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Target Localization and Tracking in Non-Coherent
Multiple-Input Multiple-Output Radar Systems

Ruixin Niu, Rick S. Blum, Pramod K. Varshney, and Andrew L. Drozd

Abstract

For a non-coherent MIMO radar system, the maximum likelth@stimator (MLE) of the target
location and velocity, as well as the corresponding CRLBrixais derived. MIMO radar’s potential in
localization and tracking performance is demonstrated diypting simple Gaussian pulse waveforms.
Due to the short duration of the Gaussian pulses, a very ligdlization performance can be achieved,
even when the matched filter ignores the Doppler effect bychirag to zero Doppler shift. This leads
to significantly reduced complexities for the matched fihad the MLE. Further, two interactive signal
processing and tracking algorithms, based on the Kalmaer fdhd the particle filter respectively,
are proposed for non-coherent MIMO radar target trackingr & system with a large number of
transmit/receive elements and a high SNR value, the Kalnitr {KF) is a good choice; while for
a system with a small number of elements and a low SNR valeepdhticle filter outperforms the KF
significantly. In both methods, the tracker provides preicinformation regarding the target location,
so that the matched filter can match to the most probablettirgations, reducing the complexity of the
matched filter and improving the tracking performance. 8itracking is performed without detection,
the presented approach can be deemed as a track-befoce-dppeoach. It is demonstrated through
simulations that the non-coherent MIMO radar provides ificant tracking performance improvement
over a monostatic phased array radar with high range andu#iziresolutions. Further, the effects of
coherent integration of pulses are investigated for bothptiased array radar and a hybrid MIMO radar,
where only the pulses transmitted and received by co-ldcagsceivers are coherently integrated and

the other pulses are combined non-coherently. It is shoa#ttie hybrid MIMO radar achieves significant
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tracking performance improvement when compared to thegghagay radar, by using the extra Doppler

information obtained through coherent pulse integration.

Key words Spatially-distributed MIMO radar, maximum likelihood esttion, localization, tracking,

particle filter, Kalman filter.

. INTRODUCTION

Recent years have witnessed significant advances in muiitiplé multiple-output (MIMO) wireless
communication systems, which provide diversity gain andree-of-freedom (or spatial multiplexing)
gain [1], [2] by employing multiple transmit and receive emhas and space-time modulation and coding
strategies. Similar ideas can be used in radar systems towapadar performance in various ways.
In general, a MIMO radar can be defined as a radar system witkipteutransmit waveforms that is
able to jointly process signals received at multiple reeegintennas. Elements of MIMO radar transmit
independent waveforms resulting in an omnidirectionalnbgattern or create diverse beam patterns by
controlling correlations among transmitted waveforms B]MIMO radar may be configured with its
antennas co-located [4] or widely distributed over an akal{ is shown in [6] that a radar network has
the potential to achieve an improvement in signal to noie (8NR) through coherent network sensing,
and an improvement in target discrimination due to the vayyiarget aspect. Wideband distributed
coherent aperture tests and demonstrations for next geregallistic Missile Defense radar have been
successfully carried out [7]. In cohere-on-receive mode,N& SNR gain is achieved over a single
aperture; in cohere-on-transmit modeNd SNR gain is achieved [7]. In [8], it is observed that MIMO
radar has more degrees of freedom than systems with a siagknit antenna. These additional degrees
of freedom support flexible time-energy management modeslgapl to improved angular resolution
[10], [11], and improve parameter identifiability [12]. Withidely-separated antennas, MIMO radar has
the ability to improve radar detection performance by eitiplg radar cross section (RCS) diversity [13],
detect and estimate slow moving targets by exploiting Deppktimates from multiple directions [14],
[15], and support accurate target location and velocityregton [16]-[19]. Some of the recent advances
in MIMO radar have been documented in [20].

One important problem for MIMO radar systems is to localind &rack targets in a certain surveillance
region. In [16], the potential of MIMO radar systems to laxatsingle point scatterer is explored. It has
been shown that a coherent MIMO radar system with widely sp&¢IMO transmit and receive elements
can provide a very high performance in localizing the scattevith an accuracy largely determined by the

wavelength of the signal instead of the signal bandwidthclwidetermines the range estimation accuracy
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in a non-coherent radar system [21]. The coherent MIMO radquires coherent signal receptions at
a particular receive element, even for signals that are naotsimitted by this receiving element. Since
the transmitter/receiver elements are widely distribusgda particular receiver it is difficult to maintain
coherent signal waveforms of all the transmitters. Furttiex,reflected signal from a fading target may
have an unknown phase shift, which in many cases is difficukgiimate. Considering all of these
practical issues, non-coherent signal reception, whioksdwt require the signal phase information at
the receivers, is an attractive alternative. In this paperfocus on localization and tracking of a target
using non-coherent MIMO radar. As demonstrated later, dmecoherent MIMO radar with widely spaced
transmit and receive elements can provide localizationteuking accuracies that are significantly higher
than that of a monostatic phased array radar with high rangeaaimuth resolutions. Further, a hybrid
MIMO radar is presented, which achieves high Doppler rdsmuby coherently integrating only pulse
trains transmitted and received by the co-located tramsiziln the hybrid MIMO radar, the pulse trains
transmitted and received by non co-located transmittegiver pairs are combined non-coherently. In the
proposed non-coherent MIMO radar system, the signalsvwedeat distributed receivers are processed
jointly and the matched filter outputs are directly used fogeatracking in a track-before-detect (TBD)
framework. To the best of our knowledge, our work repres#msfirst publication on TBD in MIMO
radar.

The paper is organized as follows. In Section Il, the systemehfm a non-coherent MIMO radar
is introduced. In Section lll, a maximum likelihood (ML) lotah and velocity estimation procedure
is provided and its corresponding CRLB matrix is derived.cAis Section lll, simple Gaussian pulse
waveforms with short duration are used for the MIMO radarlitam very high localization performance,
even when the corresponding matched filter ignores Doppfectednd matches to zero Doppler shift,
implying significantly reduced matched filter complexity.drective signal processing and target tracking
in a non-coherent MIMO radar system are discussed in Sectiohere, we show that for a system
with high SNR and a relatively large number of transmit/reeailements, the Kalman filter (KF) delivers
an optimal or near-optimal tracking performance; for a eystwith a small number of elements and a
low-SNR value, the particle filter (PF) is a good choice, whichsdoet require a linear and Gaussian
parametric model for the location estimates. The interadtietween the tracker and the matched filters
and the location estimator has been investigated. It is shinat the feedback from the tracker to the
matched filter and the location estimator could significandigiuce the cost and resources required by
the latter operations. The non-coherent and hybrid MIMOesyistare compared to a phased array radar

in terms of the tracking performance. Finally, the work is susmized in Section V.
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II. SYSTEM MODEL

In this paper, we investigate the localization and trackpugential of non-coherent MIMO radar
with widely spaced transmit and receive elements. For $aitygl we consider a single target in a two-
dimensional space, with coordinatés, y) and velocity (v,, v,). The target reflects all impinging
electromagnetic (EM) waves isotropically. Suppose thatetteee M transmit elements and/ receive
elements in the MIMO radar system. Denote the coordinatehefth transmit element a&cy, i),
wherek = 1,---, M, and the coordinates of tHéh receive element as;, y;), wherel =1,---, N. As
illustrated in Fig. 1, the time delay of the received signathet /th receiver due to thé&th transmitter

may be written as
dp + d;
&

(1)

Tkl =

where

[I>

d, V(@ —2)2 + (y — yi)?
d 2 V(@—2)?+ (y—u)? 2)

and c is the speed of the light. For nonmaneuvering targets, thepl@o shift of the received signal at

the lth receiver due to théth transmitter is

g = e [val@n =) Tyl ) | vso @) + oy y)] @)

o dp. d;
where f. is the carrier frequency.

Y

k-th
transmitter

Target

e ¥

receiver

Fig. 1. A signal propagation path in a MIMO radar system.

Assume that the signal transmitted by th¢h transmit element is

su(t) = \/§Re{ Ekék(t)eﬂ”f"t} (4)
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where Ré€-} denotes the real part operation,(t) is the complex envelope of the pulse transmitted by

the kth transmit element. Let the complex envelope be normalizett that

/ T a0)dt = 1 (5)

—00

As a result, the energy of the transmitted sigaglt) is Ej.

Assuming that the number of scatterers which make up thetté&sdarge and none of them dominates,
the complex envelope of the reflected signal received at-thereceive element could be modeled as a
time-delayed and frequency shifted versionsgft) multiplied by a complex Gaussian random variable
(RV) ag;, and

am ~ CN(0,20%)

where 20, denotes the variance of the complex Gaussian RV. Note tatahiance ofa,; reflects
the cumulative effects of the antenna gain and large-scale Ipss, which are deterministi@;, a RV,
models the fluctuation of the radar cross-section of the taFgether, we assume that the received signal

is corrupted by an additive complex white Gaussian randomcg®sn; (t)
ni(t) = V2Re{iu(t)e’*™'} (6)
where for simplicity and clarity of presentation, we assuimeg 7;(¢) is white

ny(t) ~ CN (0, No)

and

Eliu(t)i} ()] = Nod(t - u). ()

We assume thaiy;s and then;(t)s are mutually independeniy;s are independent across different
paths, indexed by thék, 1) pairs, andn,;(t)s are independent across different receive elements.
In summary, the received target signal return atithereceive element can be written as
M
ri(t) = ﬁRe{Z Erap st — Tkl)ejzﬂ(fﬁf“)(t*m) + ﬁl(t)ejzﬂfct} (8)

k=1
where T, is the time delay of the received signal at thie receiver due to théth transmitter, which

has been defined in (1), anf; is the Doppler shift corresponding to the, (/)th path, which has been

defined in (3). In the baseband, we can write the complex epegedd the received signal as
M

f(t) = >V Brlndp(t — my)e? > ite AU T gy (1)
k=1
M
= > VERaud(t — 7)™ 1 iy () (9)
k=1
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Note thate—727(f-+fr)™ has been absorbed n;, which is a circularly symmetric Gaussian RV. Transmit
elements transmit orthogonal waveforms, which approxétganaintain orthogonality even for different
mutual delays and different Doppler shifts, namely

/ 5.3 (t—T)e 9T tat =0 Vk#I, f, andr (10)

—0
This implies that a receive element can separate the sigaalsniitted from different transmit elements,
by using correlation receivers (or matched filters) that aaéchred to different waveforms. Even though the
orthogonal waveform assumption is infeasible in practgyatems, we assume that the cross-correlation
of any two different waveforms is negligible while obtaigirtlosed-form mathematical results. The
degradation of localization and tracking performance duendn-negligible cross-correlation between
waveforms and its mitigation could be investigated in theife. The complex envelopes of the received

baseband signals can be represented i & 1 vector form#(t) = [F1(t),---,7n(t)]”.

Il. M AXIMUM LIKELIHOOD ESTIMATION OF TARGET LOCATION AND VELOCITY
A. Theoretical Derivations

Once the received signal vectd(t) is available to the MIMO system, the target location and eiyo
can be estimated through the maximum likelihood estimawir). Let us denotex = [z y v, v,]T.
Sincer(t) is a collection of time-continuous random signal wavefagrinis desirable to reduce it to a set
of random variables. A classical solution to the problemdetection and estimation of signal waveform
in the presence of noise, is to represgiit), a Gaussian random process, in terms of a series expansion
[22]. The MLE of the target state, which consists of its location and velocity, based on theffa@ents
of the series expansion has been derived and provided irotlosving theorem.

Theorem 1: The MLE of x based or¥(t) is

Pl TR (X
ar max 11
g ;; i Wl (11)
where
i (x) £ / P ()35 (t — T (x))e 72 fu Xt gy (12)
and
pr = 204 Er/No (13)

is the SNR for thek, ith path.
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Proof: The series expansion of thig(¢t) can be obtained using techniques presented in Chapter 2f [2

Given a complete orthonormal sgb; (t), ¢2(t),---}, 7i(t) is expanded as follows

K
A(t) = lim > ragk(t) (14)
k=1
where
o 2 / F(t) o4 ()t (15)

is the coefficient corresponding to ttigh orthonormal basis function, and)* denotes the complex

conjugate operation. The convergence in (14) is in meanrsgense, namely
2

K
lim E ||7(t) — t = 16
A 7 (t) kzlrkl¢k( ) 0 (16)
Now, it is natural to choose the firdt/ orthonormal basis functions as(t — rll)eﬁ”f”t, ey Sy (t—

Tan)ed?m it respectively. Therefore, using (9) for< k < M, (15) becomes,

o0

Tel — / ’Fl(t)g;z (t — Tkl(X))e_jQTrf“(x)tdt

—00

52 (t - Tkl(X))e_jQTffm(x)tdt

) M
= / [ \/Edilgi(t — Til)ejzﬂ-f”t + T~Ll<t)
> Li=1

= VEgag +np (17)

where
ng 2 / ()55 (t — mig)e 2ty (18)

Note that the third step of (17) follows from the assumptiémidhonormal waveforms made in (5) and
(10). With the same orthonormal waveform assumption ancgisemption tha#,;(¢) is a white complex

Gaussian random process with zero mean and variafycét is easy to show that
Elny] =0 (19)
and
Elngn}] = / / Ely(t)a; (w)]35(t — ma)e T2 et 5 (u — 1j7) P2t dtdu
= / / Nob(t — u)35(t — )3 (u — 7j0) @2 Fnu=Fut) gy
= /Nog;;(t — T35 (t — ) ed2m =Tkt gy

= Nod(k - j) (20)
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where(-) denotes a Dirac delta function in the second line of (20), afdttonecker delta function in
the last line. As a result,
ny ~ CN (0, No) (21)

andny; andnj; are independent for akt # j. This leads directly to
Tkl ™~ CN(O, 2EkU]%l + No) (22)

andry, andr; are independent for alt # ;.

The remaining coefficienty;s for £ > M can be generated by using some arbitrary orthonormal set
{drr+1(t), drr42(t),---} whose member functions are orthogonal{&q (t — 71;)ed2™ /1t ... 5y (t —
Tan) eIty Ny g, andVfy, - -+, fan. Hence, fork > M,

- / R en)de

—00

o [ M
— / [Z V Eia5i(t — )&t iy (t) | o (t)dt

% Li=1
= nw (23)

Using the orthonormal property dipary1(t), ¢ar+2(t),- -} and following a similar procedure as used
in (20), It is easy to show that,; (k > M) andn;; (1 < j < M) are jointly Gaussian and independent
and identically distributed (i.i.d.).

The approximation of the likelihood function @f,(¢) via series expansion is not very well defined
[22]. The likelihood function is proportional to the likebd ratio, up to a factor that is not a function
of x, assuming thaf{, represents the signal presence hypothesis as modeled, ian®}, represents
the noise-only hypothesis. Hence, one can maximize théHoed ratio, whose approximation through
series expansion does not have the convergence problet@adnef the likelihood function to find the
MLE of x.

Definer; = [ry o --+]7. With the fact thatry; = ny; when eitherHy is true, or H; is true and

k > M, and using (21) and (22), it is straightforward to derive likelihood ratio ofr;

p(ri|x, Hy)

P r X, Hl X

b B )
Hprkl|flf ,Hy) H p(rulH1)
iy P(re| Ho) onti P p(re|Ho)
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M
_ H Ny exp QO'ilEk |Tkl\ H p
i QU]%ZE]C + Ny NO(QUkZEk + Ng o M+1 )

, 2
M Dkl ’f )5 (t — Tr(x ))e—J27ka1(X)tdt’
B 1;[ +sz No(1+ pt)

(24)

Employing the assumption that(¢)s are independent across receive antennas (indexéd W can

express the likelihood function af(¢) as

N M Pkl ’f t)55(t — T (x))e _j%f“(x)tdtr
pF(B), ) o Elgl—i‘ml No(1 + pri) (25)
Given (25), it is straightforward to express the log-likelod function ofr(t) as:
M N pri ‘f )85 (t — T (x ))efﬂﬂf“(x)tdtr

Inp(F(t)|x, H) = kzﬂ; Nl T o) +ec (26)

wherec is a constant which is independentxf The MLE of x, or x(t(t)), is therefore
argmax Inp(E(t)|x, Hi) (27)
Q.E.D.

From (11) or equivalently (26), it is clear that the log-likelod of ¥(¢) is proportional to a weighted
sum of the magnitude squares of correlation-receiver (neatcfilter) outputs, where the correlation
operations are performed for all the different combinaiar 7;(t) and 5 (t — 7(x))e/2 /= X)! The
matched filters need a hypothesizeénd hencer;(x) and fi;(x) to generate the reference signals. The
MLE is performed by searching a grid of hypothesizexd Let us denote the dimension »fasn,, and
assume that along each dimension, thereNyerid points, implying a total of V,)" grid points. The
log-likelihood in (26) can be evaluated in either a centedi or a distributed manner. In the distributed
approach, for a particulat, each receiver maintains a bank af matched filters with time-delayed and
frequency-shifted versions of signals transmitted by ladl transmitters as their reference signals. The
received signal at each receiver is processed locally amaviighted sums of the magnitude squares of
the matched filter outputs are transmitted to a central nodalfdhe differentxs. Hence, each receiver
needs to perform\/(IN,)"= integrations. The central node collects all the local weidrgums to obtain
the global weighted sum, or the log-likelihood. In the cafited approach, the signa(t) collected at
the distributed receivers are transmitted to a centralgssiog node, where each component@ is
processed by a bank of correlation-filters (matched filtersg Bly-likelihood can be readily calculated

by taking a weighted sum of the mangnitudes squared of alirthiehed filter outputs. The central node
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10

needs to preformd/ N (N,)™= integrations. Note that during the MLE, no hard decisionsed#&ins) are
made and all the information if(t) has been preserved. The optimal weighted sum in the MLE resjuire
the knowledge of the SNR$;s) for all the different paths, except when all these SNRs d@eatical.

Now let us study the performance limit of the target locatiord velocity estimator in terms of the
CRLB. Previously, we have derived the CRLB for the target laragstimate using non-coherent MIMO
radar in [23]. The CRLB for the joint location and velocity esétion problem is derived and stated in
the following theorem, which is similar to the CRLB derived #dIMO radar in [24], [25].

Theorem 2: Assuming the existence of an unbiased estimat@(t)), the CRLB is given by

E{xE®) - x] kF0) - %"} = 37 (28)
in which J is the Fisher information matrix (FIM)
M N
;=YY
k=1 1=1
M N
9 2
= Zzlfkl Cul (29)
k=1 =1 Pkl
where
Cu = ApBrAy,
« € 0 0
AT 2 Kl €kl 7
| kL Kk Akl PR
[ 52
B, 2 | (30)
| & i
N 1 T—xr T —I
okl = C< dr + d, >,
s L(y—u y—wu
o= < s + 4 )
s Je [(yk —y)vy(zr — o) —va(ye —y)] | (v —y)[vy(z1 — 2) — vy — y)]]
N = — 3 + 3 ’
c dy, d;
s fe [(ﬂck —2)[valye —y) —vy(ze —2)] | (w0 —2)va(y — y) — vy(z — m)q
kl  — 3 + 3 )
c dy, d;
N, & Je (o —o  m-—x
kKl — c dk dl )
o fe(ye—Yy  y—vy
s fe 31
Okl c(kordl)’ (31)
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11

d, andd; have been defined in (2), and
B B 2
B = 4n” [/f2|5k(f)|2df_ (/f\Sk(f)l2df> ] (32)

is the mean-square bandwidth of the transmitted sigpél), with Si(f) being its Fourier transform.

2
22 [ et ([ dawpa) (33)

£ = Im { / tgk(t)aggf)dt} (34)

The inequality in (28) means th#[(x — x)(x — x)T] — J~! is a positive semidefinite matrix.

Finally,

and

Proof: See Appendix I.
Note thatﬂ,rﬁ approximately measures the frequency spread of the sigial, andy,f measures the
time spread of the signal [21]. For a real baseband sign@), it is easy to show that the second term

on the right hand side of (32) is zero. Also, according to ®atks theorem, one has

/ () Pdf = / S0Pt =1 (35)

Therefore, for a rea$;(¢), we have

2|1Q 2 é
4 — [ff () df] (36)

J1Sk(F)[2df
which is called the effective bandwidth of the sigrlt). It is quite clear from Theorem 2 that the
location and velocity estimation accuracy is determinddtlyp by the SNR, the signal bandwidth, and

the geometry of the target, and the transmit and receiveesitsn

Based on (30), it can be shown th@,;, a 4 x 4 matrix, has the following elements

Cu(1,1) = apfBi + 2ammue + i

Cu(1,2) = Cu(2,1) = er(mbBi + muse) + Er(ome + M)
Cu(1,3) = Cu(3,1) = Mu(mée + i)

Cu(l,4) = Cp(4,1) = orlamés + mari)

Cun(2,2) = €82+ 2epbmén + wiyi

Cu(2,3) = Cu(3,2) = Mu(embs + w17i)
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Cu(2,4) = Cu(4,2) = orlenés + kui)
Cu(3,3) = Nom
Cu(3,4) = Cp(4,3) = Aueni

Cu(4,4) = i (37)

B. Sdection of Waveforms

The optimal waveform design for target location and veloesyimation is not the focus of this paper
and could be investigated in our future work. Instead, irs théper we adopt simple Gaussian pulse
waveforms to demonstrate the potential of the MIMO radarairget localization and tracking. More
specifically, we assume that the complex envelope ofithetransmitted signal is a Gaussian pulse with

a frequency shiftk — (M +1)/2]f,

1 i 2 M+1
SK(t) = <7TT2> e~ 777 e2m (k=253 )f-qt, —o0 <t < oo (38)

whereT is a parameter that determines the effective duration optlise.

Note that as long ag, is large enoughf, > 3 + 2fmax), Where fmax = maxy (| fx|), the signals
transmitted by different elements can maintain orthoggnaince equivalently they are modulated to
different carrier frequencies with large enough gé#p Petween adjacent carrier frequencies.

Based on (30) and (78), and using definitions in (32), (33) &dJ, for the Gaussian pulse defined in
(38), it can be shown that the FIM for estimating and f;; based onvy,(¢) is

1

ML+ 0 T;

From (39), it is obvious thal’ determines the accuracy of the delay and Doppler shift estisnof a
particular Gaussian pulse waveform. A smalleleads to better performance in delay (position) estimate,
but poor performance in Doppler shift (velocity) estimatbe optimal waveform design problem, which
involves the trade-off between delay and Doppler shiftneation performances, is beyond the scope of
this paper. Since later in the tracking examples, we assuaighh uncertainty in target motion is small
and the target moves at a near-constant velocity, the ¥glestimate (based on a sequence of position
estimates) provided by the tracker will become very aceuoater time. Considering this, we choose a
small T so that more accurate delay and hence position estimateecahtained.

To be more concrete, we give an example of a MIMO radar sysiéma.target’'s coordinates afe 4]

km and its velocity is[60 300] m/s. In a3 x 3 MIMO system, we assume that each element consists of
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both a transmitter and a receiver, and the coordinates sketeements ar@8.5 17.4] km, [70.7 70.7]
km, and[17.4 98.5] km, respectively. The carrier frequencyfs= 1 GHz. A smallT is chosen, namely
T = 1.1254 x 10~7 s. For simplicity, we further assume that each path has time €NR value, meaning
that py; = p, for all the &, ) combinations. We define the SNR in dB H3log; p.

Due to the smalll’ chosen in the experiment, the Fisher information about Depghift, which is
proportional toy? = %2 is negligible. More specifically, a velocity &00 m/s along the line of sight
corresponds to a Doppler shift @000 Hz. In comparison, at SNR ¢f0dB, the CRLB on the standard
deviation (s.d.) of the Doppler shift estimation error8i® x 10° Hz, which implies that the Doppler
shift estimate is very coarse and contains little inforomtiUsing the parameters in this example, it can
be shown that the Fisher information matrix »fdefined in (29) and (37) is almost a block diagonal
matrix, sinceg, =0 andfy,g is very small. The entries in the upper I€fi 2 block of the CRLB matrix,
which corresponds to the position estimate covariancejrareh smaller than those in the lower right
2 x 2 block of the CRLB matrix, which corresponds to the velocityireate covariance.

Using Gaussian pulses as defined in (38), based on Theoremrhathbed filter output can be derived
as

Kl [Tkl
; ; Ng 1|+ llkl (40)

where

L _ATR o oA g2
Tkl £ Erape ar2 e Tem* At “+ ng; (41)

ATy = Ty — Ty (x)
Afw = i — fu(x)

are the mismatches between the true time delay and Dopgferasd those determined by the hypoth-
esizedx, andny; has been defined in (18). It is clear from (41) that the matcheat’'§ilsensitivities to
mismatches in time delay and Doppler shift are determined b8ince we have chosen a very smiall
(1.1254 x 10~"s), the matched filter can not discern an accurate matghy ifrom a relative coarse one.
For example,

o—T>m21000°

- =1-125x10""
(&

This implies that a perfect match in Doppled f; = 0) yields an almost identicaty; to that when
the mismatch is as large a800 Hz. Thus, in this paper, we can assume that the matched filteryalw
matches its frequency to zero Doppler shift, and yet ackialmost the same output as if it were matched

to the exact Doppler shift. Thus in the simulations throughibe paper, we will use this assumption
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and the Doppler shift (and hence velocity) estimates arenaoessary. Only the time delays are used to
estimate the position of the target. Note that by ignoringhed Doppler shifts fx;(x)), by replacing them
all with zeroes, the complexity of the matched filter is sigmifity reduced. Further, the corresponding
MLE estimator is significantly simplified, since only a positiestimate is needed, and the grid search
complexity is reduced froniN,)?* to (V).

By ignoring Doppler shift, similar to the derivation of (2&nd (27), the MLE of the target position

0 = [z y]” based on the received signgl) can be derived as

2
M i | [, 7 (037 — ia(0))dt
arg max Z Z AT (42)

The Fisher information matrix for position estimates can bevdd in a manner similar to that of

Theorem 2,

M N 2
202 32 o Q€
Jp = Z P B el kL€KL (43)

il

apier €y

Using the parameters in this example, it is easy to show.Igétis indistinguishable from the upper
left 2 x 2 block of J=!. This is because in (37} = 0, and~? is negligible compared t@?, so that
the Doppler shift contributes little to the estimation ofgiet positions. We will show later in the paper
that even the solution with this very simple waveform leanlsvéry accurate localization and tracking

performance.

C. Smulation Results

1) Estimation Performance versus SNR: In the following, we give an example to illustrate the perfor
mance of the ML location estimator with various SNR values. $erip and parameters of the MIMO
system have been described in Section IlI-B.

In order to find the global maximum during the ML estimationnfiodated in (42), a systematic grid
search is first employed to find an approximate global maximumtpwith a complexity proportional
to (N,)2. Any standard optimization algorithm could then be usedetfine the search for the global
maximum. The root mean square errors (RMSESs) of the ML locattimator are obtained throudio00
Monte-Carlo simulations and plotted in Fig. 2, in which thedtetical CRLB on the RMSE is plotted as
well. It is clear that in the log-log scale, the CRLB on the RMSEIlmost a linearly decreasing function

of SNR, especially for high SNR values. This is due to the fadt #hdnigh SNR, the Fisher information
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matrix is scaled by a factor that is approximately lineampjraccording to (29) or (43). It can also be
observed that the MIMO system achieves a very high locabzatccuracy, with a RMSE in the order
of meters for high SNR values. However, the RMSEs do not convergfee CRLBs, even for very high

SNR values. This is because for the estimation problem fotedla the paper, the ML estimates are

asymptotically efficient only in the classical sense, whenritbmber of transmit/receive elements is very

large, instead of in the high SNR sense [21].

10" s B
—~ PRy
£ Syl
>< \\\
£ 5K
W STl
2] Tk~
Elo°» Sosag i
I I I I — =
5 10 15 20 25 30
- * —RMSE
- —6—CRLB
10" s B
~— \\
£ SE
> T
£ Ny
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0 *o
S _—
r 10 F Tkl E
| | | ! ~ %
5 10 15 20 25 30
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Fig. 2. Root mean square errors (RMSESs) for the ML estimator usiBgke3 MIMO system.

To further check the efficiency of the ML estimate, we use thenatized estimation error squared
(NEES) [26], which is defined as
co=(0—8)"Je(0—0) (44)
where 8 is the estimate, andy is the FIM. It is well known that the ML estimate is asymptoliga
Gaussian with the mean equal to the true value of the parartetee estimated and variance given
by the CRLB. Assuming that the estimation error is approx@lyaGaussian, the NEES is Chi-square
distributed withng degrees of freedom, whergy = 2 is the dimension of the parameter being estimated,

namely@. For multiple Monte Carlo simulations, the average of NEESsisally used, which is defined

as

=

1 &
69:N7m‘1610 (45)

&
Il
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TABLE |

AVERAGE NEESBASED ON 1000 MONTE CARLO RUNS FOR THEML ESTIMATOR.

SNR(@B)| 5 | 10 | 15 | 20 | 25 | 30
NEES | 6.67| 2.94| 2.84 | 2.76 | 2.80 | 2.69

TABLE I

AVERAGE NEESBASED ON 1000 MONTE CARLO RUNS FOR THEML ESTIMATOR.

NEES | 3.08 | 2.43 | 247 | 2.19| 2.13 | 2.06

where N,, is the number of Monte Carlo simulationd/,,ég has a Chi-square density with,,ng
degrees of freedom. Based @000 Monte Carlo runs, our results are listed in Table I. The twiedi
99% confidence region for the average NEES 184, 2.17]. The results show that the average NEES
always falls outside the two-sidel®% confidence region, even with a SNR & dB. This implies that
the ML estimator is not asymptotically efficient in the high SNénhse.

2) Estimation Performance versus Number of Transmit/Receive Elements. Now let us study the perfor-
mance of the ML location estimator with various numbers afgmit/receive elements. In this subsection,
we use the same system parameters and setup as in Subsdefiah Bxcept that the SNR is fixed &
dB, and M transmit/receive elements are evenly deployed along amiéinca radius ofl00 km and its
origin at[0 0] km. Based on000 Monte-Carlo simulation runs, the RMSEs of the ML location rasttior
are obtained and plotted in Fig. 3. The theoretical CRLB on theSEN6 plotted in Fig. 3 as well. It is
clear that the MIMO system achieves a very high localizaicouracy, especially for a MIMO system
with a large M. It can also be observed, d¢ increases, the RMSEs quickly approach their theoretical
bounds, the CRLBs.

Based onl000 Monte Carlo runs, the NEES for the ML location estimates arevideal in Table II.
The results show that for & x M MIMO system, whenM is greater than or equal tg the average
NEES falls in the two-side@9% confidence region. This means that the ML estimator is asymoptiyt
efficient in the classical sense. That is, the errors “matc@’ctbvariance given by the CRLB for a MIMO

system with a large number of transmit/receive elements.
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Fig. 3. RMSEs for the ML estimator using al/ x M MIMO system. SNR%0 dB.

IV. INTERACTIVE SIGNAL PROCESSING ANDTARGET TRACKING

In the last section, we showed that a MIMO radar system caderehighly accurate target location
estimates. As a sequence of such location estimates adaldgait is natural to use them to infer the
time-varying target state, which typically consists ofgetrlocation and velocity. This process is also
called target tracking and there exist many filtering techegto solve this problem, including the Kalman
filter (KF) for a linear-Gaussian tracking problem, the extshéKalman filter (EKF) [26] and unscented
Kalman filter (UKF) [27] for nonlinear tracking problems, arttetparticle filter (PF) [28], [29] for the
general nonlinear non-Gaussian filtering problem. In thidiee, we will show that for a MIMO radar
system with a high SNR and a relatively large number of tratisegeive elements, the Kalman filter
is very well suited to track a target with linear dynamic mipaehile the particle filter, a Monte-Carlo
simulation based non-parametric algorithm, is very appadg for a MIMO radar system with a small
number of transmit/receive elements and a low SNR. Note thalhe proposed tracking approach, no
hard decisions are made at the matched-filter output. Insteadnatched filter outputs are directly used

for target tracking. Hence, the proposed tracking algorith a track-before-detect (TBD) approach.
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A. Target Dynamic Model

For simplicity and illustration purposes, in the trackingmples, we adopt a discrete-time linear and
Gaussian dynamic target model. We consider a single targeingy in a two-dimensional Cartesian

coordinate plane. Target dynamics is defined by the 4-diroeakistate vector
Xm = [2(t) y(8) 2(8) 90" ],_,.a

where m is the discrete time index, and is the system sampling intervat,,, and y,, denote the
coordinates of the target in the horizontal and the vertiligdctions with the corresponding velocities
&, andy.,, respectively, at timé = mA. The superscripf” denotes the transpose operation. Target

motion is defined by the following widely used white noise dedion model [26]

Xm = FXip—1 + Vi1 (47)
where _ -
1 0 A O
01 0 A
F— (48)
0O 0 1 0
00 0 1

is the state transition matrix, and,,_; is the process noise vector which is assumed to be white; zero

mean and Gaussian with the following covariance matrix

A3 A2
£ 0 4 o0
0o & o &
Q=q| ., ° ? (49)
5 0 A 0
0 4 o0 A

whereq denotes the power spectral density of the process noiséndiudtes the process noise intensity.
Note that (47) is a linear dynamic model. However, the mesament model, which is characterized by the
likelihood function provided in (25) witly,; being set to zero, may or may not be deemed as linear and
Gaussian, depending on whether the ML location estimatioor ean be deemed as additive/Gaussian

or not, as explored in Subsections IlI-C.1 and 1lI-C.2.
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B. Interactive Sgnal Processing and Target Tracking with a Kalman Filter

For target tracking, a sequence of measurements needs tadeeaver time. Here, we assume that every
A seconds, the transmit elements transmit orthogonal signidh Gaussian pulse complex envelopes
that have been defined in (38). The signal returns received titeateceive elements are then processed
jointly to obtain a ML estimate of the target location, ascdissed in Section Ill. Also in Section llI,
we have shown that for a MIMO system with a large number ofdmaitireceive elements, the ML
location estimation error can be approximately deemed aswas&an RV, with mean being the true
target location, and covariance provided by the CRLB matrixthis case, both target dynamic and
measurement models are linear and Gaussian, renderingaineaK filter a suitable filtering algorithm
to deal with this scenario. More specifically, the trackingasithm at each recursion includes two steps:
first the target location is estimated using the ML estimattroduced in Section Ill. The ML estimate
is then fed into the Kalman filter as a measurement to updat¢atiyet state estimate. As a result, the
measurement model is provided as

Ym = Hxp + Wi (50)

A~

wherey,, £ 0,, = [, 9.]" is the ML estimate of the target location,

1000
H= (51)
0100

and w,,, is a white Gaussian noise with covariance matrix

R(@m, ym) = Je_rl(xmv Ym) (52)

whereJg(z.,, ym ) is the FIM of the ML location estimator, which is a function bkttrue target location
[T ym]T . One problem encountered in evaluatiRgz,,,, v, ) is that[z,,, 1,7 is the part of the unknown
target state that itself needs to be estimated by the trgditier. There are several possible solutions to
this problem. One can use the estimated valug:gfy,,|” to replace its true value in (52). The estimated
value can be provided by the MLE of the target location as dised in Section lll, or the Kalman filter
state predictiork,,,,_; made based on measurements from tinte time m — 1. Further, one can first
estimateR(z,,, y) employing either one of the above methods, and then obt&irupldated Kalman
filter estimatex,,,,, which in turn leads to a more accurate estimateRo{namely, R(Z,, /1, Um|m)),
which is then plugged into the Kalman filter again to obtain fimal estimatex,,,,,. Note the third
method incurs extra complexity than the first two methods. eVigpecifically, it requires two Kalman

filter iterations at each step, the first one for a better eséirndR (x,,, v ), and the second one for the
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final target state estimate. In the tracking example provlskddw, simulation results show that there are
little differences in tracking performances when usindedént Rs estimated by different methods.
Next, we explore the interaction between target locatidimedion and target tracking. As discussed
earlier, the output of the ML location estimator serves asrtteasurement input for the tracker, based on
which the tracker can update its target state estimate. ®ottier hand, the Kalman filter at the— 1th
iteration can provide the state predicti&f,,,_; and the uncertainty associated with this prediction, in

the form of the covariance matrix

Pm\mfl = E{(f{mlmfl - Xm)(km\mfl - Xm)T} (53)

In other words, at timen — 1, the Kalman filter provides prior information regarding theget position at

time m. This prior information can be utilized to reduce the seajmdice for the ML location estimator,
the complexity of the optimization algorithm for MLE, and thamber of matched filters required for
the MLE. Here, we limit the search space of the MLE by a rectarwlé dircumscribes an ellipse, which
represents the confidence region of the predicted posititin avievel of confidence very close to but

not equal to100%. Mathematically, the uncertainty ellipse is representedhe following formula:

O = Ot )l 10— B ) <7 (54

whereX,, ,,_; is the sub-matrix of the covariance mati,,,,_; that corresponds to the prediction of
Om

Pojm-1(1,1) Pppm_1(1,2)
Pojm—1(2,1) Ppm-1(2,2)

and~ controls the volume of the ellipse. Since

2m|mfl = (55)

ém\mfl ~ N(em) 2m|mfl)u

(ém|m—1 - Om)Txil

m|m—1

by settingy = FX‘21(1 — «), in which F><_21(') denotes the inverse function of the cumulative distributio

(9m‘m_1 —0,,) follows a2 distribution with2 degrees of freedom. Therefore,

function (CDF) of ay3 distribution, (54) gives thé — o confidence region ofl,,,. For exampley = 9.21
leads to @9% confidence region. The rectangle which circumscribes thertaioty region, represented
by an ellipse as in (54), can be easily derived and providetiénfollowing Proposition

Proposition 1: The rectangle which circumscribes the ellipse determine¢bdy is
. [ b2y N [ b2y
Tim—1 — | 75 T < Tyt T 56
=1 bi1bag — b3, =1 bi1bog — b3, (56)
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and
. b11y . bi1y
Ymim—1 \/ bi1bag — b2, Y= Ymim-1 \/ b11bae — b2, ®7)
whereb;q, - - -, bys denote the elements dﬂ;ﬁmq’ namely
b1 b
Z;Jm_l _ 11 12 (58)
bia  bao

Proof: See Appendix II.

Since the target will be located in the rectangle region witbr@bability close to unity, the matched
filter does not have to match to a position outside this redtardence, the search space of the MLE,
and the number of positions to which the matched filter at thé®iireceiver needs to match, have
been significantly reduced. In summary, the interactiveaignocessing and target tracking MIMO radar
system is illustrated in Fig. 4. The signal processing fromt giovides target location information, which
is fed into the tracker as an input measurement. The tracksidas tracking information regarding the
position and velocity of the target and feeds back the ptediprior information to the signal processing

part, helping to reduce the complexity of the matched filter.

Target State

. Matched Filter at a . Estimate
MIMO Receive Central p| ML Location Kalman Filter »

Elements Processing Node Estimator

Predicted Location
Prediction Covariance

Fig. 4. Interactive signal processing and Kalman-filter basedetatigicking for MIMO radar systems.

For simplicity, the rectangle area that circumscribes thefidence region of the location prediction is
discretized uniformly into points in a 2-dimensional spaldee ML location estimator evaluates likelihood
at these points, by matching matched filter to the target ilmestrepresented by these points. In this
manner, an approximate global maximum point is found, isgfrom which a standard optimization
algorithm is then used to refine the search for the global maimpoint. The99% confidence regions
provided by the Kalman filter prediction have been illustdabe Fig. 5 for three consecutive Kalman
filter iterations. As we can see, the true target location haays been located in th@9% confidence

region of the Kalman filter prediction.
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Fig. 5. An illustration for99% confidence regions provided by Kalman filter prediction andasm matched filter

matching points.

C. Interactive Sgnal Processing and Target Tracking with a Particle Filter

As shown in Subsection IlI-C.2, when the number of elemenksrge and the SNR is relatively high,
the estimation error of the ML estimator can be charactdriag a Gaussian noise with zero-mean and
covariance matrix equal to the CRLB matrix. However, at low ShkRies and with a small number of
elements, this approximation is not accurate any more |l@strited in Subsections IlI-C.1 and 1I-C.2.
The distribution of the ML estimation error for a nonlineaoplem is in general unknown, and can only
be approximated through extensive simulations. The trackipproach discussed in Subsection IV-B is
not appropriate for a system with a small number of transed#ive elements at low SNR values, since
in its measurement model, there is severe mismatch betwaeemoiminal parametric linear and Gaussian
assumption described by (50) and (52) and the true nonlemednon-Gaussian estimation errors. In such
scenarios, a natural choice is to use the non-parametriceatigl Monte-Carlo techniques, also referred
to as particle filters (PF), to track the target. In the followimge provide a brief introduction to the PF
that we will use in the paper.

Bayesian Sequential Estimation and Particle Filtering

Bayesian sequential estimation, also known as Bayesiarirfdtes the most commonly used framework
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for tracking applications. In Bayesian filtering, the traakialgorithm recursively calculates the belief
in the statex,,, based on the observatiogsfrom time 1 to time m. In other words, we are interested
in finding the posterior distribution (or the filtering distiton) p(x,,|y1.m), whereyi.,, = {yi,i =
1,...,m}. At each timem, the minimum mean square error (MMSE) estimate of the targée st,,, ,,,
can be obtained by taking the expectationxgf with respect to its posterior distribution. In order
to recursively calculate the posterior distribution, westhé¢o have three distributions [28], namely the
initial state distributiorp(xo) at time0, the state transition mode(x,,|x,,—1) which represents the state
dynamics and the likelihood function(y,,|x,,) which depends on the observation model.
In particle filtering, the main idea is to find a discrete repnéston of the posterior distribution

» (Xm|y1:m) DYy using a set of particles with associated weights
NP
P Xy 1) = 3w by <xm - xﬁ,ﬂ}) (59)
j=1

where N, is the total number of particles andq(%') is the weight of particla%) at time m. In this
paper, we employ the sequential importance resampling (B#R)cle filtering algorithm [28] to solve
the nonlinear non-Gaussian Bayesian dynamic estimatioblgm. The advantage of the SIR patrticle
filter is that it is very easy to implement and computationafigre efficient compared to other variants
of particle filters. Here, we do not discuss the details of tlggréghm for brevity and refer interested
readers to [28], [29] for details.

In our problem, the initial set of particles is drawn from aoprdistribution 7 (xy) which is assumed
to represenp (Xo). The state-space distributign(x,,|x,,—1) that is needed for the prediction stage is
derived by using (47). Therefore, the only remaining disititm that has to be calculated for the sequential
estimation problem is the observation likelihood funct}mym|x§$;)). In this paper, the observation is a
collection of matched filter outputs, namety which has been defined in Section Ill. The observation
likelihood functionp(fm\x%)) has been derived in Section Il and provided by (25) with(x) being
set to zero.

Being a non-parametric tracking algorithm, the particlefitoes not need the first and second moments
of the measurements, namely the mean and the covariande ofatre measurement to work, as opposed
to the Kalman filter discussed in Subsection IV-B. All it reasiris the likelihood functiom(ym|x$ﬂ;)).
Furthermore, in the particle filter based tracking algorittingre is no need to go through the two-step
procedure (including location estimation and target stgtgate), which is required by the Kalman filter.
In the particle filter, at each iteration, the location estinia not explicitly needed. The target location

information provided by the received MIMO signal is incorated in the filtering process through the
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particle weighting process. These factors make the pafiitde very convenient and simple to implement.
As a result, the patrticle filter is ideal for tracking in a MIMQ@dar system with a small humber of
transmit/receive elements and with a low-SNR value, wheeelittear-Gaussian measurement model is
not valid any more. Once the particle filter updates its statenate using MIMO radar matched filter
outputs, it propagates its particles for the next time stapeld on (47). Analogous to the case of the
Kalman filter, the matched filter will only match the positiortsat are determined by the propagated
particles, so that the complexity and cost of the matched fidte significantly reduced. The diagram
for a MIMO tracking system using a particle filter is shown in .Fég which illustrates the interactions

between the signal processing part and the particle filter.

Updated Particle TaErg;.et S‘;ate
i stimate
MIMO Receive Matched Filter at a Weights
> »  Central B Particle Filter >
Elements .
Processing Node

y

Propagated Particles

Fig. 6. Interactive signal processing and particle-filter basedetatracking for MIMO radar systems.

In Fig. 7, the evolution of the particles in a particle filter i#/n over three consecutive iterations. As
can be seen, the particle “cloud” covers a region where theetarget is located. In the MIMO radar, the
matched filers will match to the locations determined by theppgated particles as we have discussed

earlier.

D. Smulation Results

In this subsection, we will give numerical examples for &rgyacking using a non-coherent MIMO
radar system.

1) 5 x 5 MIMO Radar at High SNR: As shown in Subsection 11I-C.2, when a MIMO system has a
large number of transmit/receive elements, the measurtemamely the ML location estimate, can be
deemed as linear and Gaussian, and the Kalman filter (KF) isptimal tracking algorithm. It is known
that the performance bound for any recursive nonlinear @aassian tracking filter is provided by the
posterior Crarar-Rao lower bound (PCRLB) [30]. The approach for recursivelueating the PCRLB

for the tracking problem formulated in this paper has beavided in Appendix IV in detail. It is also
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Fig. 7. An illustration for particle propagation over time.

known that for a linear Gaussian problem, the KF is efficiergamng that its RMSE can actually reach
the PCRLB, which in this case coincides with the state estimatariance matrix calculated by the KF.
Next, we give a tracking example to demonstrate the supéaaking performances provided by a
non-coherent MIMO radar. We usebax 5 non-coherent MIMO radar system, whose transmit/receive
elements are deployed as shown in Fig. 8. For the non-coheliém® radar system] = 1.1254 x 10~7
s, and SNR= 10 dB. At time 0, the initial target position and velocity are-(.89, —5.02) km and
(59.04, 334.83) m/s, respectively. The target is observed for a periodlof, and the observations are
obtained at a frequency dafHz (A = 1 s). In this case, even though the ML estimate is not efficient, as
demonstrated in Subsection 11I-C.2, our results show thatikth still provides very good performance.
Both the KF discussed in Subsection IV-B, and the PF describ&libsection IV-C are used to track
the target. For a fair comparison, we set both the number a€hiray grid points in the KF and the
number of the particles a2000, so that the matched filters in the two cases have roughly thee sa
complexity. Note that in the PF, there is no need for the mazation step, which is, however, required
in the KF case. This implies that the matched filter/KF comlamatesults in higher complexity, since it
needs to match to extra locations during the local optiranaprocess after the grid search is performed.

In some harsh scenarios with very low SNR and a small numbeleafents, the tracking filters may
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Fig. 8. Target trajectory and sensor configuration fos & 5 MIMO radar system.

not keep track of the target all the time. We define that a tradkdt when a filter’'s position estimation

error (e,,) is greater than a certain threshaigdnamely

€m £ \/(xm - jm|m)2 + (Ym — g)m|m)2 >T (60)

wherez,,,, andg,,,,, are the position estimates made at timebased on measurements.,, by the
filter, and the position estimation errot,() keeps increasing for two consecutive time steps. Here, we
setT = 21.21m.

The positional RMSE at the time step is defined as

N; 2
RMSE,(m) = [;} > (@ (i) = Eipon (] + [Ym () = G ()] (61)

i=1
Note thatN; is the total number of Monte Carlo runs in which the trackeint@ns the track of the

target from timem = 1 to m = 31, and: denotes the index for such Monte Carlo runs. The velocity
RMSE is defined in a similar manner.

MIMO Radar versus High Resolution Monostatic Radar

First, the5 x 5 non-coherent MIMO radar system is compared to a monostditisqu array radar
with high range and bearing resolutions. We assume thateipliased array radar, a square planar array

is used, which consists af identical isotropic antennas with identical inter-anterdistance of\/2,
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where ) is the wavelength corresponding to the carrier frequencsthEy for symmetry, we assume that
L = (2K + 1), where K is an integer, implying that the phased array has a sizé’—(gﬂ/\ X ZKT“/\.
Since the transmitter and receiver in a monostatic radar alecated, it is much easier to perform
coherent pulse-Doppler processing. It is assumed thatatihar transmits a coherent Gaussian pulse train
to improve the Doppler resolution and to enhance the SNR giraoherent integration of the pulse

train. The pulse train with unit-energy aid, Gaussian pulses is provided as follows.

1 Np—1 1 3 (t—iTR)>

5(t) = —— <> e T (62)
VAP ; T

whereT, is the Gaussian pulse duratidf; is the pulse repetition interval, which takes a value much

greater tharil}, (I'r >> T,). The FIM for estimating the time delay and Doppler shiftf based on

received signaf(¢) has been derived and provided in the following proposition.

Proposition 2: The FIM for estimatingr and f based on a Gaussian pulse train is

1
20} | 21 0
LTf = t P

petll o Ly TyNzon)

(63)

where p; is the total SNR after cohere pulse integration.

Proof: See Appendix Ill.
Comparing Proposition 2 to (39), it is clear that using a puiaén instead of a single pulse, extra
Fisher information %(Ng —1)) about the Doppler shift has been gained. Further, the abifogaring)
of the target can be estimated by processing the receivesegharray signal. As shown in [31], for
arrays of identical isotropic antennas in temporally anatigfly white noise, if the square planar array’s
center is chosen as the origin of the Cartesian coordinagtersy and the principal axes of inertia of
the array are chosen as theandy axes, then we have the FIM for estimating azimuth, time detay a
Doppler shift as
Q0

0 | P

L= (64)

where0 is a zero matrix with proper dimensiof) = Q.. = @y, iS the array configuration parameter

(moment-of-inertia parameter) [31],

L
Q:(Ja: £ Z(xk—j)Q
k=1
L
Qyy = Z(yk—ﬂ)2 (65)

T
I
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1 L

L
B 1
y = L;ykZO (66)

where(xy, yx) denote the coordinates of ttig¢h antenna in the coordinate system with the origin at the
center of the phased array. For the square planar array mtgth-antenna distance of/2, it is easy to

show that) = %@‘1). Plugging@ and (63) into (64), we finally have

D g 0
L= Pt 0 (pf,-fii)Tg 0 (67)
) T3
0 0 g |Tp+ NG -1

Now let us determine the value @}, for the phased array radar. For a fair comparison, it shoeldet
asT /M, whereT is the pulse duration in the MIMO system, so that in the phasealy radar, the signal
bandwidth is)M times that in the MIMO radar. However, in deriving (67), trermowband assumption [31],
[32] in array processing has to be satisfied, which means hiegbriopagation time across the the array is
much smaller than the reciprocal of the signal bandwidthecprivalently Ammax/(v/27,) << 1, where
Ammax is the maximum travel time between any two elements in thayafollowing this assumption
and considering the specific square planar array that we askuinrequires thafl}, >> VL/(2f.).
Therefore, we sef}, as T, = max(T/M,5v'L/f.). To make a fair comparison, we assume that the
signal power of the phased array radaVistimes that of each individual transmitter used in a MIMO
radar. Considering that the noise power at the receivé¥,ifz, where f is the signal bandwidth and
is proportional tol/7},, the SNR per pulse for phased array radaf\ig, /T times of the SNR for
the MIMO radar system. In addition, the SNR is improv&@ fold after the pulse train is integrated
coherently. In summary, the phased array radar has a total SNRN,MT,/T)p, wherep is the SNR
for the MIMO radar.

The monostatic radar's position is identical to that of th&dthransmitter/receiver element of the

MIMO radar. The following parameters are used in the phaseayamadar:. = 3025, f. = 1 GHz,
N, = 25. As a result,T}, = 2.75 x 10~ 7s, for p = 10 dB, p; = 34.85 dB, and the standard deviations
(s.d.s) in azimuth, range, and Doppler measurementsrare 2.57 x 10~ rad, o, = 0.75 m, and
oq = 380 Hz, respectively.

In the case of the monostatic phased array radar, we use ho#Kk and a PF to track the target.

The measurement consists of azimu#), fange ;) and Doppler shift f;), it can be shown that the
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Jacobian matrix in the EKF is

U = (vx[eds fs])T

7(ydéys) (ﬁ;ﬁxb) 0 O
2fe(Ys —y) vy (Ts—2) V2 (ys —y)] 2fe(@s—x)[Ve (Ys —y) —vy (T —)] 2fc(zs—2) 2fe(ys—y)
cd? cd? cds cd,s

where(z;, ys) denote the coordinates of the phased array radar. For tiseglaaray radar, the calculation
of the PCRLB on the tracking estimation MSE has been providecetaildin Appendix 1V-B.

The tracking accuracies of the MIMO radar and the monostatiar have been compared in Fig. 9.
In the MIMO radar system, both the KF and the PF have an in-tpgrkentage 0f00%. Even though
the PF has a slightly better tracking performance than theR¥SEs of both the KF and the PF are
quite close to the PCRLB. This means that the KF is near-optimah ¢hough the estimation error of
the MLE can not be deemed as a Gaussian RV as we have shown incBuisH-C.2. In this case,
with a much smaller computational complexity, the KF is atdrethoice than the PF.

It is clear that the MIMO radar exhibits significant improvarhén tracking accuracy. For example,
at the end of thed1-second interval, the MIMO radar's RMSE for position estiena 1.86 m, while
the monostatic radar's RMSE for position estimate.isl m. The inferior tracking performance of the
phased array radar is mainly due to its poor cross-rangeramculhe s.d. of azimuth estimation error
of o, = 2.57 x 10~* rad corresponds to a cross range accuracsaf m at a range ofl 00km.

2) 3 x 3 MIMO Radar at Low SNR: Here we give tracking examples to demonstrate the superior
tracking performances provided by a patrticle filter (PF) in alsMBMO radar system with low SNR. In
the following tracking example, we will use3ax 3 non-coherent MIMO radar system, whose transceivers
coincide with the first, third and fifth elements as shown in Fig\W& assume a very low SNR here,
namely SNR= 5 dB. In a total of500 Monte Carlo simulation runs, the PF can keep track of the tange
490 runs while the KF ind57 runs. Further, we compare the RMSEs of these two filters, whickleoan
in Fig. 10. Note that these RMSEs results are obtained by takiagages oveonly the simulation runs
where the filter keeps track of the target. It is clear that then®a much better tracking accuracy than
the KF, especially for the positional estimates. Also @dtin Fig. 10 is the PCRLB. As expected, even
the PF can not reach the PCRLB since this is a highly nonlineamaneGaussian tracking problem.

Next, let us examine more tracking examples. In Table I8,ititrack percentage is shown for the 3
MIMO system at various SNR values. Clearly, the PF can mairstdrack with a much higher probability
when the SNR is very low. For example, at SNRdB, the PF has in-track percentage8%, while
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Fig. 9. RMSEs of target state estimates fob a 5 non-coherent MIMO radar system and for a monostatic phased
array radar. For MIMO radar: SNR 10 dB, 7' = 1.125 x 10~ 7s; for phased array radar: total SNR = 34.85
dB, N, = 25, T, = 2.75 x 1077s, T = 4.67 x 107% s, L = 3025.

TABLE Il

IN-TRACK PERCENTAGE FOR VARIOUSSNR VALUES.

SNR@B)| 0| 1| 2|3 |4|5]|6
PF 41 | 64|86 |92| 96| 98| 99
KF 13|34 | 40| 72| 82| 91| 97

the KF can only achieve in-track percentaget6:. In addition to the in-track percentage, the RMSEs
are compared for the PF and the KF. In Table 1V, the positiodBE at the final time stepr = 31 is
listed for various SNR vaules. Again, we can see that the PF hmach smaller RMSE. In summary,
the PF outperforms the KF significantly both in terms of inkraercentage and RMSEs, especially in
the severe scenario with a very low SNR and a small number of Mik&nsmit/receive elements. Note
that even for a small MIMO radar system operating at very lonRShe PF can still achieve a higher
tracking performance than the monostatic radar with higioltgions in range and azimuth. This is clear

when Fig. 10 and Table IV are compared with Fig. 9.
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Fig. 10. RMSEs for target state estimates by & 3 MIMO radar system. SNR35 dB.

TABLE IV
POSITIONAL RMSE (N METERS) AT THE END OF TRACK FOR VARIOUSSNRVALUES. RMSEIS CALCULATED ONLY FOR

THOSE SITUATIONS WHERE THE TRACK IS MAINTAINED TILL THE FINAL TIME STEPK.

SNR (dB)| © 1 2 3 | 4 5 6
PF 9.29 | 896 | 7.02 | 5.79 | 5.77 | 4.80 | 4.01
KF 15.32 | 12.62| 9.52 | 8.81| 8.32 | 6.72 | 5.52

E. Coherent Integration of Pulses

So far, for a MIMO system, we have assumed that a single Gausgsilse has been used by each
transmitter, and the Doppler information has been igno&thilar to a monostatic radar, a coherent
pulse train can be used by the MIMO system to improve both tveracy of the Doppler estimate and
the SNR through coherent integration. In a distributed MIM@tem, if a signal is transmitted by a
transmitter that is not co-located with the receiver, it éydifficult to coherently integrate the pulses,
since the receiver needs to remember the initial phase &f palse in the pulse train. Therefore, in this
paper, a hybrid MIMO system is presented, where a receiMeerently integrates the pluses transmitted

by its co-located transmitter, and it processes the putsestitted by non-collocated transmitters non-
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coherently and ignores the Doppler information. As a resnlthe hybrid MIMO system, the FIM for

estimatingry; and fi; based onvy(t) is either

N2p? 7= 0
b = H—% X 2 Th a2 vk (69)
pPRE |0 T2 + ZE(NZ —1)
or
Nppd | 72 0
By, = ——L | Vk#I (70)

1+ pri 0 0

where p,; denotes the SNR per pulse for thé&h path. In the derivation of (70), we assume that each
pulse in the pulse train is processed independently thrawagihicoherent matched filter. Since the noise
is assumed to be white, the matched filter outputs for diffepeitses in the pulse train are independent
and we have av,, fold increase in FIM.

1) Pulse Train with Constraint on Total SNR: In order to separate the effect of the increased Doppler
resolution by coherent pulse integration on the trackingueacy from that of the increased SNR, we
next assume that in the pulse train used either by the hybiM®system or the phased array radar,
the total SNR is a constant, which is setl@sdB. This implies that the per pulse SNR is proportional
to 1/N,. The PCRLBs on the target state estimate RMSEs are plotted foryti@tMIMO system and
the phased array radar in Figs. 11 and 12, respectively. le@ that by using a pulse train, the tracking
accuracy can be improved for both the MIMO system and thegghasray radar, even the total SNR is
fixed. This is a result of the extra Fisher information on Dopplft gained due to the greatly improved
effective time duration of the signal as shown in (63) or (8®mparing Fig. 11 with Fig. 12, we can
see that the pulse train leads to a more pronounced improxtem@1IMO radar tracking performance
than that in the phased array radar. This is because that M@ s provides more spatial diversity
for signal paths with more transmitter-receiver pairs, #mimprovement in Doppler resolution has an
impact on all theM kk paths fork =1,---, M.

2) Pulse Train with Constraint on Per-Pulse SNR: Next, let us study the overall impact of the pulse
train on the tracking accuracy, including both the incrdaBeppler accuracy and the improved SNR.
For the non-coherent MIMO system, for all tii¢ combinationsBy;s are set as in (70), by ignoring
the Doppler information. For both non-coherent and hybridkd systems, the SNR per pulse is set as
pp1 = 3 dB, T,y = 107°s, Try = 1.70 x 10~*s. For the phased array raddi,, = 7,1/M, the SNR
per pulse isppe = MTy /T, = 1.995 (or 3 dB), andTre = Tr;. As we can see in Fig. 13, when

N, =1, all the three systems provide almost the same trackingopeance. AsN,, increases, all the
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Fig. 11. PCRLBs on target state estimate RMSEs for a hybrid MIMO rad@iae= 10~°s, Tg = 1.70 x 10~*s,
SNR= 10 dB.

three systems have more accurate tracking results. Theatmrent MIMO system has almost the same
tracking performance as that of the the phased array radarhijittrid MIMO system leads to significant
performance improvement in both position and velocityrneation compared to the non-coherent MIMO
radar and the phased array radar. This is again due to thehftcthe hybrid MIMO system gains much
more Doppler shift information than the phased array raolaintegrating pulses coherently using more

co-located transmitter-receiver pairs.

V. CONCLUSIONS

In this paper, we have proposed localization and trackinghauks for a non-coherent MIMO radar
system. The MLE for the target location and velocity has beaivet and its corresponding CRLB
matrix has been provided. Simple Gaussian pulse waveforris shiort duration were adopted for the
MIMO radar system to demonstrate MIMO radar’s potentialGowaate target localization. The Gaussian
pulse leads to very accurate localization performance; @een the matched filter ignores the Doppler
shift and matches to zero Doppler shift, which significaniiypdifies its implementation. Simulation
results were provided to support the theoretical derivatidBased on the localization method, we also

proposed two interactive signal processing and trackiggrahms. For a system with a large number of
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Fig. 12. PCRLBs on target state estimate RMSEs for a monostatic ghasay radarl” = 2 x 107 %s, T =
1.70 x 10~*s, total SNR= 10 dB.

transmit/receive elements and with a high SNR value, the Kalfiiter is a good choice, since the MLE
can be approximately modeled as a linear function of theetastate, which is corrupted by an additive
Gaussian noise. For a system with a small number of elemedtsdow SNR value, the particle filter
outperforms the KF significantly, both in terms of the RMSE amdrack percentage. In both methods,
the tracker provides predictive information regarding theyet location, so that the matched filter can
match to the most probable target locations, reducing tlsé aed improving the tracking performance.
Numerical results also demonstrated that the non-coh®BO radar and a hybrid MIMO radar system
provides significant performance improvement over a motiogthased array radar with high range and
azimuth resolutions. Future work could take into considenathe multi-target case. In addition, in this
paper, the results are derived based on the white noise dhdgonal waveform assumptions. In the
future, we will investigate the cases with colored noisesptiutter and waveforms with non-negligible

cross-correlations.
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APPENDIXI

PROOF OFTHEOREM 2

Let us first consider the Fisher information contained in sighgl), namely
I = E [V Inp(7a (1) %) Vi In () )] (71)

Using the chain rule, we have

Ol p(7Fri () | 7w, frr)

Vx lnp(’l:kl (t)|X) = [VXTkl fok:l] 8lnp(fjg)l|7kz frr)

kl

= Ayby (72)
where
Ay = [VxTi Vxfrl] (73)
On p(7ii ()| 7k frr)
OTh1

o
z
>

O 1n p(Frr ()| 7wty fr1)

kl
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andr; and fy; are the time delay and Doppler shift of the received signdhaith receiver due to the
kth transmitter, respectively. From their definitions in (14d8), it is clear that,; and fi; are functions
of 8. Now plugging (72) into (71), we have
Ci = ApE{bybl} Al (74)
= AuBLAL (75)
whereB), £ E {byb},}.

By taking the gradient with respect to= [z y v, v,]T on both sides of (1), we get

011 T—xy | Ty
ox dy. + d;
OTi Y=Yk Y=Y
- 1| &%+ 5%
Ve =| % | == % dl (76)

0Tk C 0
OV
OTwi

L Ov, 0

whered, and d; have been defined in (2). Similarly, by taking the gradient wébpect tox on both
sides of (3), we have

[ el @) vyl | G=yby@—o) v m—y)] ]
@ a7
(@x—2) e (Yr—y)—vy (@s—2)] | (21=2)[va(Yr—y) =0y (21 —2)]
é dy d; (77)
C xIZik x + %
ykd:y + %

Vxfu =

Combining (76) and (77), we obtaiA;; = [Vx7k Vxfii]-
Note thatB), = E[bklbfl] is the Fisher information matrix for estimating, and f;; based on received

signal 7 (t), which has been provided in [21], namely

o ?EE 513 &k
T No(E 4N | g 2
2 2
- &Bk (78)
L+ pri

where the identitiess, = 2Ey0%, and p; = 2Ey,0%,/No have been used,

82 = an? [ JEEORE ( / frék(f>|2>2] (79)

Note thatSy(f) is the Fourier transform ofy (). Further,

7 e / £2[3(0)Pdt - ( / t|§k<t>|2dt)2 (80)
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& =1Im {/ték(t)ai’}t(wdt} (81)

Substituting (78) in (75), we finally have

207 207
Ty = M ApBRAY = P
(1 + prt) (1+ pri)

Sincea; andny; are mutually independent and they are independent acréiesedt paths, the Fisher

Cu (82)

information is additive and

I D ST I o 83
=>> kl—zz(1+pkl) Kl (83)

=11=1 k=1 1=1
Q.E.D.

APPENDIXII

PrRoOOF OFPROPOSITION1

The boundary of the uncertainty ellipse specified in (54) camxXmressed as the following quadratic

form

~ bll b12 ~
(am - om\m—l)T (em - em\m—l) =7 (84)
b1z boo

Now let us denote: = x,, — Z,);—1 ANAV = Y — Gppm—1, WE have
b221)2 + 2bjouv + b11u2 —v=0 (85)

Solving the above equation, we get

Y —biou £ /(b5 — bi1ba2)u? + baoy

86
. (86)

To obtain real solutions for the above equation, the folimgvinequality should be satisfied
W< 2 (87)

= br1bae — b2,

1

Im—1

Since ¥ is positive definite, the inequality;1bo — bfz > 0 holds and has been used in the

derivation of (87). By symmetry, it is easy to show that
b
2 17
v —— 88
= by1ba — b2, (88)

Q.E.D.
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APPENDIXIII

PROOF OFPROPOSITIONZ2

Provided thatl’ >> T, it could be approximately assumed that there is no overdywden adjacent
Gaussian pulses since the tail of the Gaussian functionydegay fast. Based on this assumption, it is

easy to verify that/ |3(¢)|?> = 1. Further, we have

FHOIE 05 (t) P
2
= | |—= - t
3 /‘ OV ar ‘/s(t) Ly (89)
The first term in (89) is
N,—1 1 . 2
d5(t) |? 1 ’ 1 \7 —e=rp 4
o\ — - 272 —iT
/’ o | dt /NPT];1 Z —) e (t —iTR)| dt
=0 p
N,—1 1 .
1 P 1 2 (t—iTRp)?
= — T (t —iTR)%dt
N, T} ; / (ng> ‘ (t = iTR)
_ 1
o217
where the second step follows the non-overlapping Gaugsise assumption. Similarly, it can be shown
that the second term in (89) is
/ SPLLHOR (90)
ot B
Therefore, we have thd (1) elements ofB is
20" 20" 1
= 91
1+ pﬂ 14 p 2T (1)
The rest of the terms B can be derived in a similar manner. Q.E.D.

APPENDIX IV

POSTERIORCRAMER-RAO LOWER BOUNDS
A. PCRLB for Tracking in MIMO Radar

Let X,, (Y;.,,) be an estimator of the state vectgy, at timem, given all the available measurements
Y1i., Up to timem. Then, the mean squared error (MSE) matrix of the estimaticor etrtimem, P,

is bounded below by the posterior CrarRao lower bound (PCRLBg !
Pm =F {[)A(m (Y1:m) - Xm] [)A(m (ylzm) - Xm}T} 2 G;zl (92)

whereG,, is the FIM. In [30], Tichavsk et al. provide a recursive approach to calculate the seiglien
FIM G,.:
Gmi1 = DX — D2 (G, +D}}) ' D}? (93)
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For the linear target dynamic model (47) and nonlinear messent model explained in Section lll, the

recursion equations in [30] become

D! = E[-AX"InpXm+1|xm)] = F Q'F (94)
D} = E[-AX*InpXmi|xm)] = -F Q! (95)
D} = E[-A%, Inp (xmlxm)] = (D) (96)
D} = E[-Al Inp (Xmnrlxm)]

+ B [-AT p (Yo Xme1)]

~ QD2 (@7)

The operatorA in (94)-(97) is defined as the second-order derivative A@’dz wvg. It is important
to note that all the above expectations (94)-(97) are takidmraspect to the joint probability distribution

D (XO:m—i-h Y1:m+1)-

The initial FIM G can be calculated from thee priori probability density function (PDF) (xg)
Go=E{-APInp(xo)}. (98)

Based on the fact that,,, x,,41 andy,,,,; form a Markov chain, the joint PDF for the expectation

can be rewritten as follows

p (XO:m—Ha y1:m+1) =P (XO:m7 yl:m) p (Xm+1|xm)p (ym+1 ‘Xm—&-l) . (99)

Using this property along with the target dynamic and mearsent models described in Section 1V, it

is straightforward to derivd’>*" as

D" = =B s o o) AR D (Vr [Xmg1)]
= B )pemfxn) A Xmi1)] (100)
where
Astppn) = | T00em1) 0 (101)
0 0

where Jy has been provided in (43), ar@lis a 2 x 2 zero matrix. The inner integrations in (100)
can be approximately evaluated by converting them into satioms using Monte Carlo integration

methodology. In order to do this, we first generate a set of mmﬁﬂl ~ P (Xm+1|Xm) With identical
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weights wfﬁL = N];I, wherej = 1,..., M. Then, the above expectations can be approximated as
follows: N
1 ;
Ep(x i1 [%m) [A(Xm+1)] ~ ﬁp ZA(XinJrl) (102)
j=1

The final expectation with respect tox,,) in (100) can be obtained by averaging the above approx-

imations over a number of Monte Carlo trials, i.e., over a hamof sample tracks.

B. PCRLB for Tracking in Phased Array Radar

For target tracking in phased array radar, the calculatiahe@PCRLB can be carried out in a similar
manner as described in Appendix IV-A, and one only needs ptace A(x;,+1) in (101) with the
following

A(xmi1) = UT (50 11) LU (%041) (103)

whereLL and U have been define in (67) and (68) respectively.
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