT (EAWT). Further, the performance of the proposed
method of ISAR imaging is compared with the ISAR imaging by other nonparametric T-F analysis tools such as short-time Fourier
transform (STFT) and Choi-Williams distribution (CWD). In the ISAR imaging, the use of HW-based TFR provides similar/better
results with significant (92%) computational advantage compared to that obtained by CWD. The ISAR images thus obtained are
identified using a neural network-based classification scheme with feature set invariant to translation, rotation, and scaling.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. INTRODUCTION

Inverse synthetic aperture radar (ISAR) is an imaging radar
that uses the target’s pitch, roll, and yaw motions to gen-
erate an image in the range-Doppler plane. Primarily, the
Fourier transform (FT) was used for the ISAR imaging with
the assumption that Doppler frequency is constant over the
imaging time duration [1, 2]. However, the assumption of
constant Doppler frequency is not true as the Doppler fre-
quency varies in time because of the nonuniform motion of
the target due to maneuvers. Hence the FT-based method
suffers from the disadvantage of image blurring in the final
output.

In the last decade, many techniques such as transform
domain methods, subaperture methods, and superresolution
methods have been applied to obtain the time-varying spec-
trum in the hope of enhancing image resolution. How-
ever, none of them completely resolved the blurring prob-
lem. With the intention of obtaining focused ISAR image,
Chen et al. introduced time-frequency (T-F) transform in
the place of FT. Well-known T-F transforms include short-
time Fourier transform (STFT), Wigner-Ville distribution
(WVD) [1, 2], continuous wavelet transform (CWT) [3],
adaptive joint time-frequency transform (AJTFT) [4], adap-
tive wavelet transform (AWT) [5], and evolutionary AWT
(EAWT) [6]. Among these T-F transforms, STFT, WVD,
and CWT fall into a category of nonparametric T-F anal-
ysis tools whereas AJTFT, AWT, and EAWT fall into a

category of parametric T-F analysis tools. The STFT is the
best-known and most basic T-F analysis tool, but it suffers
from tradeoff between time resolution and frequency resolu-
tion. The WVD [7, 8] provides better resolution both in time
as well as frequency, but has a cross-term problem. The CWT
has multiresolution characteristics and it is free from cross-
term problem, but its T-F grid is still rigid [2, 6]. The AWT
provides a more flexible T-F grid than the CWT. Further, it
is free from resolution problem and cross-term problem, but
its accuracy is limited as it uses a bisection search method
and fast FT (FFT) for parameter extraction [5]. The AJTFT
uses iterative search method to get the adaptive spectrogram
(ADS) [2, 4] that is in turn used to extract feature set for
target recognition without computing the ISAR image. The
EAWT uses evolutionary programming for the T-F parame-
ter extraction instead of FFT and the bisection search method
used in the conventional AWT [5]. As all the parametric T-F
analysis tools [2, 4–6] use parameter extraction as well as one
or the other search methods while getting ISAR image, the
computational complexity involved is quite high and hence
hard to realize in real-time applications [6].

The cross-term problem inherent in the WVD degrades
the quality of the ISAR image. In order to get better ISAR
image, the problem of cross-term has to be reduced and
is achieved with Choi-Williams distribution (CWD). The
CWD reduces the cross-terms at the cost of time-frequency
resolution, while still preserving the useful properties of
the WVD. But this involves high computational complexity
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and is difficult to implement for practical scenarios. In [9],
Newland modified the harmonic wavelets (HW) [10–12] for
time-frequency representation (TFR), which is simple to im-
plement compared to other wavelets and TFRs like WVD and
CWD.

In order to trim down the computational complexity as-
sociated with ISAR imaging and make it viable for practical
applications, the conception of TFR by HW is proposed in
this paper for ISAR imaging. To capture the Doppler informa-
tion effectively, high-frequency resolution is required, which is
achieved with shorter frequency window function while com-
puting the TFR by HW. The results from the simulated ISAR
data show that the proposed method provides better image
compared to that generated by CWD with reduction in com-
putational complexity. Since the cost of the computational
complexity plays an important role for practical scenarios,
the proposed method is well suited for real-time implemen-
tation. The ISAR image thus obtained from the proposed
method can be used for target identification using any of the
existing methods. Here the neural network-based automatic
target identification (ATI) scheme invariant to translation,
rotation, and scale is used for identification and classifica-
tion.

ATI is an important problem in the field of machine
learning and pattern recognition. Hence, in the last two
decades a large number of algorithms have been proposed.
For example, Oja used the principle component analysis
technique [13], Comon adopted the independent compo-
nent approach [14], and Al-Ani et al. proposed a hybrid in-
formation algorithm [15] to deal with the problem of fea-
ture selection. Several methods were also proposed based on
probability theory [16], fuzzy set theory [17], and artificial
neural networks (ANNs) [18–20]. Further, the target recog-
nition scheme discussed in [4] extracts the feature set directly
from geometrical moments of the ADS without computing
the ISAR image. But, the proposed method of recognition
uses ISAR image for extracting the feature set. As the ISAR
image gives the silhouette of the target, the trained operator
can use his intelligence in addition to machine intelligence in
classification and decision-making.

Any recognition process usually involves three compo-
nents: preprocessing block, feature extractor, and classifier.
The function of preprocessing block is to transform the input
digital image into a form that can be processed and used
by the subsequent blocks. Typical image-preprocessing func-
tions are noise suppression, blur control, edge detection, and
boundary extraction. In feature extractor, certain selective
characteristics of the image are extracted that can uniquely
distinguish the image from the other class of images. If the
selected feature set is large, the preprocessing and analysis
task becomes more difficult. On the other hand, if the feature
set is small, the recognition rate may come down. Also, the
extracted features should be invariant to certain parameters
like scaling, shifting, and rotation depending on the scenario.
As a result, feature selection has become important and well-
known problem. The classifier block compares these features
with the feature set in the database according to a prede-

fined similarity function and classifies the output image to
one class of the stored images.

In this paper, region-growing technique is used for
finding the centroid to overcome the problem of spurious
edges and noise. A rotation invariant, translation invariant,
and scale invariant feature set is selected for accurate clas-
sification [21]. Neural network-based classification is done
instead of conventional template matching to increase the
speed of matching and robustness to distorted patterns.

This paper is organized as follows. The basic of HW
and its variation for ISAR imaging is discussed in Section 2.
Neural network-based ATI using ISAR images invariant to
translation, rotation, and scaling is discussed in Section 3.
Section 4 presents simulated results for ISAR imaging and
classification. Finally conclusions are made in Section 5.

2. ISAR IMAGING USING TIME-FREQUENCY
REPRESENTATION

Radar transmits electromagnetic waves to a target and re-
ceives the reflected signal from the target. The received signal
can be used to obtain the image of the target as it is related
to the reflectivity function of the target by means of a filter-
ing process. Figure 1 illustrates the process of the ISAR imag-
ing system using a stepped-frequency (SF) waveform. For a
stepped-frequency waveform, the radar transmits a sequence
of N bursts. Each burst consists of M narrow-band pulses.
Within each burst, the center frequency fm of each successive
pulse is increased by a constant frequency step ∆ f . The total
bandwidth of the burst, that is, M times the frequency step
∆ f , determines the radar range resolution. The total number
of bursts N along with the pulse duration for a given imaging
integration time determine the Doppler or cross-range res-
olution. The returned pulse is heterodyned and quadrature
detected in the radar receiver.

To form a radar image, after measuring the returned in-
phase (I-Channel) and quadrature phase (Q-Channel) sig-
nals at baseband with a pulse repetition rate at M ∗ N time
instants tm,n = (m + nM)∆t, the M × N complex data is
organized into a two-dimensional array which represents the
unprocessed spatial frequency signature of the target S( fm,n),
where m = 1, 2, . . . ,M, n = 1, 2, . . . ,N , and ∆t denotes the
time interval between the pulses.

The radar processor uses the frequency signatures as
the raw data to perform range compression and the stan-
dard motion compensation. Range compression functions as
a matched filter, which removes frequency or phase mod-
ulation and resolves range. For the stepped-frequency sig-
nals, the range compression performs an M-point inverse
FT (IFT) for each of the N received frequency signatures as
G(rm,n) = IFTm{S( fm,n)}, where IFTm denotes the IFT oper-
ation with respect to the variable m. Therefore, N range pro-
files (i.e., the distribution of the target reflectivity in range),
each containing M range cells, can be obtained. At each range
cell, the N range profiles constitute a new time history se-
ries. Then, the motion compensated range profiles become
G′(rm,n), m = 1, 2, . . . ,M, n = 1, 2, . . . ,N .
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Figure 1: Illustration of SF radar imaging of moving target.

2.1. Time-frequency representation

TFR is an essential element in most of diagnostic sig-
nal analysis schemes. There is considerable interest in the
effectiveness of different methods for generating TFRs, which
describe the distribution of energy over frequency and time.
The three main methods are: (1) the short-time Fourier
transform (STFT), which generates a spectrogram, (2) the
Wigner-Ville method of generating time-frequency distribu-
tions, and (3) the harmonic wavelet (HW) method of con-
structing wavelet maps, which is akin to TFR except that
wavelet scale is plotted instead of frequency. All three meth-
ods generate a (real) function of time and frequency, which
can be plotted to generate a surface on the time-frequency
plane. For this purpose, wavelet scale is converted to fre-
quency.

The Wigner-Ville distribution (WVD) is a TFR with ex-
cellent time and frequency resolution and several translation,
modulation and marginal properties, and hence, is very use-
ful for nonstationary signal analysis. The WVD of a signal
x(t) is given by [7, 8]

Wx(t,ω) =
∫∞
−∞

r(t, τ)e− jωτdτ, (1)

where r(t, τ) = x(t + τ/2) x∗(t − τ/2) is called the instan-
taneous autocorrelation function and the superscript ∗ in-
dicates conjugate operation. Since the lag length τ can go
to even infinity, the WVD theoretically can provide infinite
frequency resolution. The WVD has two fundamental dis-
advantages: (1) computational complexity and (2) difficulty
introduced by its spurious interference terms (cross-terms).
The former is an important practical problem and the lat-
ter occurs when the signal contains more than one compo-
nent because of the built-in quadratic nature of the WVD.

For real-time computations or for long-time series, this leads
to inaccuracies and hence, it can be reduced by filtering the
WVD with Choi-Williams kernel e−θ

2τ2/σ . This filtered WVD
is also known as Choi-Williams distribution (CWD) as it
uses Choi-Williams kernel to reduce the cross-terms and
preserve the useful properties of the WVD with slightly re-
duced time-frequency resolution and largely reduced cross-
term interference. The CWD of a signal x(t) is given by [7, 8]

CWD(t,ω)

= 1

4π3/2

∫∫
1√
τ2/σ

exp

[
− (u− t)2

4τ2/σ
− jτω

]
r(u, τ)dudτ.

(2)

For large values of σ , CWD approaches the WVD since the
kernel approaches one and for small values of σ , the cross-
term existing in WVD is reduced in CWD. But, this intro-
duces extra computations.

2.2. Harmonic wavelets [9, 10]

In essence, HW-based TFR is the same as the STFT except
that any basis function can be used (only harmonic functions
of constant amplitude and phase are used by the STFT). Usu-
ally the wavelets with a narrow frequency band are effective
for time-frequency analysis; otherwise good frequency res-
olution is impossible. Subject to this narrow-band proviso,
wavelets of any kind may be used for TFR, but HWs are par-
ticularly suitable because their spectrum is confined to a com-
pact frequency band.

The input signal x(t) is correlated with the basis func-
tion w(t). Because w(t) is localized and generally has har-
monic characteristics, it is called a wavelet [9]. Any waveform
may be used for the wavelet, provided that it must satisfy
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a(n), n = 0 to N − 1

IFFT

A(k) =
{
W∗(l − k + 1)∗X(l), k ≤ l ≤ (L + k − 1)

0, otherwise

W∗(l − k + 1) �= 0, k ≤ l ≤ (L + k − 1)

L = window length

X(l), l = 0 to N − 1

x(n), n = 0 to N − 1

FFT

Figure 2: Schematic to compute harmonic wavelet coefficients.

admissibility and regularity conditions [22]. For an analyz-
ing wavelet function w(t), the wavelet transform coefficient
a(t) of a signal x(t) is given by

a(t) =
∫∞
−∞

x(τ)w(t + τ)dτ. (3)

In terms of FT,

A(ω) = X(ω)W∗(ω), (4)

a(t) = F−1
[
X(ω)W∗(ω)

]
. (5)

That is, the wavelet transform coefficients can be computed
using inverse fast Fourier transform (IFFT) algorithm by
(5) using X(ω) with W(ω) for different wavelet functions.
Specifically, for the HW given by Newland [10, 11], W(ω) is
very simple and it is zero except over a finite band [π/p,π/q],
where p, q can be real numbers, not necessarily integers. For
HW, the rectangular window W(ω), though compact in fre-
quency domain, is of infinite duration in time domain. This
can be overcome by using a proper smoother weighing func-
tion W(ω) other than a rectangular one.

A practical computation of HW for an input signal x(t)
sampled N times is illustrated in Figure 2. In first stage, the
FFT of the signal is computed. In second stage, the Fourier
coefficients obtained are weighed by a frequency window
function of length L and the length of the resultant block is
made equal to N by padding p leading zeros and N − (L+ p)
trailing zeros. The IFFT of the resulting N term series is then
computed in third stage to determine the HW coefficients
(HWCs) for that particular frequency band. Similar proce-
dure is repeated for the successive frequency blocks by mov-
ing the frequency window along the frequency spectrum. It
is shown in [9] that the number of added zeros both be-
fore and after the embedded block of Fourier coefficients
can be changed while still preserving the HWCs. The data in
the chosen frequency band is zero-padded to get smoothness
over time, which can be further improved by multiplying the

FTs of a wider range of test functions, but data for equally-
spaced times is always produced. Therefore, there is a duality
between the STFT and HW method. The STFT produces re-
sults for local, short-time segments, covering the whole fre-
quency spectrum in constant bandwidth steps whereas the
HW method produces results for local, narrow frequency
bandwidths, covering the whole duration of the record in
constant time steps.

Both the STFT and WVD/CWD methods are constant
bandwidth methods. Their algorithms require a transforma-
tion from the time domain to frequency domain by using the
FT generating Fourier coefficients for frequencies at constant
separation. The bandwidth of each frequency term is same.
In contrast, the HW method allows the bandwidth of adja-
cent frequency terms to be chosen arbitrarily. Because the
wavelet transform acts as a variable Q filter, where Q is the ra-
tio of center frequency to bandwidth, it has greater flexibility
than the other two methods. Further, the HW provides built-
in decimation as well as interpolation if required [11, 12].

The fundamental advantage of the HW is that it offers
a computationally efficient method for a variable bandwidth
frequency transform so that the TFR can have a constant-
Q or a variable-Q basis as desired. In contrast, a TFR con-
structed by the STFT always has a constant bandwidth ba-
sis, therefore giving the same frequency resolution from low
frequencies to high frequencies. Similar to STFT, the pro-
posed method also suffers from tradeoff between time and
frequency resolution. However, to capture the Doppler in-
formation effectively, better frequency resolution is required,
which is achieved with shorter frequency window function
while computing the HWCs.

2.3. Harmonic wavelets for ISAR imaging

In the proposed method, the HW-based TFR is customized
for the purpose of ISAR imaging. Here all the stages of the
HW method are similar but some extra step has to be fol-
lowed before the second stage. That is, if length of the win-
dow used to truncate the spectrum of the signal is L (assum-
ing L as even), then L/2 zeros have to be padded before and
after the spectrum of the signal so that total length of the
modified spectrum is equal to the sum of lengths of the orig-
inal spectrum and the window. If L is odd, then (L − 1)/2
zeros have to be padded before and (L + 1)/2 zeros have to
be padded after the spectrum. To capture the Doppler in-
formation, better frequency resolution is required, which is
achieved by using a shorter window. As the window length
is constant for different center frequencies, the TFR obtained
by HW is of constant bandwidth just like that obtained by
STFT and WVD/CWD.

The data consists of N range profiles each containing M
range cells. The samples taken at the ith range cell for the N
range profiles constitute a time history series. For the compu-
tation of a TFRi(n, k), (n = 1, 2, . . . ,N , k = 1, 2, . . . ,N), for
ith range cell, HW uses this time history series as an input to
get

TFRi(n, k) =
∣∣ IFFT

[
Ak(l)

]∣∣2
, i = 1, 2, . . . ,M, (6)
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where

Ak(l) =

⎧⎪⎪⎨
⎪⎪⎩

W(l − k + 1)∗ X(l),

k ≤ l ≤ (L + k − 1), L : window length,

0, otherwise.

(7)

This procedure is repeated for each range cell i to get M
number of TFRs. Finally, the ISAR image at mth instant is
obtained by

I(m, k) =

⎡
⎢⎢⎢⎢⎢⎣

TFR1(m, k)

TFR2(m, k)

...

TFRM(m, k)

⎤
⎥⎥⎥⎥⎥⎦

, k = 1, 2, . . . ,N. (8)

Since TFRi(m, k) captures the Doppler for every time instant,
the image I(m, k) obtained by TFRi(m, k) through (8) will be
of better quality with reduced blurring.

2.3.1. Algorithm for ISAR imaging by harmonic wavelets

Step 1. The given data consists of N range profiles each con-
taining M range cells. Compute the FT of ith range cell by
X(l) = FFT[xi(n)], where xi(n) = x(i,n), n = 1, 2, . . . ,N ;
i = 1, 2, . . . ,M, and l is the discrete frequency bin index.

Step 2. Pad the equal number of zeros at the beginning and
at the end of the spectrum of the signal such that the length of
the modified spectrum is equal to the sum of lengths of the
original spectrum (N) and the window (L), that is, (N + L),
therefore discrete frequency bin index l = 1, 2, . . . , (N + L).
This is to preserve the spectral information that may be lost
otherwise.

Step 3. Compute the TFR of ith range cell using HW. For
this:

(i) compute the weighted Fourier coefficients at the kth
discrete frequency index using

Ak(l) =
⎧⎨
⎩
W(l − k + 1)∗ X(l), k ≤ l ≤ (L + k − 1),

0, otherwise,
(9)

where W(p) is the window of length L, p = 1, 2, . . . ,L,
(ii) the HWCs ak(n) are computed by taking IFFT of
Ak(l),

(iii) squared magnitudes of the HWCs are computed by
TFRi(n, k) = |ak(n)|2,

(iv) repeat steps (i), (ii), (iii) for different frequency in-
dices k = 1, 2, . . . ,N to get the complete TFR of the ith
range cell.

Step 4. Repeat steps 1, 2, 3 to get TFRi(n, k) for different
range cells i = 1, 2, . . . ,M.

Table 1: Computational complexity by different methods.

Number of Number of

multiplications additions

STFT 3276800=32.768∗ 105 3145728=31.45728∗ 105

CWD 44058624=440.58624∗ 105 44040192=440.40192∗ 105

HW 3456636=34.56636∗ 105 3440252=34.40252∗ 105

Step 5. The range-Doppler image frame at nth time instant is
obtained by combining the respective nth Doppler spectrum
from each of TFRi(n, k) for i = 1, 2, . . . ,M.

Steps 1 to 5 form the algorithm for ISAR imaging by HW.

2.3.2. Computational complexity

To compare the computational complexity of ISAR imaging
by STFT, CWD, and HW, the data of N range profiles each
with M range cells is considered. The computation of a sin-
gle TFR by STFT requires “N” N-point FFTs for each time
history. Hence the computation of “M” TFRs for each time
history requires “(N ∗M)” N-point FFTs. Further, the use of
any window of length Ls requires (N ∗Ls) multiplications for
the computation of a single TFR and thus the computation
of “M” TFRs requires [(N ∗ Ls) ∗M] multiplications. From
these “M” TFRs, “M” ISAR images can be obtained.

The computation of a single TFR by CWD involves
(N2

w/8) multiplications (to compute instantaneous autocor-
relation function), “Nw” Nw-point IFFTs (to compute ambi-
guity function), (Nw ∗ Nw) multiplications (for cross-term
reduction by windowing), and “(2∗Nw)” Nw-point FFTs (2-
D FFT of size Nw ×Nw), where Nw = 2∗N . Accordingly, the
computation of “M” TFRs needs M times the above compu-
tations, that is, [(N2

w/8)+(Nw∗Nw)]∗M multiplications and
[Nw + (2∗Nw)]∗M number of Nw-point FFTs.

On the other hand, the computation of a single TFR by
HW requires one N-point FFT and “N” (N + L)-point IFFTs
for each time history. Also, the use of window of length L for
the computation of a single TFR requires (N ∗ L) multipli-
cations. Consequently, the computation of “M” ISAR images
requires [(N ∗ L) ∗M] multiplications, “M” N-point FFTs,
and “(N ∗M)” (N + L)-point FFTs.

As the FFT lengths are different for different methods,
the computational complexities involved in the methods are
compared in terms of multiplications and additions. For this,
the computation of a single N-point FFT requires 2 ∗ N ∗
log2(N) real multiplications and 2 ∗ N ∗ log2(N) real addi-
tions. Table 1 shows the computations required by different
methods in terms of multiplications and additions for the
following parameters: N = 64, M = 64, L = 4, Ls = 32, and
Nw = 2∗N = 128.

From Table 1, it is evident that, even though the ISAR im-
age by HW has increased the computational complexity by
5.4882% in terms of multiplications and 9.3627% in terms
of additions compared to STFT, it has reduced the compu-
tational complexity by 92.1545% in terms of multiplications
and 92.18% in terms of additions compared to CWD. Hence,
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the proposed method is better suited for practical scenar-
ios with reduction in computations while maintaining simi-
lar/better results compared to CWD.

3. TARGET RECOGNITION

A typical pattern recognition process usually involves three
components, preprocessing block, feature extractor, and a
classifier. Figure 3 shows the block diagram of a typical im-
age pattern recognition system. Input to the system is a dig-
ital image. However, this image may not be in a state that
can be processed. The function of image preprocessing block
is to transform this input digital image f (x, y) into a form
g(x, y) that can be processed and used by the subsequent
blocks. Typical image-preprocessing functions required are
noise suppression, blurring control, and edge detection.

In most cases, entire image may not be required for car-
rying out the pattern recognition process. Certain selective
characteristics of the image can retain the uniqueness of
the image. Such characteristics are called primitive features.
These primitive features are to be extracted from the pre-
processed image. Further, a typical recognition system needs
to recognize only few classes of objects. Hence, among the
primitive features, only certain features of the image (F) can
uniquely distinguish it from the other classes of image. These
features are identified and selected by the feature extraction
block of the system shown in Figure 3. The classifier block
then compares these features with the features of the image
in its database according to a predefined “similarity” func-
tion and recognizes the output image.

ATI using ISAR images is a challenging task because
of low SNR, poor resolution, and blur associated with the
ISAR images. So preprocessing block is essential before fea-
ture extraction and classification. Median filtering [23] is
used for removing the point-spread noise. Unwanted patches
are removed and the object is extracted using the standard
region-growing technique [24]. After the object is extracted
from background with region-growing method, all the pixel
positions within the region of interest (ROI) are well known.
Giving equal importance to all the pixels within ROI, cen-
troid calculation reduces to simple average of all horizontal
and vertical positions of the pixels within ROI. Features are
extracted from the test patterns by applying FFT and wavelet
transforms to the polar-transformed original patterns. Fi-
nally classification is done using the neural networks.

3.1. Feature selection and extraction

For feature selection, both Fourier descriptors and wavelet
descriptors are considered. Fourier descriptor has been a

powerful tool for recognition because it has a useful prop-
erty of shift invariance with respect to spectrum. However,
the frequency information obtained from the Fourier de-
scriptor is global, a local variation of the shape can affect all
Fourier coefficients. In addition, Fourier descriptor does not
have a multiresolution representation. On the other hand,
wavelet descriptors have multiresolution property, but they
are not translation invariant. A small shift of original signal
will cause totally different wavelet coefficients. Since Fourier
descriptor and wavelet descriptor both have good properties
and drawbacks, they are combined to obtain the descriptor,
which is invariant to translation, rotation, and scaling.

Feature extraction is a crucial processing step for pattern
recognition. Some methods extract 1-D features from 2-D
patterns. The advantage of this approach is that space can
be saved for the database and the time for matching through
the whole database can be reduced. The apparent drawback
is that the recognition rate may not be very high because
less information from the original pattern is retained. In this
paper, 2-D features for pattern recognition is used in order
to achieve higher recognition rate [25].

The translation invariance is achieved by translating the
origin of the coordinate system to the center of the image
pattern or object, denoted by (x0, y0). As the center of the
object is considered as the reference point for the next level
processing, the recognition scheme is invariant to translation
of the object within the frame.

The scale invariance is obtained by transforming the im-
age pattern f (x, y) into normalized polar coordinate system.
Let

d = max
f (x,y) �=0

√(
x − x0

)2
+
(
y − y0

)2
(10)

be the longest distance from (x0, y0) to a point (x, y) on the
pattern. N concentric circles are drawn centered at (x0, y0)
with radius d ∗ I/N , I = 1, 2, 3 . . . ,N . Also, N angularly
equal-spaced radial vectors θ j departing from (x0, y0) with
angular step 2π/N are drawn. For any small region,

Si, j =
{

(r, θ) | ri < r ≤ ri+1, θ j < θ ≤ θ j+1

}
,

i = 0, 1, . . . , (N − 1), j = 0, 1, . . . , (N − 1)
(11)

calculate the average value of f (x, y) over this region, and as-
sign the average value to g(r, θ) in the polar coordinate sys-
tem. The feature g(r, θ) obtained in this way is invariant to
scaling, but the rows may be circularly shifted if we use dif-
ferent orientation.

With regard to rotational invariance, 1-D FT is applied
along the axis of polar angle θ of g(r, θ) to obtain its spec-
trum. Since the spectra of FT of circular shifted signals are
the same, we obtain a feature, which is rotation invariant.
Multiresolution feature of wavelet is used to get a compact
feature set, which in turn reduces computational complex-
ity and memory requirements. Different wavelet families like
Haar, Bior, and Daubechies are considered. Haar wavelet is
chosen as other wavelets do not improve the recognition rate
much and are computationally more intensive. Haar wavelet
transform is applied along the range axis to obtain the finer
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f (x, y)

Image

Polarize
g(r, θ)

Polar coordinate

1-D FFT G(r,Φ) =
FTθ(g(r, θ))

Fourier coefficients

1-D WT
WTr(G(r,φ))

Wavelet coefficients

Figure 4: Block diagram of feature extraction algorithm.

level feature set. Lifting scheme is used for implementing
the Haar wavelet transform because of its less computational
complexity and memory requirements.

3.1.1. Feature extraction algorithm

The steps of the algorithm can be summarized as follows
(also shown in Figure 4):

(1) find the centroid of the pattern f (x, y) and transform
f (x, y) into polar coordinate system to obtain g(r, θ),

(2) conduct 1-D FT on g(r, θ) along the axis of polar angle
θ and obtain its spectrum,

(3) apply 1-D wavelet transform on G(r,Φ) along the axis
of radius r.

3.2. Neural network-based pattern recognition

Back propagation network is an ideal choice to serve as a
pattern classifier because it has been used successfully in var-
ious pattern recognition applications with good recognition
results. In the back propagation algorithm, the information
about errors at the output units is propagated back to the
hidden units. The number of input units depends on the size
of feature vector. The training of a network by back propaga-
tion involves three stages: the feed forward of the input train-
ing pattern, the calculation and back propagation of the as-
sociated error, and the adjustment of the weights. Through a
set of learning samples, the network can find the best weights
Wi j automatically, enabling it to exhibit optimal classifica-
tion ability. After training, application of the net involves
only computations of the feed forward phase. Even if training
is slow, a trained net can produce its output very rapidly.

Feature vectors coming from feature selection and extrac-
tion block are given as input to the neural network. Back
propagation network with one input layer, one hidden layer,
and one output layer is used for classification. The activa-
tion function used is a binary sigmoidal function, which has
a range of (0, 1) and is defined as

f (x) = 1

1 + e−x
,

f ′(x) = f (x)
(
1− f (x)

)
.

(12)

The initial weights are set at random. In the training
process, weights are updated in such a way as to mini-
mize the mean square difference between the actual and de-
sired output. Finally the pattern is classified according to the
output sequence of the neural network.

4. SIMULATION RESULTS

The radar data used for simulation is obtained from the
stepped-frequency radar operating at 9 GHz and has a band-
width of 512 MHz (for MIG-25), 150 MHz (for B-727)
[http://airborne.nrl.navy.mil/∼vchen/tftsa.html]. The radar
data of MIG-25 consists of 512 successive pulses with each
pulse having 64 complex range samples and that of B-727
consists of 256 successive pulses with each pulse having 64
complex range samples.

The performance of the proposed method of ISAR imag-
ing is compared with the existing methods using FT, STFT,
and CWD and is illustrated for both the aircrafts. Figures 5
and 6 illustrate the performance comparison of the proposed
method for MIG-25. Use of FT for ISAR imaging assumes
that Doppler frequency is constant over the imaging time
duration. However, the assumption of constant Doppler fre-
quency is not true as the Doppler frequency varies in time
because of the nonuniform motion of the target. Hence the
ISAR image computed by FT often leads to blurring, which
is illustrated in Figure 5(a). The ISAR images (frame 30) ob-
tained by STFT, CWD, and HW are shown in Figures 5(b),
(c), and (d), respectively. It is observed that the ISAR im-
age obtained by CWD (Figure 5(c)) is prolonged in Doppler
frequency. This is because the spectral peaks will occur at
twice the desired frequencies due to built-in nature of the
WVD. Even though the proposed method requires one ex-
tra FT (to compute the spectrum of the signal for a sin-
gle TFR) compared to STFT, it provides better Doppler fre-
quency resolution. Further, ISAR image by HW provides bet-
ter Doppler frequency resolution compared to CWD, with
reduced computations.

The blurred ISAR image obtained by FT of frame-1
is shown in Figure 6(a). The frame-1 images of MIG-25
obtained by CWD and STFT are of poor quality com-
pared to that obtained by HW (Figure 6). That is, the pro-
posed method gives better image quality compared to other
nonparametric methods with reduced computations. Sim-
ilar results are shown in Figure 7 (frame-30) and Figure 8
(frame-1) for B-727 to compare the performance of the pro-
posed method with the existing methods. Because of the
complex motion of the target B-727, the image by FT suf-
fers from blurring (Figures 7(a), 8(a)), which is not observed
in other methods (Figures 7(b), (c), (d)). Also, it is observed
that images obtained by STFT and CWD do not show the
wings, wingtips, and tail of the target clearly (Figures 7(b),
(c), 8(b), (c)), but are visible to some extent with HW (Fig-
ures 7(d), 8(d)). Further, the proposed method provides bet-
ter and consistent results for all the frames compared to other
two methods with reduced computational complexity.

For the computation of ISAR image by CWD, σ is chosen
to be 0.05 to reduce the cross-terms as much as possible. In all
the cases for the computation of ISAR image by STFT, a rect-
angular window is used as it provides better frequency res-
olution compared with other windows. However, the STFT
suffers from tradeoff between time resolution and frequency
(Doppler frequency) resolution depending on the length of
the window chosen. The STFT is used for computing the

http://airborne.nrl.navy.mil/$sim $vchen/tftsa.html
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Figure 5: Images of simulated MIG-25 by (a) FT, (b) STFT (frame-30), (c) CWD (frame-30), (d) HW (frame-30).
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Figure 6: Images of simulated MIG-25 by (a) FT, (b) STFT (frame-1), (c) CWD (frame-1), (d) HW (frame-1).
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Figure 7: Images of simulated B-727 by (a) FT, (b) STFT (frame-30), (c) CWD (frame-30), (d) HW (frame-30).
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Figure 8: Images of simulated B-727 by (a) FT, (b) STFT (frame-1), (c) CWD (frame-1), (d) HW (frame-1).
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(a) ISAR image. (b) Region growing.

(c) Polar transform. (d) Lifting.

Figure 9: Simulation results for MIG-25.

ISAR image with the assumption that the target motion is
uniform within the window duration. But this may not be
true for longer window duration and hence degrades the
ISAR image. Further, to capture the Doppler information
effectively, better frequency resolution is required, which is
achieved with longer window provided that the data available
is sufficient. If sufficient amount of data is not available, then
the window length should be chosen such that it provides
better frequency resolution. Here, the window length of 32
is used for the computation of STFT as it provides better re-
sults. Like STFT, TFR by HW also suffers from tradeoff be-
tween time resolution and frequency resolution. That is, the
shorter the window length, the better the frequency resolu-
tion with poorer time resolution would be, and vice versa.
This is because TFR by HW involves windowing the spec-
trum instead of data as in STFT. As better frequency res-
olution is required to capture the Doppler information ef-
fectively, shorter window is considered while computing the
TFR by HW. Further, use of rectangular window generates
HW of infinite duration in time. Use of a proper smooth-
ing window other than a rectangular one makes it finite in
time. Considering the above arguments, hamming window
of length 4 for computing the TFR by HW is found to pro-
vide better results.

The reconstructed gray scale ISAR images of size 64× 64
are given as input to the target recognition block. The re-
sults are shown in Figures 9, 10, 11, and 12 for different im-
age patterns. The efficiency of the region-growing technique
over edge-based technique in object extraction can be seen.
The polar pattern for the rotated MIG-25 (Figure 10) and
MIG-25 (Figure 9) can be compared to visualize how the
polar transform converts object rotation into circular shifts
for applying the FT. Wavelet transform is applied along each
row (range) to get the finer level coefficients, which will help
in minimizing the feature set size and thereby memory re-

(a) ISAR image. (b) Region growing.

(c) Polar transform. (d) Lifting.

Figure 10: Simulation results for rotated MIG-25.

(a) ISAR image. (b) Region growing.

(c) Polar transform. (d) Lifting.

Figure 11: Simulation results for 50% scaled MIG-25.

quirements. Further, finer level wavelet coefficients with the
decimated Fourier coefficients (8×8) are taken as the feature
set for classification. Back propagation network with input
layer of 64 nodes, one hidden layer of 32 nodes, and output
layer of 9 nodes is used for classification.

4.1. Classification results

For classification, a set of 8 images in each category with
9 such ISAR image categories is considered. The system is
trained with three images from each category and tested on
remaining 5 images outside the training data. Classification
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(a) ISAR image. (b) Region growing.

(c) Polar transform. (d) Lifting.

Figure 12: Simulation results for B-727.

Table 2: Recognition results for different scaling factors.

Percentage (%)
Scaling factor

0.5 0.6 0.7 0.8 0.9 1.2

Recognition rate 93.73 97.38 98.68 100 100 100

Error rate 2.12 0.27 0 0 0 0

Rejection rate 4.15 2.35 1.32 0 0 0

results for different scaling factors are shown in Table 2. Rec-
ognition rate is defined as number of targets properly identi-
fied per total number of targets, error rate is defined as num-
ber of targets falsely identified per total number of targets,
and rejection rate is defined as number of unknown targets
per total number of targets. Classification results for differ-
ent rotation angles are not given, as the change in recognition
results is nominal. As the scaling factor decreases, the extent
of interpolation required in getting the feature set increases,
thereby decreasing the recognition rate.

5. CONCLUSIONS

A new method of ISAR imaging based on TFR by HW is pro-
posed in order to reduce the computations involved in ISAR
imaging. The performance of the proposed method is com-
pared with CWD as well as STFT in terms of performance
as well as computational complexity. Further, the proposed
method provides similar/better results with significant re-
duction (92%) in computations compared to that by CWD.
The ISAR images obtained from the proposed method are
used for target identification. For target identification, a neu-
ral network-based ATI scheme is used which is invariant to
translation, rotation, and scaling. Because of low SNR and
poor resolution of ISAR images, region-growing technique

is used instead of conventional edge-based techniques to im-
prove the accuracy in centroid calculation. The use of fea-
ture set that is invariant to translation, rotation, and scaling,
achieves good recognition results for all test patterns.

Abbrevations

ISAR Inverse synthetic aperture radar

RF Radio frequency

LFM Linear frequency modulation

SFM Stepped-frequency modulation

HW Harmonic wavelet

FT Fourier transform

IFT Inverse Fourier transform

STFT Short-time Fourier transform

FFT Fast Fourier transform

WVD Wigner-Ville distribution

CWD Choi-Williams distribution

TFR Time-frequency resolution

ANN Artificial neural networks

HWC Harmonic wavelet coefficients

CWT Continuous wavelet transform

AJTFT Adaptive joint time-frequency transform

AWT Adaptive wavelet transform

EAWT Evolutionary adaptive wavelet transform

ADS Adaptive spectrogram

ATI Automatic target identification
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