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ABSTRACT

TARGET LOCALIZATION IN PASSIVE AND ACTIVE SYSTEMS:
PERFORMANCE BOUNDS

by
Vlad Mihai Chiriac

The main goal of this dissertation is to improve the understanding and to develop ways

to predict the performance of localization techniques as a function of signal-to-noise

ratio (SNR) and of system parameters. To this end, lower bounds on the maximum

likelihood estimator (MLE) performance are studied. The Cramer-Rao lower bound

(CRLB) for coherent passive localization of a near-field source is derived. It is shown

through the Cramer-Rao bound that, the coherent localization systems can provide

high accuracies in localization, to the order of carrier frequency of the observed signal.

High accuracies come to a price of having a highly multimodal estimation metric

which can lead to sidelobes competing with the mainlobe and engendering ambiguity

in the selection of the correct peak. The effect of the sidelobes over the estimator

performance at different SNR levels is analyzed and predicted with the use of Ziv-

Zakai lower bound (ZZB). Through simulations it is shown that ZZB is tight to the

MLEs performance over the whole SNR range. Moreover, the ZZB is a convenient

tool to assess the coherent localization performance as a function of various system

parameters.

The ZZB was also used to derive a lower bound on the MSE of estimating the

range and the range rate of a target in active systems. From the expression of the

derived lower bound it was noted that, the ZZB is determined by SNR and by the

ambiguity function (AF). Thus, the ZZB can serve as an alternative to the ambiguity

function (AF) as a tool for radar design. Furthermore, the derivation is extended

to the problem of estimating target’s location and velocity in a distributed multiple

input multiple output (MIMO) radar system. The derived bound is determined by



SNR, by the product between the number of transmitting antennas and the number

of receiving antennas from the radar system, and by all the ambiguity functions and

the cross-ambiguity functions corresponding to all pairs transmitter-target-receiver.

Similar to the coherent localization, the ZZB can be applied to study the performance

of the estimator as a function of different system parameters. Comparison between

the ZZB and the MSE of the MLE obtained through simulations demonstrate that

the bound is tight in all SNR regions.
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CHAPTER 1

INTRODUCTION

Localization is, and will be, an active area full of new applications, each characterized

by its own set of requirements. The quest for new localization applications arise in

many fields of interest, and is driven by the aspiration of obtaining higher localization

accuracies. Thus, it is important to evaluate and to analyze the performance of

developed systems. To evaluate the performance of estimating systems one can

resort to lower bounds on the minimum mean square error (MSE). Lower bounds

not only can serve as a benchmark for the system performance, but can also be used

to assess performance as a function of various system parameters. This thesis focuses

on deriving lower bounds on target localization in passive and active systems.

To position an emitting target, passive localization systems process the noisy

observations collected by sensors. The noisy observations are attenuated and delayed

versions of the emitted signal. In the literature, based on the information used

(attenuation or delay), several classes of localization techniques were defined: received

signal strength indicator (RSSI) [1–4], time of arrival (TOA) [5–7], time difference of

arrival (TDOA) [8–10], angle of arrival (AOA) [11–14].

RSSI technology is based on the property that, the strength of an

electromagnetic wave decays at a rate that is inversely proportional to the range

from the source to the sensor, when the propagation takes place in a free space

channel [15]. Because in most of the practical applications the propagation doesn’t

take place in free space channel and the mathematical model for other channels has

imperfect characterization, the RSSI technology provides raw location estimates [16].

One of the most accurate techniques for passive localization is the TOA, as

noted in [16]. In principle, the TOA technique locates the target by measuring the

1



2

time-of-flight (TOF) (i.e., the time between transmission and reception) at three

or more sensors, and performing trilateration. The reception time is estimated by

filtering the noisy observations with a filter matched to the transmitted signal, or

by correlating the noisy observations with the transmitting signal. Thus, the system

needs to know the transmission time and the transmitted signal in order to perform

localization. Moreover, accurate results are obtained if the sensors are synchronized

in time with the target.

The TDOA technique overcomes some of the requirements of TOA by

measuring the difference of TOF between pairs of sensors. TDOAs are estimated

by performing cross-correlations between signals received at two different sensors.

TDOA based localization can be accomplished either by formulating a joint statistic

that incorporates all TDOA observations or by performing ranging between pairs of

sensors and subsequently, solving a set of nonlinear equations to estimate the source

location.

The principle of AOA is based on measuring the direction from which was

transmitted the signal at two or more sensors and performing the intersection of

the measured directions. In order to estimate the direction, localization systems

based on AOA require directional antennas, such as an adaptive phased array of

two or more antenna elements, at each sensor. The direction is obtained from the

phase difference between the signals collected by the antenna elements. AOA provide

accurate locations if the sensors are synchronized in time, and for each directional

antenna, the antenna elements are synchronized in phase.

The TOA, and TDOA are non-coherent processing techniques in the sense that

they exploit the envelope, but not the phase, of signals observed at the sensors. On

the other hand, the AOA exploits the phases only between the signals observed at

one sensor. The coherency is lost when processing the signals from all the sensors. In

a recent work by Lehmann et al. [17], on localization employing active sensors (i.e.,
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sensor that transmit probing signals, such as in radar), a technique which exploits

the phase information among pairs of sensors was proposed. Because the technique

exploits the coherency between all the received signals, it was referred as coherent

localization. Coherent techniques have been shown to offer great improvements in

accuracy, particularly at high signal to noise ratio (SNR) [17]. This is due to the

fact that the accuracy in coherent localization, as expressed through the Cramer-

Rao bound, is proportional to the carrier frequency of the observed signal, whereas

for non-coherent localization, the accuracy is proportional to the bandwidth of the

observed signal.

In spite of providing high accuracies, the coherent localization is a nonlinear

problem, for which the estimation metric is often multimodal. For a noisy-free

environment, the estimation metric has a mainlobe corresponding to the true value

of the estimate and sidelobes corresponding to highly probable, erroneous estimates.

The synergy between sidelobes and noise in causing estimation errors leads to distinct

regions of operation of the nonlinear estimator, that correspond to distinct ranges

of signal-to-noise ratio (SNR). For high SNR, the estimated parameter is affected

by small noise errors that cannot cast the estimate outside the main lobe of the

estimation metric. This region is the asymptotic region, and it is characterized by

small estimation errors. As the SNR decreases, the errors become global and spread

beyond the local vicinity of the true value of the estimated parameter. Below a

certain value of SNR, the global errors dominate the estimation performance leading

to a drastic increase in the mean square error (MSE). In this region, sidelobes

compete with the mainlobe, engendering ambiguity in the selection of the correct

peak. This region is the ambiguity region. At low SNR, the behavior of the estimator

is completely dominated by noise effects. In this regime, no useful information can

be obtained about the estimated parameter, and estimation errors are bound only by

the a priori information about the limits on the parameter values. This behavior of
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the MSE is known in the literature as threshold phenomena, and it is exhibited by

other estimation problems like, delay estimation [18–24], bearing estimation [25–28].

To evaluate such the complex behavior of estimators, one can resort to lower

bounds on the minimum MSE. In the literature, one of the most popular lower bounds

is the Cramer-Rao lower bound (CRLB) [29]. The use of the CRLB is justified

by the fact that in many estimation problems, the maximum likelihood estimator

(MLE) approaches the CRLB arbitrarily close in the asymptotically high SNR region.

If the estimator operates below the threshold SNR1, the errors become global and

the estimator’s performance departs from CRLB. Thus, CRLB cannot predict the

estimator’s performance below the threshold SNR.

The Barankin bound (BB) has been developed to evaluate the estimation

performance and to predict the threshold SNR [30]. The BB have been applied

to a variety of estimation problems in [31–35], and it proves that it can take into

consideration the global errors because below some SNR, the BB departs from the

CRLB. In spite of predicting the estimation performance for range of SNRs, the BB

as well as the CRLB do not take into consideration any a priori information about

the estimated parameters. Moreover, both bounds apply only to unbiased estimates,

whereas the MLE becomes biased below the threshold SNR, [36,37].

A prediction of the system performance free from the bias assumption can be

obtained using the Ziv-Zakai lower bound (ZZB) [38]. The ZZB is a Bayesian bound

that assumes a random parameter model with known a priori distribution. A brief

review of the Bayesian lower bounds is presented in Chapter 2. Bell et al. extended

the ZZB from scalar to vector parameter estimation [39], and used it to develop a

lower bound on the MSE in estimating the 2-D bearing of a narrowband plane wave

[25]. The principle of ZZB for scalar parameter estimation and for vector parameter

1Threshold SNR represents the SNR where the estimator’s performance starts to be affected
by global errors.
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estimation is introduced in Chapter 2. In the literature, the ZZB was used as a lower

bound for different estimations problems [18–20,22, 23,25,40–45].

The ZZB for coherent location estimation in passive and active systems are

derived in Chapter 3 and 4, respectively. The derived ZZB relate the estimation mean

square error (MSE) to systems parameters like number of sensors and their location,

carrier frequency, bandwidth. From numerical calculations of the bounds, all three

operation regions of a nonlinear estimator can be distinguished: the noise-dominated

region, the ambiguity region, and the ambiguity free region. Moreover, numerical

examples demonstrate that the ZZB closely predict the performance of the MLE

across the full range of SNR values.

A problem related to the estimation of the location is the estimation of target’s

range and range rate. In Chapter 5 this problem is analyzed with the use of ZZB in

the context of radar systems. An important tool in radar analysis is the ambiguity

function (AF) [46], which for a noisy free environment, displays the inherent tradeoff

between the ability to estimate the range and range rate of a moving target. It is

shown in Chapter 5 that, the ZZB is determined by both the SNR and the AF, and

thus, ZZB provides a more complete analysis than AF. Further on this analysis is

extended to the problem of estimating target’s location and velocity.



CHAPTER 2

LOWER BOUNDS ON THE MINIMUM MEAN SQUARE ERROR

The aim of this chapter is to review briefly the Bayesian lower bounds and to introduce

the principle of Ziv-Zakai lower bound (ZZB).

In order to review lower bounds on the minimum mean square error, consider

the following general model for a random parameter estimation problem [29] (see

Figure 2.1):

• Parameter space - represents all the possible values taken by the vector

estimated parameter θ

• Observation space - represents all the possible values taken by the vector

observations r

• Probabilistic mapping from parameter space to observation space - represents

the probability law that governs the effect of θ on observations

• Estimation rule - represents the mapping of the observations into an estimate

of the parameter θ, θ̂(r)

The evaluation of an estimation rule can be done using the following three

performance measures:

Source
Parameter space

Nq – dimensional

Observation space

N-dimensional

q (r)

Nq – dimensional 

estimate

 

Mapping

 pr|q(r|q)

Estimation

rule

Figure 2.1 General parameter estimation model (from [29])
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• Bias Er,θ

[
θ̂(r)− θ

]
,

• Mean square error Er,θ

[(
θ̂(r)− θ

)2]
,

• Variance var
(
θ̂(r)

)
= Er,θ

[(
θ̂(r)− θ

)2]
− Er,θ

[
θ̂(r)− θ

]

where Er,θ[] represents the expectation with respect to observations r and to estimated

parameter θ. However, calculations of the performance measures for different

estimators is frequently difficult, if not impossible. To circumvent this disadvantage,

researchers have developed lower bounds on the MSE.

The estimators can be affected by two types of errors: local errors (the estimator’s

output is in the vicinity of the θ’s true value), and global errors (the estimator’s output

can be any value from the parameter space). In order that the lower bounds to be

able to capture the effect of both errors, the set of possible values of the parameters

to be estimated must be known beforehand. This leads to Bayesian type bounds.

The characteristic of these bounds is that, they assume a random parameter model

with known a priori distribution. In [40], the Bayesian bounds are classified in two

categories: ”Weiss-Weinstein family” bounds, and ”Ziv-Zakai family” bounds.

2.1 Weiss-Weinstein Bounds

The most known lower bound from the “Weiss-Weinstein family” bounds is the

Bayesian Cramer-Rao lower bound (BCRLB) [29, pp 72-73]. The BCRLB, as all the

other lower bounds from “Weiss-Weinstein family”, can be derived from a “covariance

inequality” which was derived by Weiss and Weinstein in [47]. Weiss and Weinstein

showed that for any function Ψ (r, θ) such that the expectation of Ψ (r, θ) conditioned

on r equal to zero (i.e., E [Ψ (r, θ) |r] = 0), the MSE is lower bounded by:

Φ = Eθ,r[ǫǫ
T ] = Er,θ[(θ̂(r)− θ)(θ̂(r)− θ)T ] ≥ VP−1VT (2.1)
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where

Vij = Er,θ [θiΨj (r, θ)] , i, j = 1, . . . , Nθ (2.2)

Pij = Er,θ [Ψi (r, θ)Ψj (r, θ)] , i, j = 1, . . . , Nθ (2.3)

and the matrix inequality means that Φ − VP−1VT is a nonnegative definite

matrix. Nθ represents the dimension of θ. Starting from (2.1), which is referred as

the covariance inequality, and choosing different functions Ψ (r, θ), one can obtain

different lower bounds. The BCRB is obtained by choosing:

Ψj (r, θ) =
∂ ln p (r, θ)

∂θj
j = 1, . . . , Nθ (2.4)

where p (r, θ) represents the joint probability distribution function (pdf) of r and θ.

Replacing (2.4) into (2.1), the MSE is lower bounded by:

Φ ≥ J−1
B (2.5)

where

JB , Er,θ

[
∂

∂θ
log p (r, θ)

(
∂

∂θ
log p (r, θ)

)T
]

= Er,θ

[
∂

∂θ
log p (r|θ)

(
∂

∂θ
log p (r|θ)

)T
]
+ Eθ

[
∂

∂θ
log p (θ)

(
∂

∂θ
log p (θ)

)T
]

(2.6)

is the Bayesian information matrix (BIM), and it is formed by two terms: the first

term is the contribution of the data i.e., the expectation of the Fisher information
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matrix (FIM) over θ, and the second term is the contribution of the a priori parameter

information term. Inequality 2.5 represents the BCRB.

The BCRB can be evaluated if two regularity conditions are fulfilled [29]: - the

joint pdf p(r, θ) is twice differentiable with respect to the estimated parameter, and

the derivatives are absolutely integrable. This conditions are not always fulfilled. For

example, for random variables uniformly distributed over a finite interval, the joint

pdf is not smooth at the endpoints of the parameter space, and the derivatives don’t

exist.

Choosing higher derivatives of the joint pdf p(r, θ) leads to two other lower

bounds the Bhattacharyya bound [29] and the Bobrovsky-Zakai bound [48], but

these bounds are subject to more strict regularity conditions [49]. In [50], Weiss

and Weinstein proposed a new lower bound free from regularity conditions, but in

order to provide good predictions of the maximum likelihood estimator it needs to be

optimized over some free variables [40].

2.2 Ziv-Zakai Bounds

In the Ziv-Zakai lower bound family are included the original Ziv-Zakai bound (ZZB),

[38], improvements of the original bound made by Chazan, Zakai, and Ziv, [51], Bellini

and Tartara, [52], and the extension of the ZZB to the vector parameters estimation

made by Bell, [39]. In the following the principle of ZZB is introduced first for scalar

parameter estimations and then for vector parameter estimations.

The scalar Ziv-Zakai lower bound (ZZB) is a Bayesian bound for an unknown

parameter θ given the a priori probablity density pθ(θ). We seek to lower bound the

MSE

E
[
|ǫ|2
]
= E

[∣∣∣θ̂ (r)− θ
∣∣∣
2
]

(2.7)
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where θ is the true value and θ̂ is the estimate. The MSE is computed as an average

of probabilities of error of a sequence of binary tests between pairs of values of the

estimated parameter, a notion stemming from the identity, [53],

E
[
|ǫ|2
]
=

1

2

∫ ∞

0

Pr

(
|ǫ| ≥ h

2

)
hdh (2.8)

and lower bounding Pr
(
|ǫ| ≥ h

2

)
. The estimation probability of error Pr

(
|ǫ| ≥ h

2

)
can

be viewed from a detection theory point of view by noting that Pr
(
|ǫ| ≥ h

2

)
is also

the probability of a binary hypothesis problem in which θ equals either some value

ϕ (H0 hypothesis) or the value ϕ + h (H1 hypothesis). Therefore, Pr
(
|ǫ| ≥ h

2

)
can

be lower bounded by the minimum probability of error obtained from the likelihood

ratio test corresponding to the two hypotheses H0 and H1, Pǫ (ϕ, ϕ+ h)

Pr

(
|ǫ| ≥ h

2

)
≥
∫ ∞

−∞
(pθ(ϕ) + pθ(ϕ+ h))Pǫ (ϕ, ϕ+ h) dϕ (2.9)

Substituting (2.9) in (2.8) yields the ZZB for the scalar case

E
[
|ǫ|2
]
≥ 1

2

∫ ∞

0

V

{∫ ∞

−∞
(pθ(ϕ) + pθ(ϕ+ h))Pǫ (ϕ, ϕ+ h) dϕ

}
hdh (2.10)

where V {·} is a so called valley-filling function. To obtain insight into the role of the

valley-filling function, one must note that in general Pr
(
|ǫ| ≥ h

2

)
is a nonincreasing

function of h, but the right hand side of (2.9) is not guaranteed to be monotonic. Thus,

a tighter lower bound of Pr
(
|ǫ| ≥ h

2

)
can be obtained by capping the computed lower

bound with a nonincreasing function of h. The capping operation is accomplished by

the valley-filling function. The valley-filling functions was proposed by Bellini and

Tartara in [52] to improve the ZZB.

In the localization problem, the unknown parameter is represented by a vector

θ. Hence, it is worth to present the extension of the ZZB to vector parameters that
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was derived in [39]. It lower bounds the quadratic form uTΦu for any vector u, where

Φ is the covariance matrix of the estimator. Lower bounding uTΦu offers a flexible

approach through which the total error (sum of the diagonal elements of Φ) or errors

of specific components of θ can be bounded. For example, for evaluation of the total

error, u is set to be a vector of ones; for estimating the error for a specific parameter,

the elements of u are set to zero, except the element associated with the parameter

of interest, which is set to one.

An identity similar to (2.8) can be written for the vector estimation case by

replacing |ǫ| with |uTǫ|,

uTΦu = E
[
|uTǫ|2

]
=

1

2

∫ ∞

0

Pr

(
|uTǫ| ≥ h

2

)
hdh. (2.11)

As discussed in the scalar case, the lower bound of Pr
(
|uTǫ| ≥ h

2

)
is obtained by

linking the estimation of θ with a binary hypothesis testing problem. The vector

parameter θ is equal to either the vector ϕ or to the vector ϕ+δ. The binary decision

associated with an estimate θ̂(r) is formulated as follows:

Decide H0: θ = ϕ if uT θ̂(r) ≤ uTϕ+
h

2

Decide H1: θ = ϕ+ δ if uT θ̂(r) ≥ uTϕ+
h

2
(2.12)

The separation between the two decision regions is provided by the line uTϕ + h/2.

The probability of error for this detection problem can be lower bounded with the

help of the minimum probability of error Pǫ (ϕ, ϕ+ δ) of a binary detection problem,

in which the transmitted vectors are either ϕ or ϕ+ δ. Such a minimum probability

of error is obtained from the likelihood ratio test [29]

l (r) , ln

[
f(r|ϕ)

f(r|ϕ+ δ)

] H0

R
H1

0 (2.13)



12

where f(r|ϕ) and f(r|ϕ+δ) represent the probability density functions of the vector

observations under the two hypotheses.

The ZZB for vector parameters is [39]

uTΦu ≥ 1

2

∫ ∞

0

h · V
{

max
δ:uT δ=h

∫ ∞

−∞
(pθ(ϕ) + pθ(ϕ+ δ))

· Pǫ(ϕ, ϕ+ δ)dϕ

}
· dh (2.14)

It is evident from the previous relation that the probability of error Pǫ(ϕ, ϕ+ δ)

play a key role in determining the ZZB.



CHAPTER 3

COHERENT LOCALIZATION IN PASSIVE SYSTEMS

3.1 Introduction

This chapter focuses on the passive localization of noncooperative sources, i.e., sources

for which the actual signal and the time and phase of the transmitted signal are

unknown to the sensors. A class of localization techniques for this case is based on

time difference of arrival (TDOA). TDOA based localization can be accomplished

either by formulating a joint statistic that incorporates all TDOA observations or

by performing ranging between pairs of sensors and subsequently, solving a set of

nonlinear equations to estimate the source location. TDOA based localization is

noncoherent in the sense that it exploits the envelope, but not the phase, of signals

observed at the sensors. Recent work on localization employing active sensors (i.e.,

sensor that transmit probing signals, such as in radar) has shown the potential

for significant gains when the localization processing exploits the phase information

among pairs of sensors [17]. Such techniques are refereed further on as coherent

localization. Coherent techniques have been shown to offer great improvements in

accuracy, particularly at high signal to noise ratio (SNR) [17]. This is due to the

fact that the accuracy in coherent localization, as expressed through the Cramer-

Rao bound, is proportional to the carrier frequency of the observed signal, whereas

for noncoherent localization, the accuracy is proportional to the bandwidth of the

observed signal. Accuracy also improves with the increase in the number of sensors

and the angular sector of their spread (relative to the source). However, large

separation between sensors yields, for a fixed number of sensors, high peak sidelobes

in the coherent localization metric [54]. The aim of this Chapter is how to find the

13
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global peak of the localization metric, and more important, to develop an analysis

based on lower bounds which alleviates the search for the global peak.

3.2 System Model

Consider a radiating source located at an unknown position θ = [xe, ye], where θ is

modeled as a continuous random variable with a known a priori probability density

function (pdf), assumed here to be the uniform distribution xe, ye ∼ U [−D, D]. This

description implies that the source is known to be located somewhere in a square

area of dimensions 2D × 2D. The signal emitted by the source has bandwidth B,

and it modulates a carrier frequency fc. The source is not cooperating with the

sensors, in the sense that the timing of the transmission and the transmitted signal

are unknown to the sensors. It is assumed, however, that the sensors are synchronized

in both time and phase. With coherent localization, the source location is estimated

from amplitude and phase measurements at the sensors. This approach is similar to

measurements of signals received across a phased array for bearing estimation. In

the bearing estimation problem, the source is in the far-field of the array. In the

source localization problem, the source is in the near-field of the two-dimensional

array formed by the sensors. In the near field, the phase and amplitude received at

each sensor depend on the source location (i.e., range and bearing), not only on the

bearing, as in the far field case. Since the transmission time is unknown, coherent

localization of the source is performed using phase measurements relative to one of

the sensors chosen as the reference sensor.

Source observations are collected by M sensors located at arbitrary coordinates

(xk, yk), k = 1, . . . ,M . The period of time T during which these observations are

collected is such that BT ≫ 1. A figure showing the setup is presented in Figure 3.1.

Localization of the source is based on noisy observations of the signals received

at the sensors and expressed as:
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Figure 3.1 The setup for coherent passive localization

rk(t) = aks(t− τk)e
−j2πfcτk + wk(t), k = 1, 2, . . . ,M

, 0 ≤ t ≤ T, (3.1)

where s and wk denote respectively, the transmitted signal, and additive noise at the

k-th sensor. The source and the noise waveforms are sample functions of uncorrelated,

zero-mean, stationary Gaussian random processes with spectral densities Ps and Pw,

respectively. The spectral densities are constant across the bandwidth. The amplitude

and the propagation delay of the signal received at sensor k relative to the reference

sensor are denoted ak and τk, respectively. Without loss of generality, the reference

sensor is indexed 1. The TDOA corresponding to sensor k is related to the source

and kth sensor coordinates by:

τk =

√
(xe − xk)2 + (ye − yk)2

c
−
√

(xe − x1)2 + (ye − y1)2

c
, (3.2)

where c is the signal propagation speed.
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To make use of properties of the Fourier transform, the measurements are

converted from the time domain to the frequency domain. The fl Fourier coefficient

of the observed signal at sensor k is given by:

Rk(fl) =
1√
T

∫ T

0

rk(t)e
−j2πfltdt

= akS(fl)e
−j2π(fl+fc)τk +Wk(fl), k = 1, 2, . . . ,M, (3.3)

where l = 1, . . . , N , N is the number of frequency samples, and S(fl) and Wk(fl) are

the Fourier coefficients at fl of s(t) and wk(t), respectively. For later use, we define

the vectors r = [r(f1), r(f2), . . . , r(fN)]
T , where r(fl) = [R1(fl), R2(fl), . . . , RM(fl)]

T .

For BT ≫ 1, any pair of Fourier coefficients is uncorrelated [55]. Because rk(t) is a

Gaussian process and the Fourier transform is a linear operation, r has a conditional

multivariate Gaussian pdf,

p(r|θ) =
N∏

l=1

det[πK(fl)]
−1·

· exp(−rH(fl)K
−1(fl)r(fl)), (3.4)

where the covariance matrix of the Fourier coefficients at the sensors is given by

K(fl) = E[r(fl)r
H(fl)]

= Psγ(fl)γ
H(fl) + PwI, (3.5)

and

K−1 (fl) =
1

Pw

(
I −

Ps

Pw
γ(fl)γ

H(fl)

1 + Ps

Pw
γH(fl)γ(fl)

)
. (3.6)
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In this expression, Ps and Pw were defined previously, and the vector γ(fl) =

[1, a2e
−j2π(fc+fl)τ2 , . . . , aMe

−j2π(fc+fl)τM ]T represents the response across the sensors to

a radiated frequency component (fc + fl) . The matrix I is the identity matrix. The

superscripts “T” and “H” denote the transpose and conjugate transpose operations,

respectively.

The maximum likelihood estimate of the source location is given by the maximum

of the likelihood function

θ̂ML(r) = argmax
θ
p(r|θ) (3.7)

where the likelihood function equals the value of the pdf at the observations r. It can

be shown that for the model defined in (3.4) and (3.5), the MLE of θ is given by the

expression:

θ̂ML(r) = argmax
θ

N∑

l=1

|rH(fl)γ(fl)|2 =

= argmax
θ

M∑

k=1

M∑

i=1

akaie
j2πfc(τk−τi) ·

N∑

l=1

Rk(fl)R
∗
i (fl)e

j2πfl(τk−τi) (3.8)

The former expression reveals the highly nonlinear nature of the MLE. Moreover,

due to exploiting the phase difference information, i.e., the term ej2πfc(τk−τi), the

widths of the estimator’s peaks are on the order of a wavelength. Thus, for searching

areas of hundreds of wavelengths, the multimodal characteristic of MLE makes a

challenge to find the true peak of the likelihood function. In Section 3.3, the problem

of finding the maximum of the likelihood metric is solved using a hybrid deterministic

global optimization algorithm.

3.3 Optimization Algorithm to Find
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the Global Peak of the Localization Metric

The coherent localization problem can be formulated as an optimization problem of a

suitable likelihood function. Because the peak is very narrow (order of a wavelength),

a direct search based on a dense grid is impractical. A more manageable approach

to find the true peak is to start with a less dense grid, and perform a local search

from each grid point. It is well known in the literature that, the local optimization

methods have high convergence rates, i.e., they are efficient in terms of the number of

evaluations, [56]. Yet in order for the local optimization to find the true peak, a local

search must be done for each peak of the likelihood function. Thus, this approach is

also prohibitively complex computationally and timewise. An approach to circumvent

these difficulties is the application of advanced global optimization (GO) algorithms.

With stochastic GO algorithms, new trail points are generated randomly. Genetic

algorithms or simulated annealing algorithms fall in this category [57]. A serious

drawback of stochastic GO algorithms is that no formal proofs of convergence are

available, and hence multiple trials are required to provide (statistical) confidence

measures that the global optimum has been found [58, pp. 18]. The alternative

to stochastic GO are deterministic GO algorithms, in which new trial points are

generated based only on evaluations at former points. Branch and bound algorithms

belong to this family [57]. Deterministic GO algorithms scan the parameter space

in a systematic manner, and can be guaranteed to converge. Yet, convergence rates

(number of evaluations) needed to reach required accuracy could be quite slow if the

number of peaks is as high as in the coherent localization problem.

A solution to the convergent rate issue is to combine a deterministic GO

algorithm with a local search algorithm. In the next subsection it is proposed a

hybrid approach which combines DIRECT, a deterministic GO algorithm, and a

steepest descent local search. In a two-dimensional optimization problem, such as

the two-dimensional localization, DIRECT evaluates lower bounds of the function
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over increasingly smaller areas. The true peak is found as the search areas become

vanishingly small. The main idea of the proposed algorithm is to accelerate the

convergence rate by switching a local search anytime the scale of search interval

reaches the size of the carrier wavelength. This approach exploits the fact that the

width of the main peak and sidelobes is of the order of the carrier wavelength.

3.3.1 Hybrid DIRECT

DIRECT (DIviding RECTangles) was developed by Jones et. al. [59] and is a

modification of the Lipschitzian Optimization algorithm invented by Shubert [60].

DIRECT is a derivative free algorithm that finds the minimum of continuous function

for which the rate of change is bounded [59]. DIRECT functions primarily by

making exploratory moves across the parameter space by probing and subdividing

hyper-rectangles that most likely contain the lowest value of the objective function.

DIRECT algorithm starts by normalizing the parameter space to a n-dimensional

unit hyper-cube where n is the dimension of the parameter space, and by sampling

the objective function at the center of the unit hyper-cube. In the subsequent step,

a dividing strategy is performed to divide the unit hyper-cube as follows:

• sample the function at b ± αei, where b is the center of the unit hyper-cube,

α equals one-third of the side length of the hypercube, and ei is the ith unit

vector (i.e., a vector with a one in the ith position and zero elsewhere),

• calculate pi = min{f(b+ αei), f(b− αei)}

• partition along the direction with the lowest pi and the remaining field is

partitioned along the direction of the second lowest pi and so on until all the

hyper-cubes are partitioned.
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From this point onwards, the algorithm focuses on hyper-rectangles that most likely

contain the lowest value of the objective function, hyper-rectangles that are called

potentially optimal [59].

A hyper-rectangle j is said to be potentially optimal if there exists some rate of

change constant K > 0 such that:

f(bj)−Kδj ≤ f(bi)−Kδi, for any i = 1, . . . ,m

f(bj)−Kδj ≤ fmin − ǫ|fmin|,

where m denotes the number of hyper-rectangles, bi and δi denote the center and

the distance from the center to the vertices of the ith hyper-rectangle, fmin denotes

the lowest value of the function found by the algorithm til the current iteration, and

ǫ > 0 is a positive constant.

The algorithm, after identification of the potentially optimal hyper-rectangles,

continues by applying the dividing strategy to the identified hyper-rectangles, and

repeats the two steps, i.e., the identification and the partitioning, until the number

of iterations or of function evaluations is satisfied.

In Figure 3.2 are illustrated the first three iterations of DIRECT algorithm

applied for a two dimensional toy example. In the first iteration, the objective function

is sampled at the center of the normalized space. Next the algorithm identifies the

unit square as a potentially optimal rectangle and applies the dividing strategy.

In the Figure, the potentially optimal rectangles are marked with dotted pattern

background. Also the center of the rectangles obtained after division are labeled

with the value of the objective function at these points. Similarly, in the second

iteration, the algorithm identifies the rectangle with center labeled number 2 as a

potentially optimal rectangle, and applies the dividing strategy to it. In the third

iteration, the algorithm identifies the rectangles with centers labeled number 2 and
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Figure 3.2 The first three iterations of DIRECT algorithm
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2.5 as potentially optimal rectangles, and applies the dividing strategy to them. This

process is repeated until the stopping condition is satisfied.

Because DIRECT scans the parameter space in a semi-blind manner, i.e., it

doesn’t use characteristics of the objective function like gradient, its convergence

rates (number of evaluations) needed to reach a required accuracy could be quite

slow. A required accuracy is necessary for the coherent localization problem where

the sidelobes compete with the main lobe of the likelihood metric, [44]. To improve

the convergence rate a switch to a local search can be performed as soon as the

potentially optimal rectangles reach the size of the carrier wavelength. This approach

exploits that the width of the main peak and sidelobes for the coherent localization

problem is of the order of the carrier wavelength. The local search is performed

using a steepest descent approach that is discussed next. Starting from the center of

a potentially optimal rectangle that has a size smaller than the carrier wavelength,

the gradient of the objective function is estimated by computing new values at small

separations from the center, and finding the difference from the objective function at

the center point. These values allow the direction of steepest descent to be computed.

The function chooses a starting step length of 1/10 of a wavelength of the carrier

signal; this value is chosen partly for computational convenience, partly to ensure

that the initial step is substantial shorter than the 1/4 wavelength oscillation rate

which is the shortest-wavelength variation possible in the likelihood. The algorithm

then examines the objective function one step length away from the current search

point in the direction of steepest descent and compares it to the objective function

at the current search point. If the objective function one step away is smaller, then

the new location becomes the current search point, and the process repeats, including

the calculation of a new gradient to correct the direction of steepest descent.

If, in contrast, the objective function one step away is higher, then the step

length is too long for the geometry in the vicinity of the current point; the current
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point is not changed, and the gradient is not recalculated, but the step length is

divided in half. The iteration then returns to evaluating the objective function at

the prospective new point. The reason for this particular ordering of processes is to

keep the step length as long as possible for as much of the calculation as possible,

to avoid excessive iteration. As long as steps of a given size are not overshooting

the range of validity of the local gradient estimate, they are retained; only when the

local curvature becomes too variable is the step length shortened. Shortening the step

length also determines when the search terminates; when the step length is reduced

to a prescribed value, the steepest descent approach halts and declares the current

search point to be the terminal point of the search.

In the next subsection are presented numerical results based on the

implementation of H-DIRECT and DIRECT.

3.3.2 Implementation of the Optimization Algorithm

In this section, numerical examples are provided to illustrate the effectiveness of

DIRECT and H-DIRECT for the source localization problem. DIRECT and H-

DIRECT are tested for a setup with a source that emits an unknown signal with a 1

GHz carrier frequency and with a 200 kHz bandwidth. The emitted signal is collected

by 8 sensors located arbitrarily around the source. The position of the source is

unknown to the sensors, yet it is positioned at the coordinates [0.035, 0.055], and the

searching area is 10×10 meters around the source. This choice was done such that

the position is off the grid.

In Figure 3.3 are presented how DIRECT and H-DIRECT sampled the

parameter space in order to find the global optimum. Both algorithms were stopped

after the same number of function evaluations. Comparing the two figures one can

observe that H-DIRECT samples the searching area more dens than DIRECT. This

is because DIRECT spends more function evaluations in finding local optima than
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Figure 3.3 Searching area sampled by the two algorithms: DIRECT (left Figure)
and H-DIRECT (right Figure). For the same number of function evaluations, H-
DIRECT samples the searching area more dens than DIRECT.

H-DIRECT. A zoom around the position of the source, reveals the low convergence

rate of DIRECT compared with H-DIRECT, Figure 3.4.

In Figure 3.5, the contour of the likelihood function is plotted, contour that was

obtained using a very fine grid of 1 cm. The main lobe corresponding to the position

of the source and three highest sidelobes are encircled. Comparing Figure 3.5 to

Figure 3.3, one can observe that DIRECT and H-DIRECT can identify the main lobe

and the three sidelobes of the likelihood function. Thus, the two algorithms are not

stuck on some local optima.

Figure 3.6 shows the number of function evaluations required by DIRECT and

H-DIRECT to converge to the global optimum of the localization likelihood function

for the localization setup. H-DIRECT provides a reduction in the number of function

evaluations by a factor of 2 compared to DIRECT. Moreover, the proposed algorithm

compared to an exhaustive grid search performed for a grid space of 1 cm over the same

searching area, results in 2 orders of magnitude of savings in function evaluations.
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Figure 3.4 Zoom around source location of the searching areas sampled by the two
algorithms: DIRECT (left Figure) and H-DIRECT (right Figure). DIRECT spends
more function evaluations in finding local optima than H-DIRECT.

Figure 3.5 Contour of the likelihood function for the coherent localization problem.
The main lobe corresponding to the position of the source and three highest sidelobes
are encircled.
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Figure 3.6 Number of function evaluations for DIRECT and H-DIRECT for finding
the global optimum of the coherent localization problem

In order to predict the performance of MLE for different SNRs, Monte Carlo

simulations need to be run. However, this is time consuming even with H-DIRECT

algorithm. To alleviate this disadvantage, an analysis can be made based on a lower

bound.

3.4 Cramer-Rao Lower Bound for Coherent

Localization Estimation in Passive Systems

In the literature, one of the most popular bounds used to predict the performance

of the MLE is the Cramer Rao lower bound (CRLB), [29]. The justification of using

CRLB resides in that the MLE approaches the CRLB arbitrarily close for very long

observations.

The CRLB of parameter estimated θ is given by [29]

CCRLB (θ) = J−1 (θ) (3.9)
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where

J(θ) , Er|θ

[
∂

∂θ
log p (r|θ)

(
∂

∂θ
log p (r|θ)

)T
]

(3.10)

is the Fisher information matrix (FIM). p (r|θ) is the conditional pdf of r given θ

and it is defined in (3.4), Er|θ [·] stands for expectation with respect to p (r|θ). In

Appendix ??, the following CRLB for passive coherent localization is derived

CCRLB =
c2

8π2BTαf 2
c

(
1 + B2

12f2
c

) · g (3.11)

where

α =

(
Ps

Pw

M∑

k=1

a2k

)2

1 +

(
Ps

Pw

M∑

k=1

a2k

) (3.12)

Ps and Pw are the power spectral densities of the transmitted signal and of the noise,

T is the duration of observations, B is the bandwidth, fc is the carrier frequency, and

ak, k = 1, . . . ,M are the attenuations. The term g incorporates the target’s position

with respect to the positions of the sensors, term known in the literature as geometric

dilution of precision (GDOP) [61].

From (3.11) expression, it can be noted that for narrowband signals (i.e., B ≪

fc), the CRLB for estimating coherently the location coordinates [xe, ye] is inverse

proportionally with SNR (α), with carrier frequency (fc), and with the number of

samples (BT ). Coherent localizations can provide accuracies proportional to the

carrier frequency, due to the fact that the estimator exploits the phase differences

information from pairs of sensors.



28

The CRLB, being a local bound error performance, i.e., it represents the performance

of estimators only for small errors, doesn’t capture the effect of sidelobes, and it can

provide too optimistic performances. The effect of sidelobes over the performance of

the estimator can be predicted by the ZZB.

3.5 Ziv-Zakai Lower Bound for Coherent

Localization Estimation in Passive Systems

Recall from previous Chapter that the extended ZZB for vector parameter estimation

in the case of equally likely hypotheses is given by

uTΦu ≥
∫ ∞

0

h · V
{

max
δ:uT δ=h

∫

Θ

min[pθ(ϕ), pθ(ϕ+ δ)]

· Pǫ(ϕ, ϕ+ δ)dϕ

}
· dh (3.13)

where V {·} is the valley-filling function, and θ ∈ Θ. Assuming uniform, a priori pdf’s

in the interval [−D,D] for the x, y coordinates of the emitting source, equation (3.13)

can be specialized as follows

uTΦu ≥
∫ 2D

0

h

4D2
·
{

max
δ:uT δ=h

∫

Θ

Pǫ(ϕ, ϕ+ δ)dϕ

}
dh (3.14)

As can be observed from (3.14), the main part of the bound is represented by Pǫ(ϕ, ϕ+

δ). A closed form for Pǫ(ϕ, ϕ+ δ) doesn’t exist, however an approximation of Pǫ can

be obtained using Chernoff’s formula [29, pp 125]:

Pǫ(ϕ, ϕ+ δ) ≈ 1

2
exp

(
µ(sm) +

s2m
2
µ̈(sm)

)
·Q
(
sm
√
µ̈(sm)

)
+ (3.15)

+
1

2
exp

(
µ(sm) +

(1− sm)
2

2
µ̈(sm)

)
·Q
(
(1− sm)

√
µ̈(sm)

)
, (3.16)

where µ(s) is the semi-invariant moment generating function, µ̈(s) is the second

derivative of µ(s) with respect to s, sm is the point for which µ̇(sm) = 0, and Q(z) is
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the Gaussian integral

Q(z) =

∫ ∞

z

1√
2π
e−v2/2dv

The semi-invariant moment generating function µ(s) is defined [29, pp 119]

µ(s) = ln

∫
p(r|ϕ+ δ)sp(r|ϕ)1−sdR (3.17)

Substituting the expression for p(r|θ) given in (3.4) into (3.17), and using

the result from [62, pp 47], the semi-invariant moment generating function can be

rewritten as follows

µ(s) = −1

2

N∑

l=1

ln
(
det[K(fl)]

−s det[Kδ(fl)]
−(1−s)

· det[sK(fl, τ) + (1− s)Kδ(fl)]) (3.18)

where

Kδ(fl) = Psγδ(fl)γδ
H(fl) + PwI

γδ(fl) = [1, . . . , aMe
−j2π(fl+fc)(τM+dM )]T

dk =
1

c

(√
(xe + δx − xk)2 + (ye + δy − yk)2−

−
√
(xe + δx − x1)2 + (ye + δy − y1)2

)
−

− 1

c

(√
(xe − xk)2 + (ye − yk)2−

−
√

(xe − x1)2 + (ye − y1)2
)
, k = 2, . . . ,M (3.19)

The first two determinants from equation (3.18) can be easily calculated using

the matrix formula given in [4], and they are given by

det[K(fl)] = PM
w

(
1 +

Ps

Pw

β

)
= det[Kδ(fl)] (3.20)
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where

β =

(
1 +

M∑

k=2

a2k

)
(3.21)

The derivation of the third determinant can be done using the approach in [63].

After some algebra, the following expression is obtained for the third determinant

det[sK(fl) + (1− s)Kδ(fl)] =P
M
w

(
1 +

Ps

Pw

β +s(1− s)

(
Ps

Pw

)2 (
β2 − g(fl)

)
)

(3.22)

where

g(fl) =
|γHδ (fl)γ(fl)|2

β2

and | · | denotes the absolute value.

Substitution of (3.20) and (3.22) into (3.18) gives

µ (s) = −
N∑

l=1

ln (1 + s(1− s)α (1− g(fl))) (3.23)

where

α =
β2
(

Ps

Pw

)2

1 + β
(

Ps

Pw

) . (3.24)

Differentiating with respect to s yields

µ̇ (s) =−
N∑

l=1

(1− 2s)α (1− g(fl))

1 + s(1− s)α (1− g(fl))
(3.25)

µ̈ (s) =
N∑

l=1

[(
(1− 2s)α (1− g(fl))

1 + s(1− s)α (1− g(fl))

)2

+

+
2α (1− g(fl))

1 + s(1− s)α (1− g(fl))

]
. (3.26)
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Solving the equation µ̇ (s) = 0, results in s = 1
2
. For s = 1

2
, equations (3.23) and

(3.26) reduce to

µ

(
1

2

)
=−

N∑

l=1

ln

(
1 +

1

4
α (1− g(fl))

)
BT≫1−−−−→

− T

∫ B/2

−B/2

ln

(
1 +

1

4
α (1− g(f))

)
df

µ̈

(
1

2

)
=

N∑

l=1

2α (1− g(fl))

1 + 1
4
α (1− g(fl))

BT≫1−−−−→

T

∫ B/2

−B/2

2α (1− g(f))

1 + 1
4
α (1− g(f))

df. (3.27)

Using the notation

ξ(f) =
1

4
α (1− g(f)) ,

µ(1
2
) and µ̈(1

2
) have the following forms

µ(
1

2
) = −T

∫ B/2

−B/2

ln (1 + ξ(f)) df,

µ̈(
1

2
) = T

∫ B/2

−B/2

8
ξ(f)

1 + ξ(f)
df. (3.28)

Using (3.28) and the following inequalities

ln(1 + z)− z ≤ 1

2
z2, for 0 ≤ z ≤ 1

z

1 + z
≤ z, for 0 ≤ z ≤ 1 (3.29)

in (3.16), Pǫ(ϕ, ϕ+ δ) is lower bounded by:

Pǫ(ϕ, ϕ+ δ) ≥ exp

(
−T

∫

F

1

2
ξ2(f)df

)
·Q
(√

2T

∫

F

ξ(f)df

)
(3.30)

It is noted that Pǫ(ϕ, ϕ+ δ) doesn’t depend on ϕ, but only on δ.

The final version of the ZZB lower bound for location estimate is:
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uTΦu ≥ 1

4D2

∫ 2D

0

h ·
{

max
δ:uT δ=h

(2D − u1δ1)(2D − u2δ2)

· exp
(
−T

∫

F

1

2
ξ2(f)df

)
Q

(√
2T

∫

F

ξ(f)df

)}
dh, (3.31)

where

ξ(f) =
1

4
α

(
1− |γδH(f)γ(f)|2

β2

)
,

α =
β2
(

Ps(f)
Pw(f)

)2

1 + β
(

Ps(f)
Pw(f)

) , and β =

(
1 +

M∑

k=2

a2k

)
.

3.6 Numerical Examples

In this section, numerical examples are provided to illustrate the ZZB for various cases

of the source localization problem. The numerical results show the ZZB parameterized

by the carrier frequency, bandwidth, and number of sensors. The setup has sensors

equally spaced on a circle with a source located at the center of the circle. The

duration of the observation was taken to be T = 4.3 milliseconds.

In Figure 3.6, the ZZB obtained by numerical integration of (3.31) is plotted

versus the SNR per sensor, Ps/Pw. The CRLB and the root mean square error

(RMSE) of the MLE of the source location are also plotted for reference. The CRLB

for the coherent passive localization is derived in Appendix ??. The RMSE of the

MLE is computed from one thousand simulations of a sequence of raised cosine pulses.

The various metrics were calculated for eight sensors, bandwidth B = 200 kHz, and

for a carrier frequency fc = 100 MHz. The a priori interval for the coordinates of

the source is set to a square with a side equal to 50 m. From the figure, it can be

observed that the ZZB versus SNR can be divided into three regions. For low SNR,

the ZZB reaches a plateau equal to the standard deviation of the a priori pdf of the

source location, computed as
√

D2

3
= 25√

3
. In this region performance is dominated
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Figure 3.7 ZZB for passive coherent localization plotted versus SNR. ZZB is tight
to the performance of MLE over the whole SNR range.

by noise, hence the localization error is limited only by the a priori information. For

high SNR, the ZZB coincides with the CRLB, indicating that the noise errors are too

small to cast the estimate outside the main lobe of the estimation metric. This region

is the ambiguity free region. Between the two SNR extremes is the ambiguity region,

in which the location estimator is affected by ambiguities created by sidelobes of the

localization metric, [54].

In Figure 3.8, the ZZB of the error in estimating the abscissa xe of the source

is presented for different carrier frequencies. The results presented in the figure were

obtained for eight sensors and B = 200 kHz signal bandwidth. The a priori interval

for the abscissa xe of the narrowband source was set to [-250 m, 250 m] around the

real abscissa. One can observe that if the SNR is high enough, localization accuracy

improves with the carrier frequency. The exception is in the ambiguity region in which

the performance of the estimator at fc = 100 MHz may outperform the performance

at fc = 1 GHz. This result can be explained due to the increase in sidelobes with the
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Figure 3.8 ZZB computed for different carrier frequencies. Increasing the carrier
frequency increases the accuracy at high SNR, but also increases the ambiguity region.
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Figure 3.9 ZZB computed for different number of sensors. Increasing the number
of sensors reduces the effect of sidelobes
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Figure 3.10 ZZB computed for different bandwidths. The effect of sidelobes can
be reduced by increasing the bandwidth.

carrier frequency. The effect of sidelobes in the localization metric can be reduced

by increasing the number of sensors. This is illustrated in Figure 3.9. The effect of

bandwidth on localization is shown in Figure 3.10. An increase in bandwidth causes

a reduction in the sidelobes leading to smaller errors in the ambiguity region. This

is due to the fact that the transmitted pulse autocorrelation function serves as the

envelope of the localization metric. This envelope, which becomes narrower with the

increase in bandwidth, forces the sidelobes to decay faster.

In summary, the ZZB provides a smart way to analyze coherent localization

performance at the full range of SNR values and parameterized by the quantities of

interest such as carrier frequency, signal bandwidth, and number of sensors. Numerical

examples demonstrate that the bound provides results close to the MLE over the

whole SNR range. Three SNR regions are distinguishable for the bound. At low

SNR, performance is dominated by noise with false peaks popping up anywhere in

the a priori parameter space of the source location. As the SNR increases, a transition
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region is observed in which performance is dominated by the peak sidelobes of the

localization metric. The performance at high SNR is ambiguity free, and the ZZB

coincides with the CRLB.



CHAPTER 4

COHERENT LOCALIZATION IN ACTIVE SYSTEMS

In Chapter 3, the coherent localization performed by passive sensors was analyzed

with ZZB. In this chapter, a similar analysis is done for coherent localization performed

by MIMO radar systems. MIMO radar systems represent active systems employing

multiple antennas, and can transmit multiple waveforms, via its antennas, and process

jointly echos received at multiple received antennas.

4.1 System Model

Similar to the passive case, a target is considered located at an unknown position

θ = [xe, ye], where the unknown coordinates are assumed to be uniform distributed

xe, ye ∼ U [−D, D]. The target is radiated by M transmitting radars arbitrarily

located at coordinates Ti = [xti, yti], i = 1, . . . ,M , with a set of orthogonal signals,

si. For the active systems, the transmitted signals are assumed to be deterministic

signals, versus the assumption made for passive systems where, the transmitted signal

was assumed to be stochastic. Moreover, it is assumed that the orthogonality between

different transmitted signals is maintained for all relevant delays. The transmitted

signals have bandwidth B, and they modulate a carrier frequency fc. The signals

scattered by the target are collected by N sensors placed at arbitrary positions Rk =

[xrk, yrk], k = 1, . . . , N . The transmitting radars, and the sensors are assumed to be

synchronous in time and phase. The period of time T during which the observations

are collected is such that BT ≫ 1. Based on the noisy observations collected, the

location of the target is estimated coherently i.e., the location is estimated from

amplitude and phase measurements.

The noisy observations of the signals received at the sensors are expressed by:

37
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rk (t) =
M∑

i=1

ai,ksi (t− τi,k) e
−j2πfcτi,k + wk (t) (4.1)

where si and wk denote respectively, the signal transmitted by the i-th transmitting

radar, and additive noise at the k-th sensor. The transmitted signals are deterministic

signals with power Psi, i = 1, . . . ,M . The noise waveforms are sample functions of

uncorrelated, zero-mean, stationary Gaussian random processes with spectral density

Pw, respectively. The spectral densities are constant across the bandwidth. The

amplitude and the propagation delay of the signal transmitted by the i-th transmitting

radar and received at k-th sensor are denoted ai,k and τi,k, respectively. It is assumed

that the amplitudes ai,k are known or can be estimated based on a priori rough

information on the target location. The propagation delay τi,k is the sum of the time

delays from radar i to the target and from target to sensor k. Using ρti = ‖Ti − θ‖ for

the distance between the transmitting radar at Ti and the target, and ρrk = ‖Rk − θ‖

for the distance between the target and the receiving radar located at Rk, τi,k can be

expressed as:

τi,k =
1

c
(ρti + ρrk), (4.2)

where c is the signal propagation speed.

Analysis in the frequency domain is more convenient than in the time domain

because in the frequency domain the time delays appear in the argument of the

complex exponential function. To make use of properties of the Fourier transform,

the time domain measurements are converted to the frequency domain. The fl Fourier

coefficient of the observed signal at sensor k is given by:
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Rk(fl) =
1√
T

∫ T

0

rk (t) e
−j2πfltdt =

=
M∑

i=1

ai,kSi(fl)e
−j2π(fl+fc)τi,k +Wk(fl) (4.3)

where l = 1, . . . , L, L is the number of frequency samples, and Si(fl) and Wk(fl)

are the Fourier coefficients at fl of si(t) and wk(t), respectively. For simplicity,

the following notation is used r = [rT (f1), r
T (f2), . . . , r

T (fL)]
T , where r(fl) =

[R1(fl), R2(fl), . . . , RN(fl)]
T . For BT ≫ 1, any pair of Fourier coefficients is

uncorrelated [55]. Because rk(t) is a Gaussian process and the Fourier transform

is a linear operation, r has a conditional multivariate Gaussian pdf,

p(r|θ) =
L∏

l=1

1

det(πK(fl))

· exp
{
−([r(fl)− γ(fl)]

H
K−1(fl)([r(fl)− γ(fl)]

}
(4.4)

where

γ(fl) =

[
M∑

i=1

ai,1Si(fl)e
−j2π(fl+fc)τi,1 , . . . ,

M∑

i=1

ai,NSi(fl)e
−j2π(fl+fc)τi,N

]T
(4.5)

represents the response across the sensors to a radiated frequency component (fc + fl),

and K(fl) = Pw(fl)I represents the covariance matrix of the Fourier coefficients at

the sensors. The matrix I is the identity matrix. The superscripts “T” and “H”

denote the transpose and conjugate transpose operations, respectively.

The maximum likelihood estimate of the source location is given by the maximum

of the likelihood function

θ̂ML(r) = argmax
θ
p(r|θ) (4.6)
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where the likelihood function equals the value of the pdf at the observations r. It can

be shown that for the model defined in (4.4), the MLE of θ is given by the expression:

θ̂ML(r) = argmax
θ

N∑

k=1

M∑

i=1

a∗i,ke
j2πfcτi,k ·

L∑

l=1

Rk(fl)S
∗
i (fl)e

j2πflτi,k (4.7)

The term ej2πfcτi,k that is the phase information reveals the coherent nature of

the estimator. It is well known that a linear phased array in which the elements

are highly thinned, has a beampattern with large sidelobes. In particular, when the

elements of the array are randomly spaced at intervals of the order of 10’s or 100’s

of wavelengths, the beampattern has random peak sidelobes [64]. Recent work on

coherent MIMO radar based in a setting of widely spaced transmitters and receivers

also shows the presence of large peak sidelobes [54]. This motivates the derivation

of the ZZB on the coherent active localization performance, as presented in the next

section.

4.2 Ziv-Zakai Lower Bound for Coherent

Localization Estimation in Active Systems

Assuming uniform a priori pdf’s in the interval [−D, D] for the xe, ye coordinates of

the target, the general expression of ZZB (2.14) can be specialized as follows

uTΦu ≥
∫ 2D

0

h

4D2
·
{

max
δ:uT δ=h

∫

Θ

Pǫ(ϕ, ϕ+ δ)dϕ

}
dh (4.8)

As can be observed from Expression (4.8), the main part of the bound is represented

by Pǫ(ϕ, ϕ + δ). The optimum test for a binary hypothesis problem is known to be

the likelihood ratio test, but evaluating the performance of the test does not always

result in tractable expressions. When exact calculation of the probability of error is

not possible, an asymptotic approximation can be applied instead, [62]. Using this

approach, the following approximation for Pǫ(ϕ, ϕ+ δ) is obtained [29, pp 125]:
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Pe(ϕ, ϕ+ δ) = exp

(
µ(sm) +

s2m
2
µ̈(sm)

)
Q
(
sm
√
µ̈(sm)

)
(4.9)

where µ(s) is the semi-invariant moment generating function of the likelihood ratio

test associated with the binary hypothesis problem between ϕ and ϕ+ δ, µ̈(s) is the

second derivative of µ(s) with respect to s, sm is the point for which µ̇(sm) = 0, and

Q(z) is the Gaussian integral

Q(z) =

∫ ∞

z

1√
2π
e−v2/2dv

The semi-invariant moment generating function µ(s) can be expressed [29, pp

119]

µ(s) = ln

∫
p(r|ϕ+ δ)sp(r|ϕ)1−sdR (4.10)

Substituting the expression for p(r|θ) given in (4.4) into (4.10), and using

the result from [62, pp 47], the semi-invariant moment generating function can be

rewritten as follows

µ(s) =− s(1− s)

2
·

L∑

l=1

1

Pw(fl)
[γ(1)(fl)− γ(0)(fl)]

H [γ(1)(fl)− γ(0)(fl)] (4.11)

where

γ(0)(fl) =

[
M∑

i=1

ai,1Si(fl)e
−j2π(fl+fc)τ̃i,1 , . . . ,

M∑

i=1

ai,NSi(fl)e
−j2π(fl+fc)τ̃i,N

]T
(4.12)

and
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γ(1)(fl) =

[
M∑

i=1

ai,1Si(fl)e
−j2π(fl+fc)(τ̃i,1+di,1), . . . ,

M∑

i=1

ai,NSi(fl)e
−j2π(fl+fc)(τ̃i,N+di,N )

]T

(4.13)

In these expressions, di,k represents the difference in propagation delays along the

paths i-ϕ+ δ-k and i-ϕ-k. The term di,k is given by:

di,k =
1

c
(ρti1 + ρrk1 − ρti0 − ρrk0)

where ρti1 = ‖Ti − ϕ+ δ‖, ρrk1 = ‖Rk − ϕ+ δ‖, ρti0 = ‖Ti − ϕ‖, and ρrk =

‖Rk − ϕ‖. Because ϕ represents the true target location and ϕ + δ represents an

erroneous target location, it follows that di,k are time delay terms associated with

erroneous target locations.

Differentiating equation (4.11) with respect to s yields:

µ̇(s) =− 1− 2s

2
·

L∑

l=1

1

Pw(fl)
[γ(1)(fl)− γ(0)(fl)]

H [γ(1)(fl)− γ(0)(fl)] (4.14)

Differentiating once again,

µ̈(s) =
L∑

l=1

1

Pw(fl)
[γ(1)(fl)− γ(0)(fl)]

H [γ(1)(fl)− γ(0)(fl)] (4.15)

Solving µ̇(sm) = 0, yields sm = 1
2
. Substituting µ(sm), µ̈(sm) and sm = 1

2
into (4.9),

results in:

Pe(ϕ, ϕ+ δ) = Q

(
1

2

√
µ̈

(
1

2

))
(4.16)

Using the fact that the transmitted signals are orthogonal to each other, and

BT ≫ 1, µ̈(sm) is:



43

µ̈

(
1

2

)
= 2BT

N∑

k=1

M∑

i=1

a2i,k
Psi

Pw

[
1− sin(πBdi,k)

πBdi,k
cos(2πfcdi,k)

]
(4.17)

The final version of the ZZB lower bound for the location estimate is:

uTΦu =
1

4D2
·
∫ 2D

0

h

{
max

δ:uT δ=h

(2D − u1δ1)(2D − u2δ2)Q

(
1

2

√
µ̈

(
1

2

))}
dh (4.18)

Note that µ̈
(
1
2

)
in (4.17) depends on the distance h between hypotheses through

the terms di,k. Further insight can be gained by observing that the ZZB decreases with

the probability of error Pe(ϕ, ϕ+ δ) (see (4.8)) and that Pe(ϕ, ϕ+ δ) is monotonically

decreasing with the argument of the Gaussian integral, i.e., with µ̈
(
1
2

)
. A closer

inspection of µ̈
(
1
2

)
in ((4.17)) is then warranted. For a transmitter-receiver pair i-k,

the factor 2BTa2i,k
Psi

Pw
serves as an SNR term. Not surprisingly, increasing the SNR,

reduces the MSE of localization. More interesting is the factor ψ(δ),

ψ(δ) =
N∑

k=1

M∑

i=1

sin(πBdi,k)

πBdi,k
cos(2πfcdi,k) (4.19)

This factor has peaks at time delays di,k that are multiples of 1/fc. Each peak

represents a location associated with an increased probability of error. Thus peaks of

ψ(δ) correspond to ambiguities marked by peaks sidelobes in the localization metric

(4.7). Increasing the carrier frequency increases the density of ambiguities over an

area, and indirectly the MSE for SNR regions where the ambiguities dominate. The

term
sin(πBdi,k)

πBdi,k
corresponds to the autocorrelation of a transmitted pulse (assumed

rectangular). This term caps the effect of ambiguities, particularly away from the

mainlobe of the localization metric. The effect of ambiguities is reduced by increasing

the bandwidth B of the transmitted signals. This observation is consistent with [65].
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Figure 4.1 Setup configuration of the MIMO radar system with antennas
distributed in a sector.

Ambiguity sidelobes affect the ZZB when they are large enough to compete with the

mainlobe of the localization metric. Increasing the number of transmitting stationsM

and receiving stations N, reduces the effect of ambiguities relative to the mainlobe.

To explain that, we note that each transmitter-receiver pair has its own pattern

of ambiguities. Ambiguities impact performance when ambiguities from multiple

transmitter-receiver pairs happen to build up at a specific location. Increasing the

number of radars leads to a stronger mainlobe and requires that a larger number of

sidelobes build up to compete with the mainlobe. Since the sidelobe build up from

multiple transmitter-receiver pairs is a random event, the chances of a large number

of sidelobes lining up at one location are small. Thus performance improves with an

increase in the number of radars.

4.3 Numerical Examples

The numerical results were obtained for a setup in which the target was positioned

in the center of the coordinate system. The transmitting and receiving radars were
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Figure 4.2 ZZK for active coherent localization plotted versus SNR. At high SNR,
ZZB coincides with CRLB.
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Figure 4.3 ZZB computed for different carrier frequencies. Localization accuracy
improves with the carrier frequency at high SNR
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Figure 4.4 ZZB computed for different radar configurations. Localization accuracy
improves with the increase in the number of antennas

distributed randomly in a sector with center at the origin of the axes (0, 0) and with

a central angle of π/3 radians. The ZZB was computed numerically by averaging over

30 random setups (different radar configurations). The setup is shown in Figure 4.1.

The duration of the observation T was taken such that BT = 625 samples, where B

is the bandwidth in Hz.

In Figure 4.2, the ZZB obtained by numerical integration of (4.18) is plotted

versus the SNR, SNR= Psi

Pw
for a 2 × 4 MIMO configuration (two transmit and four

receive antennas) and transmitted signals with bandwidth B = 200 kHz and carrier

fc = 1 GHz. The CRLB of the target location is also plotted for reference. The a

priori interval for the coordinates of the source is set to a square with a side equal to

1 km. From the figure it can be observed that the ZZB versus SNR can be divided

into three regions. For low SNR, the ZZB reaches a plateau equal to the standard

deviation of the a priori pdf of the source location, computed as
√

D2

3
= 500√

3
. In

this region performance is dominated by noise, hence the localization error is limited
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Figure 4.5 ZZB computed for different bandwidths. The effect of sidelobes can be
reduced by increasing the bandwidth.

only by the a priori information. For high SNR, the ZZB merges with the CRLB,

indicating that the noise errors are too small to cast the estimate outside the mainlobe

of the localization metric. This region is the ambiguity free region. Between the two

SNR extremes, is the ambiguity region, in which the location estimator is affected by

ambiguities created by sidelobes of the localization metric, [54].

In Figure 4.3, the ZZB of the error in estimating the abscissa xe of the source

is presented for different carrier frequencies. The results presented in the figure were

obtained for a 2× 4 MIMO system and B = 200 kHz signal bandwidth. The a priori

interval for the abscissa xe of the narrowband source was set to [-500 m, 500 m]

around the real abscissa. One can observe that if the SNR is high enough, localization

accuracy improves with the carrier frequency. As predicted by the discussion in the

preceding section, in the ambiguity region, the performance degrades with increasing

carrier frequency. This result is explained by the increase in sidelobes with the

carrier frequency. The effect of sidelobes in the localization metric can be reduced
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by increasing the number of sensors. This is illustrated in Figure 4.4. The effect of

bandwidth on localization is shown in Figure 4.5. An increase in bandwidth leads to

a reduction in the sidelobes, leading to smaller errors in the ambiguity region. This

is due to the fact that the transmitted pulse autocorrelation function serves as the

envelope of the localization metric. This envelope, which becomes narrower with the

increase in bandwidth, forces the sidelobes to decay faster.



CHAPTER 5

NONCOHERENT LOCALIZATION OF A

MOVING TARGET IN ACTIVE SYSTEMS

This chapter focuses on the problem of estimating both the location and the velocity

of a target in distributed MIMO radar systems. MIMO radar systems represent radar

systems employing multiple antennas, and can transmit multiple waveforms, via its

antennas, and process jointly echos received at multiple received antennas. MIMO

radar systems were suggested with co-located and with distributed antennas [66,67].

MIMO radar with distributed antennas exploits spatial diversity [68], whereas MIMO

radar with co-located antennas exploits waveform diversity [69].

A problem related to the estimation of both the location and the velocity is

the estimation of range and range rate. Similar to coherent localization problem, the

estimation of range and range rate is a nonlinear problem, for which the estimation

metric is often multimodal. For the joint estimation of range and range rate, the

likelihood function in a noise-free environment is proportional to the ambiguity function

(AF) [46]. The AF is a metric that displays the inherent tradeoff between the ability to

estimate the range (time delay) and range rate (Doppler) of a moving target. The AF

can provide insights about ambiguities in estimating the target parameters. Masking

the detection of other targets represents another undesirable effect of sidelobes in

the likelihood function [70]. The design of ambiguity functions with near “ideal1”

properties has been one of the main preoccupations of the radar community [71–76].

Even though the AF is a very useful tool, it is not informative about the behavior

of an estimator as a function of SNR as is the ZZB. Thus, in the next sections,

the ZZB for target’s delay and Doppler estimation is derived. Furthermore, this

1An ideal AF is a delta function located at the origin of delay-Doppler plan and zero
elsewhere.
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derivation is extended to the problem of estimating target’s location and velocity in

a distributed MIMO radar system. An asymptotic analysis of the location-velocity

estimation problem for a distributed MIMO radar was presented in [77,78]. However,

the threshold phenomena has not been analyzed. The derivation performed in this

chapter shows that there is a direct relationship between the ZZB and the AF thus,

new waveforms for MIMO radar can be analyzed or designed using the derived ZZB.

Moreover, the results obtained in the sequel can be applied to study the performance

of the estimator as a function of different system parameters. Comparison between

the ZZB and the MSE of the maximum likelihood estimate (MLE) obtained through

simulations demonstrate that the bound is tight in all SNR regions.

5.1 System Model

Consider a MIMO radar system with M transmitters and N receivers located at

arbitrary coordinates (xti, yti) , i = 1, . . . ,M , and (xrk, yrk) , k = 1, . . . , N , respectively.

Assume a target located at an unknown location (x0, y0) and moving at an unknown

velocity (vx, vy) . The target reflectivity is assumed to obey a Swerling Case 1 model,

and has a complex valued Gaussian probability density function. The target reflectivity

is further assumed to be independent between different pairs of transmit-receive

elements. Let the ith element emit a waveform with complex envelope
√
E/Msi(t),

where
∫
|si(t)|2 dt = 1, and E is the energy. The normalization by the number of

transmit antennas ensures that the total output power is independent of the number

of transmit antennas. The noisy observations gathered by a receiver represent a sum

of delayed and Doppler shifted versions of the transmitted signals. Each receiver

collects L uncorrelated samples with a sampling interval of ∆t. The lth sample at

receiver kth can be expressed

rk (tl) =
M∑

i=1

aik

√
E

M
si (tl − τik) e

j2πfiktl + wk (tl) (5.1)
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where aik is the reflectivity coefficient of the target, and τik and fik are the delay

and Doppler shift, respectively, corresponding to the i, k transmit-receive pair. The

additive noise term wk (tl) is assumed to be stationary, white, complex Gaussian with

zero-mean and variance σ2
w.

The reflectivity coefficients of the target are modeled as independent, complex-

valued, normal random variables with zero-mean and variance σ2
α (aik ∼ CN(0, σ2

α)).

The time delay τik is proportional to the distance traveled by the transmitted signal i

to the target, and from the target to receiver k, and it is given in the sampled signal

domain

τik =
1

c∆t

(√
(xti − xt)

2 + (yti − yt)
2 +

√
(xrk − xt)

2 + (yrk − yt)
2

)
(5.2)

where c is the speed of light. The Doppler shift fik is defined also in the sampled

signal domain as a function of the unknown target’s location and velocity,

fik =
vx
λ
∆t (cosφi + cosφk) +

vy
λ
∆t (sinφi + sinφk) (5.3)

where λ is the wavelength, and φi and φk are bearing angles of the target measured

with respect to the x axis at transmitting radar i and receiving radar k, respectively.

Estimates of the location and velocity of the target can be obtained from the noisy

measurements.

In the next section, the ZZB for target’s delay and Doppler estimation is derived.

5.2 SISO Radar Analysis

A SISO radar is formed by single, collocated transmit and receive antenna. As

stipulated in Sec. 5.1, the target is illuminated with a known waveform. The echo

from the target consists of a noisy, time delayed and Doppler-shifted version of the
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transmitted waveform. The radar’s goal is to estimate the target’s time delay (τ) and

Doppler shift (f). The aim is to find an expression for the bound on the variance of

the estimate θ = [τ, f ]T and to explore links between the bound and the radar’s AF.

The delay and Doppler shift are modeled as random variables with an uniform

a priori distribtion, τ ∼ U [0, T ], f ∼ U [0,Ω]. In this case, the bound (2.14) can be

specialized as follows:

uTΦu ≥
∫ ∞

0

h

TΩ
·
{

max
δ:uT δ=h

∫

Θ

Pǫ(ϕ,ϕ+ δ)dϕ

}
dh (5.4)

In Inequality (5.4), the probability of error Pǫ(ϕ,ϕ + δ) is associated with

the detection problem in which, under hypothesis H0, the estimated parameter θ

= ϕ = [τ, f ]T , and under hypothesis H1, θ = ϕ + δ = [τ + τδ, f + fδ]
T . Error

events occur when the likelihood ratio has opposite sign to that associated with the

hypotheses. The probability of error is given by

Pǫ(ϕ,ϕ+ δ) =
1

2
Pǫ(l(r) < 0|H1) +

1

2
Pǫ(l(r) > 0|H0). (5.5)

To evaluate the probability of error, we need to examine the likelihood

ratio test used to discriminate between ϕ and ϕ + δ. To this end, define

the observations vector, r = [r(t1), . . . , r(tL)]
T and the signal vectors s(m) =

[
s (t1 − τ −mτδ) e

j2π(f+mfδ)t1 , . . . , s (tL − τ −mτδ) e
j2π(f+mfδ)tL

]T
for m = 0, 1,

corresponding to hypotheses H0 and H1, respectively. Recalling (5.1), the signal

model for the detection problem is given by

r =
√
Eas(m) +w (5.6)

where a ∼ CN(0, σ2
α) and w ∼ CN(0, σ2

wI). The log-likelihood ratio test (2.13) for

the detection problem is computed with the help of the following Lemma.
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Lemma: Given the vector observations model (5.6) the likelihood ratio test is

given by

l (r) =
E

σ2
w

(
E + σ2

w

σ2
a

)rH
(
s(1)s

H
(1) − s(0)s

H
(0)

)
r

H1

R
H0

0 (5.7)

Proof. See Appendix B.

From Equation (5.7), the optimal detector discriminates between the squared

output of a matched filter corresponding to a target response with delay τ and Doppler

f and the squared output of a matched filter corresponding to a target response with

delay τ + τδ and Doppler f + fδ.

In order to compute Pǫ(ϕ,ϕ + δ), the distribution of the likelihood ratio test

l (r) needs to be determined. From Expression (5.7), l (r) is a central, indefinite

quadratic form in complex Gaussian random variables. It is central because E[r] = 0,

and indefinite since s(1)s
H
(1)−s(0)s

H
(0) can have positive and negative eigenvalues. Based

on this information, and following a characteristic function approach, the following

closed form of Pǫ(ϕ,ϕ+ δ) is derived in Appendix C:

Pǫ(δ) =
1

2
− SNR (1−Ψ(τδ, fδ))

2
√(

SNR2 (1−Ψ(τδ, fδ)) + 4SNR + 4
)
· (1−Ψ(τδ, fδ))

, (5.8)

where

Ψ (τδ, fδ) =
∣∣sH(0)s(1)

∣∣2 (5.9)

represents a sampled version of the Woodward ambiguity function, and SNR =

Eσ2
a/σ

2
w. The probability of error Pe(δ) is a non-increasing function of the SNR.

Moreover, the probablity of error is a function of the AF. For a fixed SNR, the
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Figure 5.1 Ambiguity function of a single LFM pulse with time bandwidth product
= 5.

behavior of the probability of error follows that of the AF. For example, when the

AF peaks Ψ (τδ, fδ) = 1, the error probability peaks at Pǫ(δ) = 0.5 regardless of

the SNR. At the other extreme, when there is no ambiguity, Ψ (τδ, fδ) = 0, the

error is inverse proportional to the SNR, Pe(δ) = 1/ (SNR + 2) . We conclude that

through the probability of error of binary decisions, the ZZB is determined by both

the SNR and the AF. The ZZB for delay-Doppler estimation in SISO radar is given

by substituting (5.8) in (5.4).

Numerical Results

In this section, numerical results are presented to illustrate the application of the ZZB

to SISO radar. Several scenarios are considered in which the transmitted waveforms

are linear frequency modulation (LFM) pulses. Note that LFM is a pulse compression

technique employed in radar to obtain high range resolution while providing good
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Figure 5.2 Zero-Doppler cut of the AF of an LFM pulse (dotted line) and the cut
through the ridge of the AF (solid line).

Doppler tolerance, [79]. The LFM pulse used to generate the data in this part has

duration T and time bandwidth product 5. The AF of a single LFM pulse is a diagonal

ridge above the delay-Doppler plane, and is illustrated in Figure 5.1. The delay axis

is normalized to the pulse duration T , and the Doppler axis is scaled by the pulse

duration.

In Figure 5.2 the zero-Doppler cut of the AF of the LFM pulse (dotted line)

and the cut through the ridge of the AF (solid line) are shown. The zero-Doppler cut

shows the effect of pulse compression, which reduces the response from the duration

T of the transmitted pulse to approximately T/5. The figure also shows that the

system response is high for mismatched values of Doppler and delay. These high

sidelobes are expected to result in high probabilities of error. The link between the

ambiguity function and the probability of error is evident by comparing Figure 5.2
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Figure 5.3 Probability of error for range estimation with an LFM pulse. The
behavior of the probability of error follows that of the AF.

with Figure 5.3, with the latter representing the probability of error for an LFM pulse

at SNR = 10 dB. The SNR is defined as SNR = Eσ2
α/σ

2
w.

It can be observed that the probability of error has maxima that coincide with

the peaks of the mainlobe and sidelobes of the AF. This can be explained by noting

that the maxima of the AF, which indicate high correlation between the observed

signal and the signal matched at the receiver, translate into ambiguous decisions, and

implicitly cause an increase in the probability of error. In particular, when the time

delay between the two hypotheses vanishes, it is impossible to distinguish between

them, hence the probability of error Pe = 0.5. It is also apparent in the figures that

minima of the probability of error coincide with nulls of the AF. However, the minima

of the probability of error are not equal to zero due to the effect of noise, which induces

a nonzero probability of error. Yet, the minima decrease with an increase in SNR, as
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Figure 5.4 Probability of error in estimating range using 1 LFM pulse for different
SNR. Increasing SNR induces a decrease in the error probability.

can be seen in Figure 5.4. It is also observed from Figure 5.4 that the locations of

the maxima does not depend on the SNR.

Doppler resolution depends on the waveform duration. To improve Doppler

resolution, a coherent pulse train can be transmitted rather than a single pulse.

The ambiguity function of a coherent train of 5 identical LFM pulses with pulse

repetition interval (PRI) (duration between consecutive pulses) 2T , where T is the

pulse duration, is plotted in Figure 5.5. As before, individual LFM pulses have time

bandwidth product equal to 5. Note that range ambiguities occur at multiples of PRI,

and Doppler ambiguities occur at multiples of 1/PRI. These ambiguities can lead to

large errors in estimating the delay-Doppler parameters as can be observed from

Figure 5.6 and Figure 5.8. Figure 5.6 shows that the probability of error has peaks

at 2T time offset intervals. This is the same time interval as between the spurious

peaks of the AF of the coherent pulse train in 5.5. The multiple peak sidelobes in the
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Figure 5.7 ZZB of estimating range using 1 LFM pulse and 5 LFM pulses.
Increasing the number of pulses leads to an increase in the number of ambiguities
that translates in an increase in the range estimation error.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

P
e

Offset⋅T

 

 

1 LFM pulse

5 LFM pulses

Figure 5.8 Probability of error in estimating Doppler using 1 LFM pulse and 5
LFM pulses.
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Figure 5.9 ZZB of estimating Doppler using 1 LFM pulse and 5 LFM pulses.
Increasing the number of pulses leads to an increase in the number of ambiguities,
yet leads to an increase in the duration of observation that translates in a decrease
of the Doppler estimation error.
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AF of the coherent pulse train increase the MSE of the time delay estimation relative

to the single pulse case. This is shown in 5.7. An opposite effect occurs in Doppler

estimation, where the longer duration observation reduces the MSE. In Figure 5.8,

the probability of error for the pulse train has a main peak narrower by a factor of

10 compared to the single pulse. This factor corresponds to the time duration 10T of

the pulse sequence. Improved Doppler estimation performance for the pulse train is

evident in 5.9.

The AF has served as a classical tool for radar signal design since its introduction

in the 1950’s. The preceding discussion demonstrates that the ZZB analysis can serve

as an alternative to the AF as a tool for radar design. In fact, the ZZB analysis has

two advantages over the AF analysis: (1) it integrates the effect of delay-Doppler

sidelobes into a single figure of merit, the joint delay-Doppler estimation error, (2) it

accounts for the effect of noise, while the ambiguity function does not.

5.3 MIMO Radar Analysis

MIMO radar systems represent radar systems employing multiple antennas, that

transmit multiple waveforms, and process jointly the echos received at receiving

antennas. Because MIMO radars employ multiple antennas, not only the time delays

and the Doppler shifts associated with each pair transmitter-target-receiver can be

estimated, but also target’s location and velocity can be estimated by processing

jointly all the noisy observations, [78]. In this section, the previous analysis is

extended to the problem of estimating target’s location ([x0, y0]) and velocity ([vx, vy])

with MIMO radar systems, more specifically the ZZB on the variance of the estimate

θ = [x0, y0, vx, vy]
T is derived.

To derive the ZZB for the problem of estimating target’s location and velocity,

we start from the ZZB for vector parameters (2.14), and specialize for the case where
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the target’s coordinates and velocity components are modeled as random variables

with a uniform a priori distribution, x0, y0 ∼ U [0, D], vx , vy ∼ U [0, V ]

uTΦu ≥
∫ ∞

0

h

D2V 2
·

·
{

max
δ:uT δ=h

∫

Θ

Pǫ(ϕ,ϕ+ δ)dϕ

}
dh (5.10)

In (5.10), the probability of error Pǫ(ϕ,ϕ+ δ) is associated with the detection

problem in which, under hypothesis H0, the estimated parameter θ = ϕ =

[x0, y0, vx, vy]
T , and under hypothesis H1, θ = ϕ + δ = [x0 + xδ, y0 + yδ, vx +

vδx, vy + vδy]
T . Similar to the SISO case, Pǫ(ϕ,ϕ + δ) is determined based on the

distribution of the likelihood ratio test that discriminates between hypothesis H0, and

hypothesis H1 (see Equation (5.5)). Next, the error probability is computed.

Under the two hypotheses, the observations collected by receiver kth can be

written as

r(m)k (tl) =
M∑

i=1

aik

√
E

M
s(m)ik(tl) + wk (tl) l = 1, ..., L (5.11)

where m takes values 0 and 1 corresponding to hypotheses H0 or H1, s(m)ik (tl) =

si (tl − τik −m · τδik) ej2π(fik+m·fδik)t, and τδik and fδik represent the difference in delay

and Doppler shift between the two hypotheses, respectively,

τδik =
1

c

(√
(xti − x0 − xδ)

2 + (yti − y0 − yδ)
2

+

√
(xrk − x0 − xδ)

2 + (yrk − y0 − yδ)
2

)

−1

c

(√
(xti − x0)

2 + (yti − y0)
2 +

√
(xrk − x0)

2 + (yrk − y0)
2

)
(5.12)

and



63

δfik =
vx + vδx

λ
(cos (φi + φδi) + cos (φk + φδk))+

+
vy + vδy

λ
(sin (φi + φδi) + sin (φk + φδk))− (5.13)

−vx
λ

(cosφi + cosφk)−
vy
λ
(sinφi + sinφk) (5.14)

The detailed steps are omitted here due to space considerations, but it can

be shown that, under the independence assumption between the target’s reflectivity

coefficients (see Equation (5.1)), the distributions of the vector observations,

conditioned on the estimated parameters and averaged over the distributions of the

target reflectivity are:

f(m)(r|ϕ+mδ) = c′ exp

{
− 1

σ2
w

‖r‖2
}
· exp

{
E
M

σ2
w(

E
M

+ σ2
w

σ2
α
)

∥∥z(m)

∥∥2
}

where r = [r11(t1), ..., r11(tL), r21(t1) , ..., rMN(tL)]
T , rik(tl) = rk(tl), z(m) =

[z(m)11, ..., z(m)MN ]
T , z(m)ik =

∑L
l=1 rk(tl)s

∗
i (tl− τik−mτδik)e−j2π(fik+mfδik)tl , and c′ is a

constant which doesn’t depend on the estimated parameter. If we make the notation

s(m)ik = [s(m)ik(t1), ..., s(m)ik(tL)]
T , from the distribution of the received signals, we

can write the log likelihood ratio test (2.13) as

l(r) = ln

[
f(r|H1)

f(r|H0)

]
=

E
M

σ2
w(

E
M

+ σ2
w

σ2
α
)

(∥∥z(1)
∥∥2 −

∥∥z(0)
∥∥2
)
=

=
E
M

σ2
w(

E
M

+ σ2
w

σ2
α
)
rH(Q(1) −Q(0))r

H1

R
H0

0 (5.15)

where Q(m) = diag(s(m)11s
H
(m)11, s(m)21s

H
(m)21, · · · , s(m)MNs

H
(m)MN) is a block diagonal

matrix. By inspection of (5.15) and of z(m), the log likelihood ratio test is a

noncoherent processor, that functions by combining the output of MN matched
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filters. Note that, with suitable normalization, a single term |z(m)ik|2 has a χ2
2

(chi-square with two degrees of freedom) distribution, and ||z(m)||2 has the statistical

properties of a χ2
2MN random variable. The 2MN degrees of freedom provides the

improvement in target detection and position estimation of MIMO radar systems as

observed in [67, 78].

Next, the distribution of the log likelihood ratio test will be computed in order

to determine the error probability Pǫ(ϕ,ϕ + δ) (see (5.5)). The distribution of the

random variable l′ = rH(Q(1)−Q(0))r is a central, indefinite quadratic form in complex

Gaussian random variables, with the characteristic function of the form

Gl′(s) =
1

det(I − jsΣH(Q(1) −Q(0)))
=

Nλ∏

n=1

(1− jsλn)
−µn (5.16)

where Σ = E[rrH], and λn with n = 1, . . . , Nλ are the distinct non-zero eigenvalues of

the matrix Σ(Q(1) −Q(0)) with multiplicities µ1, . . . , µNλ
. The quantity Nλ denotes

the number of distinct non-zero eigenvalues.

Note that the probabilities Pǫ(l(r) < 0|H1) and Pǫ(l(r) > 0|H0) which form the

error probability Pǫ(ϕ,ϕ+ δ) (see (5.5)) are given by

Pǫ(l(r) < 0|H1) =
1

2π

∫ 0

−∞

∫ ∞

−∞
Gl′(s)e

−jsl′dsdl′ (5.17)

Pǫ(l(r) > 0|H0) =
1

2π

∫ ∞

0

∫ ∞

−∞
Gl′(s)e

−jsl′dsdl′ (5.18)

The eigenvalues of the matrix Σ(Q(1) −Q(0)) can be calculated by noting that

the eigenvalues of a block diagonal matrix are those of the matrices which form the

block diagonal matrix [80]. Next, the eigenvalues for one matrix from the block

diagonal matrix (e.g., Yik = ΣH
k (s(1)iks

H
(1)ik − s(0)iks

H
(0)ik) where Σk is the covariance
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matrix of rk) are determined. Because the matrix
(
s(1)iks

H
(1)ik − s(0)iks

H
(0)ik

)
has rank

two, Yik being the product of two matrices, has also rank two2 (see [81, Appendix

A]). Thus, Yik has two distinct non-zero eigenvalues λ+ik > 0 andλ−ik < 0, which can

be determined from Bcher’s formula [82]:

λ2ik + e1λik + e2 = 0 (5.19)

where e1 = −Tr{Yik} and e2 = −1
2
(e1Tr{Yik} + Tr{Y2

ik}). After evaluation of the

traces, the coefficients of the quadratic polynomial are given by:

e1 = − E

M
σ2
α

(
ΨH

(1)ikΨ(1)ik −ΨH
(0)ikΨ(0)ik

)

e2 = − E

M
σ2
ασ

2
w(Ψ

H
(1)ikΨ(1)ik +ΨH

(0)ikΨ(0)ik − ψ(01)ikΨ
H
(1)ikΨ(0)ik−

− ψ∗
(01)ikΨ

H
(0)ikΨ(1)ik)− σ4

w(1− |ψ(01)ik|2) (5.20)

where

Ψ(1)ik = [ψ(1)1ik, ψ(1)2ik, . . . , ψ(1)Mik]
T

Ψ(0)ik = [ψ(0)1ik, ψ(0)2ik, . . . , ψ(0)Mik]
T

ψ(1)jik = sH(1)jks(1)ik

ψ(0)jik = sH(0)jks(0)ik

ψ(01)ik = sH(0)iks(1)ik

The term ψ(01)ik represents the sampled version of the ambiguity function,

the terms ψ(1)jik, ψ(0)jik, with j 6= i represent sampled versions of cross-ambiguity

functions, that take place between different transmitted signals and matched filter

2The covariance matrixΣk is a full rank matrix, and rank (AB) ≤ min (rank (A) , rank (B)).
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signals, and ψ(1)iik = ψ(0)iik = 1. Remember that, the ambiguity function measures

the correlation between the same signals for different delay-Doppler shifts. The

cross-ambiguity function represents a generalization of the ambiguity function, i.e.,

it measures the correlation between two different signals for different delay-Doppler

shifts.

A special case for MIMO radar systems is when different delays and Doppler

shifts don’t affect the orthogonality between transmitted signals, i.e., the cross-

ambiguity function terms are equal to zero. For this case, the coefficients of the

quadratic polynomial are

e1o = − E

M
σ2
α

(
1− |ψ(01)ik|2

)

e2o = − E

M
σ2
ασ

2
w(1− |ψ(01)ik|2)− σ4

w(1− |ψ(01)ik|2) (5.21)

It was shown in [83] that, for radar systems where the transmit and receive

antennas are not collocated, the ambiguity function depends on the positions of the

transmitting antenna, the receiving antenna, and the target. Thus, for practical cases

of MIMO radar systems, the ambiguity functions and the cross-ambiguity functions

are distinct due to the randomness of the antennas positions. This leads to distinct

eigenvalues. For this situation3, a partial fraction expansion can be applied to the

characteristic function yielding

Gl′(s) =
MN∑

n=1

[
c−n

(1− jsλ−n )
+

c+n
(1− jsλ+n )

]
(5.22)

where

3For the situation when the eigenvalues have different multiplicities the characteristic
function can be calculated accordingly [84], however it complicates notation.
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c−n =
MN∏

k=1
k 6=n

λ−n
λ−n − λ−k

MN∏

k=1

λ−n
λ−n − λ+k

(5.23)

c+n =
MN∏

k=1

λ+n
λ+n − λ−k

MN∏

k=1
k 6=n

λ+n
λ+n − λ+k

, (5.24)

Based on (5.17), the error probability Pǫ(l(r) < 0|H1) is

Pǫ(l(r) < 0|H1) =
1

2π

∫ 0

−∞

∫ ∞

−∞
Gl′(s)e

−jsl′dsdl′

=
MN∑

n=1

[
c−n

1

2π

∫ 0

−∞

∫ ∞

−∞

e−jsl′

(1− jsλ−n )
dsdl′+

+ c+n
1

2π

∫ 0

−∞

∫ ∞

−∞

e−jsl′

(1− jsλ+n )
dsdl′

]
=

=
MN∑

n=1

c−n (5.25)

In the last equality we used
∫∞
−∞

e−jsl′

(1−jsλ−

n )
ds = −2πe−l′/λ−

n /λ−n ,
∫∞
−∞

e−jsl′

(1−jsλ+
n )
ds =

0, and
∫ 0

−∞ −e−l′/λ−

n /λ−n dl
′ = 1, [85, 3.382 ET I 118(4)].

Replacing (5.25) into (5.5) gives the following closed form for the probability of

error Pǫ(ϕ,ϕ+ δ)

Pǫ(ϕ,ϕ+ δ) =
MN∑

n=1

c−n =
MN∑

n=1




MN∏

k=1
k 6=n

λ−n
λ−n − λ−k

MN∏

k=1

λ−n
λ−n − λ+k


 (5.26)

In the case of a single collocated transmitter and receiver, the expression in

(5.26) reduces to (5.8).

From (5.26), the Pǫ(ϕ,ϕ+δ) is determined by the product between the number

of transmitting antennas and the number of receiving antennas, and by the eigenvalues
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of the matrixΣ(Q(1)−Q(0)) (reminder: Σ is the covariance matrix of r). Furthermore,

through the eigenvalues λn, the error probability depends on all the ambiguity functions

and the cross-ambiguity functions corresponding to all pairs transmitter-target-receiver

(see (5.19) and (5.20)). Thus, the ZZB which is obtained by replacing (5.26) into

(5.10) provides a more complete analysis than the recently defined MIMO radar

ambiguity function [86] because, in addition of considering the ambiguity and cross-

ambiguity functions, the ZZB considers also the effect of noise.

Numerical Results

In this section, numerical results will be presented in order to support the theoretical

derivations of the ZZB done for the MIMO radar systems. The numerical results

follow a setup in which the target is positioned in the center of the coordinate

system. The transmitting and receiving antennas are distributed randomly in a sector

with center at the origin of the axes (0, 0) and with a central angle of π/6 radians.

The setup is shown in Figure 5.10. Each transmitting antenna transmits orthogonal

coded orthogonal frequency division multiplexing (COFDM) pulses. COFDM that

are presented in Appendix D, are a set of waveforms suitable for MIMO radar systems

with widely separated antennas due to their orthogonality properties. Each CODFM

pulse consists of sixteen OFDM symbols each with sixteen subcarriers.

In Figure 5.11, the ZZB of the error in estimating the abscissa xt and the

velocity vx are plotted versus the SNR, SNR = Eσ2
α

σ2
w
, for a 2× 3 MIMO configuration

(two transmit and three receive antennas). The CRLB and MLE of the target’s

location and velocity are also plotted for reference. From the figure it can be observed

that the ZZB versus SNR can be divided into three regions. For low SNR, the

ZZB reaches a plateau and the performance is dominated by noise. For high SNR,

the ZZB merges with the CRLB, indicating that the noise errors are too small to

cast the estimate outside the mainlobe of the estimation metric. This region is the
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Figure 5.10 Setup configuration of the MIMO radar system with antennas
distributed in a sector.

ambiguity free region. Between the two SNR extremes, is the ambiguity region, in

which the estimator is affected by ambiguities created by sidelobes of the ambiguity

and cross-ambiguity functions.

Figure 5.12 shows the MSE of estimating parameter xt for different SNR values

and different number of transmit and receive antennas. We see that increasing

the number of antennas in the system results in the reduction of the estimation

error. From the SISO analysis, it was noted that the error probability has maxima

corresponding to the sidelobes of the ambiguity function. For MIMO radar systems,

the estimation performance is affected when the sidelobes of the ambiguity functions

and cross-ambiguity functions from multiple transmitter-receiver pairs happen to

build up at a specific location and velocity. Increasing the number of radars leads to a

stronger mainlobe and requires that a larger number of sidelobes build up to compete

with the mainlobe. Because each transmitter-receiver pair has its own pattern of

ambiguity functions, the chances of a large number of sidelobes lining up at one

location are small. Thus performance improves with an increase in the number of

radars.
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Figure 5.11 ZZB, MLE, and CRLB for estimating location (top) and velocity
(bottom)
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Figure 5.12 RMSE for different number of transmitters (top) and for different
number of receivers (bottom)
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Figure 5.13 ZZB for different configurations
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Figure 5.14 The effect of interference between transmitted signals over the
estimation performance

Figure 5.13 shows the performance of MIMO radar systems for different

configurations of transmit-receive antennas when the number of antennas per system

is kept constant. The 6x1 MIMO radar system has the worst performance between

all the systems analyzed due to the normalization done to maintain the same average

transmitted energy. Another reason for poorer performance is that the system with

more transmitting antennas is affected by higher interferences which are created at

receivers between different transmitted signals. The 3x4 MIMO radar system provides

the best performance between all the systems analyzed, since the performance is

determined by the product between the number of transmitting antennas and the

number of receiving antennas.

In MIMO radar systems, due to the wide separation between antennas, the

transmitted waveforms propagate along different paths and arrive at sensors with

different delays and Doppler shifts. As a result, the orthogonality of the transmitted

signals is lost, and the received signals start to be correlated and to engender

interferences. The effect of the interferences between the transmitted signals over the

system performance can be evaluated based on (5.20) and (5.21), and it is exemplified

in Figure 5.14 for a 6x1 MIMO radar.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In the framework of this dissertation work, lower bounds on coherent target localization

in passive and active systems were derived. For coherent passive localization the

CRLB was derived. The CRLB shows that coherent localizations offer high accuracies

i.e., proportional with the carrier frequency of the observed signal. However, the

likelihood function is a highly nonlinear function, and a global optimization algorithm

needs to be used in order to find the global maximum of the likelihood function. A

hybrid global deterministic algorithm was proposed. Even with global optimization

algorithms, to analyze the system performance for different system parameters and

range of SNR is time consuming. The derived ZZB provides a convenient tool to assess

the localization performance for different system parameters. Numerical examples

demonstrate that, the ZZB gives results close to the MLE over the whole SNR range.

The ZZB was also used to derive a lower bound on the MSE of estimating

the location and the velocity of a target with a MIMO radar system. The derived

bound can serve as an alternative to the AF as a tool for radar design. It is shown

that, the ZZB analysis has two advantages over the AF analysis: (1) it integrates the

effect of delay-Doppler sidelobes into a single figure of merit, the joint delay-Doppler

estimation error, (2) it accounts for the effect of noise, while the ambiguity function

does not. The bound is a convenient tool for analyzing the estimator’s performance

for different waveforms and for different systems parameters.

A new type of orthogonal waveforms was proposed for MIMO radar systems.

Utilizing the ZZB, it was shown that the new waveforms provide good interference

suppression.

74



75

High precision in the system parameters are required for coherent localization

systems to provide high accuracies. Thus, it is desired to investigate the effect of small

errors in the system e.g., uncertainties in the position of sensors, over the localization

performance. This analysis can be done by incorporating the mismatches into the

system model and assessing the system performance with the use of a lower bound.

Estimation algorithms with reduced sidelobes is a vital point in implementing

the coherent localization systems practical.

The ZZB as an alternative to AF provides endless research topics from waveform

design, to design radar systems for specific applications.



APPENDIX A

CRAMER RAO LOWER BOUND FOR

COHERENT PASSIVE LOCALIZATION

In this Appendix, the CRLB for coherent passive localization is derived.

The CRLB of parameter estimated θ is given by [87]

CCRLB (θ) = J−1 (θ) (A.1)

where

J(θ) , Er|θ

[
∂

∂θ
log p (r|θ)

(
∂

∂θ
log p (r|θ)

)T
]

(A.2)

is the Fisher information matrix (FIM). p (r|θ) is the conditional pdf of r given θ and

it is defined in (3.4), Er|θ [·] stands for expectation with respect to p (r|θ). Because

the received signal is a function of TDOA, τk, using the chain rule, the CRLB can be

expressed as:

CCRLB(θ) = G−TJ−1 (τ)G−1 (A.3)

where

G =




∂τ2
∂xe

∂τ3
∂xe

. . . ∂τM
∂xe

∂τ2
∂ye

∂τ3
∂ye

. . . ∂τM
∂ye




T

(A.4)

and J(τ) is the FIM for the unknown vector τ = [τ2, . . . , τM ]T .

For simplicity, the following notations are used:
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∂τk
∂xe

=
1

c


 xe − x0√

(xe − x0)
2 + (ye − y0)

2
− xe − xk√

(xe − xk)
2 + (ye − yk)

2


 =

dxk
c

(A.5)

∂τk
∂ye

=
1

c


 ye − y0√

(xe − x0)
2 + (ye − y0)

2
− ye − yk√

(xe − xk)
2 + (ye − yk)

2


 =

dyk
c

(A.6)

Starting from the general expression of the FIM for a complex Gaussian pdf

which is given in [87, pp 525] and reproduced here (using our notation),

Jij (τ) =
N∑

l=1

Tr

[
K−1(fl)

∂K (fl)

∂τi
K−1(fl)

∂K (fl)

∂τj

]
+ 2Re

[
∂µH

∂τi
K−1(fl)

∂µ

∂τj

]
(A.7)

the elements of the FIM J(τ) can be expressed as:

Jij (τ) = −
N∑

l=1

Tr

[
∂K (fl)

∂τi

∂K−1 (fl)

∂τj

]
(A.8)

where it was used that the mean of r is zero (µ = 0) and A−1 ∂A
∂τ

A−1 = −∂A−1

∂τ
.

Using the following property

Tr (∂A) = ∂ (Tr (A)) (A.9)

equation (A.8) can be transformed to:

Jij (τ) =
N∑

l=1

∂2

∂vi∂uj
Tr
(
K−1

v
(fl)Ku (fl)

)
∣∣∣∣∣
v=u=τ

(A.10)

Replacing (3.5) and (3.6) into (A.10), and performing the derivations yields
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Jij(τ) =





∑N
l=1

∑M
k=2
k 6=i

8π2(fl + fc)
2α

a2i a
2
k

β2 i = j

−∑N
l=1 8π

2(fl + fc)
2α

a2i a
2
j

β2 i 6= j

(A.11)

where

α =
β2
(

Ps

Pw

)2

1 + β
(

Ps

Pw

) (A.12)

β =
M∑

k=1

a2k. (A.13)

Using the fact that BT ≫ 1, the summation in (A.11) can be replaced by

integration. Thus, the elements of the J(τ) are given by:

Jij(τ) =





T
∫ B/2

−B/2

∑M
k=2
k 6=i

8π2(f + fc)
2 α
β2a

2
i a

2
kdf i = j

−T
∫ B/2

−B/2
8π2(f + fc)

2 α
β2a

2
i a

2
jdf i 6= j

(A.14)

Performing the integrations in (A.14) and replacing the result in (A.3), it follows

that the CRLB is given by

CCRLB = c2

8π2BTαf2
c

(

1+ B2

12f2c

)

β2

q11q22−q12q21




q22 −q21
−q12 q11


 (A.15)

where
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q11 =
M∑

k=2

a2kd
2
xk +

M∑

k=2

M∑

l=2

a2ka
2
l d

2
xk −

M∑

k=2

M∑

l=2

a2ka
2
l dxkdxl (A.16)

q12 = q21 =
M∑

k=2

a2kdxkdyk +
M∑

k=2

M∑

l=2

a2ka
2
l dxkdyk −

M∑

k=2

M∑

l=2

a2ka
2
l dxkdyl (A.17)

q22 =
M∑

k=2

a2kd
2
yk +

M∑

k=2

M∑

l=2

a2ka
2
l d

2
yk −

M∑

k=2

M∑

l=2

a2ka
2
l dykdyl. (A.18)

Or, using the notation

g =
β2

q11q22 − q12q21




q22 −q21
−q12 q11




the CRLB can be expressed as

CCRLB =
c2

8π2BTαf 2
c

(
1 + B2

12f2
c

) · g (A.19)

From last expression, it can be noted that for narrowband signals (i.e., B ≪

fc), the CRLB for estimating coherently the location coordinates [xe, ye] is inverse

proportionally with SNR (α), with carrier frequency (fc), and with the duration of

observations (BT ). Also, the term g incorporates the target’s position with respect

to the positions of the sensors, term known in the literature as geometric dilution of

precision (GDOP) [61].



APPENDIX B

PROOF OF LEMMA 1

In this appendix the log-likelihood ratio test is computed (2.13) for the SISO scenario.

From (5.6), the distributions of the vector observations, under the two hypotheses,

conditioned on the parameters τ and f and averaged over the distributions of the

target reflectivity are:

f(m)(r|τ, f) =

∫
f(m) (r|τ, f, a) · f (a) da

=

∫
c1 exp

{
− 1

σ2
w

L∑

l=1

∣∣∣r (tl)−
√
Eas (tl − τ −mτδ) e

j2π(f+mfδ)tl

∣∣∣
2
}

·

·f (a) da =

=

∫
c1 exp

{
− 1

σ2
w

L∑

l=1

(
|r (tl)|2

−
√
Ea∗r (tl) s

∗ (tl − τ −mτδ) e
−j2π(f+mfδ)tl −

−
√
Ear∗ (tl) s (tl − τ −mτδ) e

j2π(f+mfδ)tl +

+E |a|2 |s (tl − τ −mτδ)|2
)}

f (a) da

Completing the square of the integrand,
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f(m)(r|τ, f) = c2 exp

(
− 1

σ2
w

‖r‖2
)
·

exp





E

σ2
w

(
E + σ2

w

σ2
a

)
∣∣∣∣∣

L∑

l=1

r (tl) s
∗ (tl − τ −mτδ) e

−j2π(f+mδfδ)tl

∣∣∣∣∣

2


 ·

(B.1)

·
∫

exp




− 1

σ2
w

∣∣∣∣∣∣∣

√√√√
E(

E + σ2
w

σ2
a

)
L∑

l=1

r (tl) s
∗ (tl − τ −mτδ) e

−j2π(f+mfδ)tl−

−
√
E +

σ2
w

σ2
a

a

∣∣∣∣∣

2


 da (B.2)

Performing the integration,

f(m)(r|τ, f) = c3 exp

(
− 1

σ2
w

‖r‖2
)
·

· exp





E

σ2
w

(
E + σ2

w

σ2
a

)
∣∣∣∣∣

L∑

l=1

r (tl) s
∗ (tl − τ −mτδ) e

−j2π(f+mfδ)tl

∣∣∣∣∣

2




In these expressions, c1, c2, and c3 are constants that do not depend on the unknown

parameters ϕ, ϕ + δ. Substituting the last expression in (2.13) yields the following

likelihood ratio test:

l (r) =
E

σ2
w

(
E + σ2

w

σ2
a

)rH
(
s(1)s

H
(1) − s(0)s

H
(0)

)
r

H1

R
H0

0 (B.3)

where s(m) =
[
s (t1 − τ −mτδ) e

j2π(f+mfδ)t1 , . . . , s (tL − τ −mτδ) e
j2π(f+mfδ)tL

]T
.



APPENDIX C

DERIVATION OF PROBABILITY OF ERROR

To derive an expression for the probability of error of binary hypothesis testing (5.5),

it is first necessary to determine the statistical properties of the random variable

l′ = rH
(
s(1)s

H
(1) − s(0)s

H
(0)

)
r, which appears in the likelihood ratio test (5.7). Since

r is multivariate complex Gaussian (due to the target reflectivity and noise), the

distribution of l′ is a central, indefinite quadratic form in complex Gaussian random

variables. It is central since E[r] = 0, and indefinite since s(1)s
H
(1) − s(0)s

H
(0) can have

positive and negative eigenvalues. The characteristic function of a central quadratic

form is [88]

Gl′(s) =
1

det
(
I − jsΣH

(
s(1)sH(1) − s(0)sH(0)

)) =

Nλ∏

n=1

1

(1− jsλn)µn
(C.1)

where Σ is the covariance matrix of r, Σ = E[rrH] = Eσ2
as(0)s

H
(0) + σ2

wI. The

terms λn, n = 1, . . . , Nλ, are the distinct non-zero eigenvalues of the matrix Y =

ΣH
(
s(1)s

H
(1) − s(0)s

H
(0)

)
; µn are the multiplicities of the eigenvalues λn. Since the

matrix
(
s(1)s

H
(1) − s(0)s

H
(0)

)
has rank two, Y being the product of two matrices, has

also rank two1 (see [81, Appendix A]). Thus, Y has two distinct non-zero eigenvalues

λ+ > 0 andλ− < 0, which can be determined from Bôcher’s formula [82]:

λ2 + e1λ+ e2 = 0 (C.2)

where e1 = −Tr{Y}, e2 = −1
2
(e1Tr{Y}+Tr{Y2}), and Tr{·} represents trace. After

some straightforward algebra operations, these parameters can be expressed

1The covariance matrix Σ is a full rank matrix, and rank (AB) ≤ min (rank (A) , rank (B)).
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e1 = −Eσ2
a (1−Ψ(τδ, fδ))

e2 = −Eσ2
aσ

2
w (1−Ψ(τδ, fδ))− σ4

w (1−Ψ(τδ, fδ)) . (C.3)

where

Ψ (τδ, fδ) =
∣∣sH(0)s(1)

∣∣2 =
∣∣∣∣∣

L∑

l=1

s (tl) s
∗ (tl − τδ) e

−j2πfδtl

∣∣∣∣∣

2

(C.4)

is a sampled version of the ambiguity function [89].

From the characteristic function of the random variable l′, we can determine its

cumulative distribution function, and implicitly Pǫ(l(r) < 0|H1),

Pǫ(l(r) < 0|H1) =
1

2π

∫ 0

−∞

∫ ∞

−∞
Gl′(s)e

−jsl′dsdl′

=
1

2π

∫ 0

−∞

∫ ∞

−∞

(
1

(1− jsλ+)

1

(1− jsλ−)

)
e−jsl′dsdl′

=
1

2π

∫ 0

−∞

∫ ∞

−∞

(
λ+

λ+−λ−

(1− jsλ+)
+

λ−

λ−−λ+

(1− jsλ−)

)
e−jsl′dsdl′

=
λ−

λ− − λ+
(C.5)

The third equality was obtained with the help of partial fraction expansion.

In the last equality, we used
∫∞
−∞

e−jsl′

(1−jsλ−)
ds = −2πe−l′/λ−

/λ−,
∫∞
−∞

e−jsl′

(1−jsλ+)
ds = 0,

and
∫ 0

−∞ −e−l′/λ−

/λ−dl′ = 1, [85, 3.382 ET I 118(4)]. The following closed form of

the probability of error is obtained after substituting in (C.5) the solutions of the

quadratic equation (C.2), and using the notation Eσ2
α/σ

2
w = SNR

Pǫ(δ) =
1

2
− SNR (1−Ψ(τδ, fδ))

2
√(

SNR2 (1−Ψ(τδ, fδ)) + 4SNR + 4
)
· (1−Ψ(τδ, fδ))

,



APPENDIX D

CODED OFDM WAVEFORMS

In the distributed MIMO radars, due to the wide-separation between antennas, the

transmitted waveforms propagate along different paths to the target, and from the

target to receive antennas. As a result the transmitted signals are being received with

uncorrelated amplitude and phase, and with different delays and Doppler shifts. Even

if the transmitted waveforms are orthogonal upon transmission, the orthogonality

property is lost at the receivers. In such case, received signals will interfere with

each other leading to degraded performance in the MIMO radar. It is necessary to

design waveforms that maintain orthogonality under a wide range of sensor locations.

A naive solution to this problem is a frequency division multiple access (FDMA)

approach, where each transmitter is allocated a frequency channel. Because each

waveform has to be wideband for high range-delay accuracy, this approach is very

wasteful in its bandwidth utilization. We seek techniques that allow the waveforms

to overlap in frequency. In this appendix, we introduce orthogonal frequency division

multiplexing (OFDM) based waveforms for MIMO radar, referred to as Coded OFDM

waveforms.

A spread spectrum OFDM radar waveform is obtained by modulating

orthogonal subcarriers with a polyphase code or any other type of spreading code.

In communication, such signals are known as multicarrier CDMA (MC-CDMA) [90].

Frequency spreading leads to improved spectral utilization in the sense that its power

spectral density sidelobes are lower than that of polyphase waveforms. The power

spectral density (PSD) of an OFDM signal with S subcarriers and duration T , has

a nearly rectangular shape with a bandwidth of S/T . Spectral sidelobes of OFDM

symbols occur each 1/T . Compare that to the PSD of a signal of the same duration
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T, and spread by modulating it with S short pulses (chips) of duration T/S each.

The PSD of this waveform is a squared sinc function with a null-to-null bandwidth of

2S/T . For such a pulse, the spectral sidelobes occur each S/T . It follows that within

one spectral sidelobe of the time domain waveform, there are S spectral sidelobes

of the frequency domain waveform, leading to a much faster decay of the spectral

sidelobes in the latter.

Levanon designed a radar waveform consisting of a sequence of S OFDM symbols,

where each symbol consists of S subcarriers [91]. Each subcarrier is modulated by a

P4 symbol (P4 symbols are the digital version of linear frequency modulated signals).

Multifrequency Complementary Phase Coded (MCPC) waveform, as he named it,

is constructed by using all the cyclic time shifts of a P4 symbol to modulate the

OFDM subcarriers. It is shown in [91] that , the MCPC waveform has an ambiguity

function that does not exhibit the ambiguity ridge in the time - Doppler domain.

The ambiguity ridge is found in the ambiguity functions of P4 sequences. This

advantage of MCPC codes over the P4 codes is obtained because all the different

cyclic time shifts of a P4 sequence forms a complementary set, and so, MCPC codes

are complementary both in the time and frequency domains. A set of S sequences

Γ = {γ1, γ2, . . . , γS}, each of length K, is called a complementary set, if the sum of

the aperiodic autocorrelation functions of all sequences from the set is zero for all

non-zero shifts p, i.e.,

Z(p) =
S−1∑

i=0

K−1−p∑

j=0

γi(j)γ
∗
i (j + p) =





S−1∑

i=0

Ri(0) p = 0

0 p 6= 0

(D.1)

where |γi(j)| = 1 for any i = 1 . . . S and j = 1 . . . K andRi denotes the autocorrelation

function for sequence γi.

The improved spectral efficiency and ambiguity function properties, make OFDM

based signals an attractive alternative for the design of radar waveforms. To extend
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this design to MIMO radar, it is necessary to add the requirement that the waveforms

are orthogonal. Any design of a radar system with multiple transmit antennas in

which each transmitter sends a different waveform, requires that the receivers have

the ability to separate these waveforms. The easiest way to achieve separability of the

waveforms is to design the waveforms orthogonal, and to perform matched filtering

at the receiver. In MIMO radar with widely separated antennas, the problem is

compounded by the fact that the waveforms may reach the receive sensors with

marked different delays. This requires waveforms that have low cross correlations

over a range of time delays.

Here, we seek to stick with OFDM based waveforms to capitalize on their

advantages as discussed above. Hence, orthogonality is required waveforms, where

each waveform is constituted by a set of sequences. Each sequence corresponds to a

subcarrier in the sequence of OFDM symbols.

Two complementary sets of binary elements, Γ = [γ1, γ2, . . . , γM ] and Γ̃ =

[γ̃1, γ̃2, . . . , γ̃L], are called mates if [92]:

1. The two sets have the same number of sequences, M = L

2. The sequence γi has the same length N as sequence γ̃i, for any 1 ≤ i ≤M

3. The sum of the crosscorrelations is zero for all lags, i.e.,

Y (p) =
M−1∑

i=0

N−1−p∑

j=0

γi(j)γ̃
∗
i (j + p) = 0, ∀p (D.2)

A collection of sets of sequences is said to be of mutually orthogonal complementary

sets if any two sets in the collection are mates to each other [92] .

Recapping, it is possible to construct mutually orthogonal complementary sets

and apply them to modulate subcarriers of a sequence of OFDM symbols. Each

set corresponds to a radar waveform. This enables the design of OFDM based
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waveforms for MIMO radar. However, this process departed from the original

MCPC waveforms that are complementary both in time and frequency domains.

Yet, the mutually orthogonal complementary sets maintain complementarity only in

one domain. To recapture the complementary property in the time and frequency

domains, we employ the algorithm proposed by Zhang et. al., [93]. The algorithm,

originally proposed for creating MC-CDMA spreading sequences, generates binary

mutually orthogonal sequences that are complementary in two dimensions, time

and frequency. The authors refer to these sequences as two dimensional combined

complementary sequences. The proposed algorithm has some limitations in generating

the sets. For example, to generate J orthogonal sets (i.e., J orthogonal waveforms),

the minimum number of subcarriers is 2J and the required length of each sequence

is J2. For comparison, Tseng, [92], showed that to generate J mutually orthogonal

sets complementary only in the time domain, the minimum number of subcarriers

required is J and the shortest sequence length is J/2. Clearly, the collection of

mutually orthogonal sets complementary in time and frequency is smaller than the

collection of mutually orthogonal sets complementary only in time. Yet the former

have important advantages for MIMO radar.

In view of the former discussion, we propose coded OFDM radar waveforms that

form a collection of on generating mutually orthogonal sets that are complementary in

the time and frequency domains. We utilize the algorithm in [93] to generate the sets,

and apply them to modulate sequences of OFDM symbols. The general structure of

a coded OFDM waveform is shown in Figure D: S1, S2, S3, S4 denote the OFDM

symbols, f1, f2, f3, f4 denote the subcarriers, and γl,m represents the modulation

of the l-th subcarrier in the m-th OFDM symbol. Coded OFDM pulses are different

from MCPC pulses [91] in several respects: (1) Coded OFDM has binary elements,

whereas MCPC has polyphase elements, (2) sequences of coded OFDM subcarriers
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are not necessarily cyclic time shifted versions of each other, (3) most important,

coded OFDM waveforms are mutually orthogonal.

Figure D.1 Structure of a COFDM pulse with S = 4.



REFERENCES

[1] Y. H. Hu and D. Li, “Energy based collaborative source localization using acoustic
micro-sensor array,” EURASIP J. Appl. Signal Process., no. 4, pp. 321–337, Aug.
2003.

[2] X. Sheng and Y. H. Hu, “Maximum likelihood multiple-source localization
using acoustic energy measurements with wireless sensor networks,” IEEE
Transactions on Signal Processing, vol. 53, no. 1, pp. 44–53, Jan. 2005.

[3] D. Blatt and A. O. Hero, “Energy-based sensor network source localization via
projection onto convex sets,” IEEE Transactions on Signal Processing, vol. 54,
no. 9, pp. 3614–3619, Sep. 2006.

[4] K. C. Ho and M. Sun, “Passive Source Localization Using Time Differences of Arrival
and Gain Ratios of Arrival,” IEEE Transactions on Signal Processing, vol. 56,
no. 2, pp. 464–477, Feb. 2008.

[5] K. W. Cheung, H. C. So, W. K. Ma, and Y. T. Chan, “Least squares algorithms for
time-of-arrival-based mobile location,” IEEE Transactions on Signal Processing,
vol. 52, no. 4, pp. 1121–1130, Apr. 2004.

[6] Y. Qi, H. Kobayashi, and H. Suda, “On time-of-arrival positioning in a multipath
environment,” IEEE Transactions on Vehicular Technology, vol. 55, no. 5, pp.
1516–1526, Sep. 2006.

[7] Y. T. Chan, W. Y. Tsui, H. C. So, and P. Ching, “Time-of-arrival based localization
under NLOS conditions,” IEEE Transactions on Vehicular Technology, vol. 55,
no. 1, pp. 17–24, Jan. 2006.

[8] W. A. Gardner and C. K. Chen, “Signal-selective time-difference-of-arrival
estimation for passive location of man-made signal sources in highly corruptive
environments. I. Theory and method,” IEEE Transactions on Signal Processing,
vol. 40, no. 5, pp. 1168–1184, May 1992.

[9] C. K. Chen and W. A. Gardner, “Signal-selective time-difference of arrival
estimation for passive location of man-made signal sources in highly corruptive
environments. II. Algorithms and performance,” IEEE Transactions on Signal
Processing, vol. 40, no. 5, pp. 1185–1197, May 1992.

[10] F. Gustafsson and F. Gunnarsson, “Positioning using time-difference of arrival
measurements,” in Proc. IEEE International Conference on Acoustics, Speech,
and Signal Processing,(ICASSP’03), vol. 6, Hong Kong, China, Apr. 2003, pp.
553–556.

89



90

[11] R. Klukas and M. Fattouche, “Line-of-sight angle of arrival estimation in the outdoor
multipath environment,” IEEE Transactions on Vehicular Technology, vol. 47,
no. 1, pp. 342–351, Feb. 1998.

[12] A. Pages-Zamora, J. Vidal, and D. Brooks, “Closed-form solution for positioning
based on angle of arrival measurements,” in Proc. 13th IEEE Int. Symp.
Personal, Indoor and Mobile Radio Commun., Lisbon, Portugal, Sep. 2002, pp.
1522–1526.

[13] A. Sayed, A. Tarighat, and N. Khajehnouri, “Network-based wireless location:
challenges faced in developing techniques for accurate wireless location
information,” IEEE Signal Processing Magazine, vol. 22, no. 4, pp. 24–40, Jul.
2005.

[14] P. Rong and M. L. Sichitiu, “Angle of arrival localization for wireless sensor networks,”
in Proc. IEEE 3rd Annual IEEE Communications Society on Sensor and Ad Hoc
Communications and Networks (SECON’06), Sep. 2006, pp. 374–382.

[15] T. S. Rappaport, Wireless communications: principles and practice, 2nd ed.
Englewood Cliffs, NJ: Prentice Hall PTR, 2002.

[16] K. Yu, I. Sharp, and Y. J. Guo, Ground-based wireless positioning. Chichester, West
Sussex, UK: John Wiley and Sons Ltd., 2009.

[17] N. H. Lehmann, A. M. Haimovich, R. S. Blum, and L. J. Cimini, “High resolution
capabilities of MIMO radar,” in Proc. 40ed Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA, Oct. 2006, pp. 25–30.

[18] A. J. Weiss and E. Weinstein, “Fundamental limitations in passive time delay
estimation - Part I: Narrow-band systems,” IEEE Transactions on Acoustics,
Speech and Signal Processing, vol. 31, no. 2, pp. 472–486, Apr. 1983.

[19] ——, “Fundamental limitations in passive time delay estimation - Part II: Wide-band
systems,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 32,
no. 5, pp. 1064–1078, Oct. 1984.

[20] B. M. Sadler, L. Huang, and Z. Xu, “Ziv-Zakai time delay estimation bound for
ultra-wideband signals,” in Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing,(ICASSP’07), vol. 3, Apr. 2007, pp. 549–552.

[21] D. Dardari, C. C. Chong, and M. Z. Win, “Threshold-based time-of-arrival estimators
in UWB dense multipath channels,” IEEE Transactions on Communications,
vol. 56, no. 8, pp. 1366–1378, Aug. 2008.

[22] B. M. Sadler, N. Liu, and Z. Xu, “Ziv-Zakai Bounds on Time Delay Estimation
in Unknown Convolutive Random Channels,” IEEE Transactions on Signal
Processing, vol. 58, no. 5, pp. 2729–2745, May 2010.



91

[23] N. Liu, Z. Xu, and B. M. Sadler, “Ziv-Zakai Time-Delay Estimation Bounds
for Frequency-Hopping Waveforms Under Frequency-Selective Fading,” IEEE
Transactions on Signal Processing, vol. 58, no. 12, pp. 6400–6406, Dec. 2010.

[24] B. M. Sadler and R. J. Kozick, “A survey of time delay estimation performance
bounds,” in Fourth IEEE Workshop on Sensor Array and Multichannel
Processing, Jul. 2006, pp. 282–288.

[25] K. L. Bell, Y. Ephraim, and H. L. V. Trees, “Explicit Ziv-Zakai lower bound for
bearing estimation,” IEEE Transactions on Signal Processing, vol. 44, no. 11,
pp. 2810–2824, Nov. 1996.

[26] F. Athley, “Threshold region performance of maximum likelihood direction of arrival
estimators,” IEEE Transactions on Signal Processing, vol. 53, no. 4, pp. 1359–
1373, Apr. 2005.

[27] C. D. Richmond, “Capon algorithm mean-squared error threshold SNR prediction
and probability of resolution,” IEEE Transactions on Signal Processing, vol. 53,
no. 8, pp. 2748–2764, Aug. 2005.

[28] ——, “Mean-squared error and threshold SNR prediction of maximum-likelihood
signal parameter estimation with estimated colored noise covariances,” IEEE
Transactions on Information Theory, vol. 52, no. 5, pp. 2146–2164, May 2006.

[29] H. L. V. Trees, Detection, Estimation, and Modulation Theory, Part I. New York,
NY: John Wiley and Sons, 2001.

[30] E. W. Barankin, “Locally best unbiased estimates,” Ann. Math. Stat., vol. 20, no. 4,
pp. 477–501, 1949.

[31] R. McAulay and E. Hofstetter, “Barankin bounds on parameter estimation,” IEEE
Transactions on Information Theory, vol. 17, no. 6, pp. 669–676, 1971.

[32] L. Knockaert, “The Barankin bound and threshold behavior in frequency estimation,”
IEEE Transactions on Signal Processing, vol. 45, no. 9, pp. 2398–2401, Sep. 1997.

[33] J. Tabrikian and J. L. Krolik, “Barankin bounds for source localization in an uncertain
ocean environment,” IEEE Transactions on Signal Processing, vol. 47, no. 11,
pp. 2917–2927, Nov. 1999.

[34] A. Pinkus and J. Tabrikian, “Barankin Bound for Range and Doppler Estimation
Using Orthogonal Signal Transmission,” in IEEE Conference on Radar, Apr.
2006, pp. 94–99.

[35] P. S. La Rosa, A. Renaux, and A. Nehorai, “Barankin Bound for Multiple Change-
Point Estimation,” in 2nd IEEE International Workshop on Computational
Advances in Multi-Sensor Adaptive Processing, (CAMPSAP ’07), St. Thomas,
VI, Dec. 2007, pp. 37–40.



92

[36] E. Naftali and N. C. Makris, “Necessary conditions for a maximum likelihood estimate
to become asymptotically unbiased and attain the Cramer-Rao lower bound.
Part I. General approach with an application to time-delay and Doppler shift
estimation.” Journal of the Acoustical Society of America, vol. 110, no. 4, pp.
1917–1930, Oct. 2001.

[37] A. Thode, M. Zanolin, E. Naftali, I. Ingram, P. Ratilal, and N. C. Makris, “Necessary
conditions for a maximum likelihood estimate to become asymptotically unbiased
and attain the Cramer-Rao lower bound. Part II. Range and depth localization
of a sound source in an ocean waveguide,” The Journal of the Acoustical Society
of America, vol. 112, pp. 1890–1910, 2002.

[38] J. Ziv and M. Zakai, “Some lower bounds on signal parameter estimation,” IEEE
Transactions on Information Theory, vol. 15, no. 3, pp. 386–391, May 1969.

[39] K. L. Bell, Y. Steinberg, Y. Ephraim, and H. L. V. Trees, “Extended Ziv-Zakai lower
bound for vector parameter estimation,” IEEE Transactions on Information
Theory, vol. 43, no. 2, pp. 624–637, Mar. 1997.

[40] K. L. Bell, “Performance Bounds in Parameter Estimation with Application to
Bearing Estimation,” Ph.D. dissertation, George Mason University, Fairfax, VA,
1995.

[41] W. Xu, “Performance bounds on matched-field methods for source localization
and estimation of ocean environmental parameters,” Ph.D. dissertation,
Massachusetts Institute of Technology, Cambridge, MA, 2001.

[42] W. Xu, A. B. Baggeroer, and H. Schmidt, “Performance Analysis for Matched-Field
Source Localization: Simulations and Experimental Results,” IEEE Journal of
Oceanic Engineering, vol. 31, no. 2, pp. 325–345, Apr. 2006.

[43] R. J. Kozick and B. M. Sadler, “Source localization with distributed sensor arrays
and partial spatial coherence,” IEEE Transactions on Signal Processing, vol. 52,
no. 3, pp. 601–616, Mar. 2004.

[44] V. M. Chiriac, A. M. Haimovich, S. C. Schwartz, and J. A. Dabin, “Performance
bound for localization of a near field source,” in Proc. 44ed Asilomar Conference
on Signals, Systems and Computers, Pacific Grove, CA, Nov. 2009, pp. 130 –
135.

[45] V. M. Chiriac and A. M. Haimovich, “Ziv - Zakai lower bound on target localization
estimation in MIMO radar systems,” in Proc. IEEE Radar Conference,
Washington, DC, May 2010, pp. 678 – 683.

[46] P. M. Woodward, Probability and information theory, with applications to radar. New
York, NY: McGraw-Hill, 1957.



93

[47] E. Weinstein and A. J. Weiss, “A general class of lower bounds in parameter
estimation,” IEEE Transactions on Information Theory, vol. 34, no. 2, pp.
338–342, Mar. 1988.

[48] B. Z. Bobrovsky and M. Zakai, “A lower bound on the estimation error for certain
diffusion processes,” IEEE Transactions on Information Theory, vol. 22, no. 1,
pp. 45–52, Jan. 1976.

[49] A. J. Weiss, “Fundamental bounds in parameter estimation,” Ph.D. dissertation,
Tel-Aviv University, Tel-Aviv, Israel, 1985.

[50] A. J. Weiss and E. Weinstein, “A lower bound on the mean square error in random
parameter estimation,” IEEE Transactions on Information Theory, vol. 31, no. 5,
pp. 680–682, Sep. 1985.

[51] D. Chazan, M. Zakai, and J. Ziv, “Improved lower bounds on signal parameter
estimation,” IEEE Transactions on Information Theory, vol. 21, no. 1, pp. 90–93,
Jan. 1975.

[52] S. Bellini and G. Tartara, “Bounds on error in signal parameter estimation,” IEEE
Transactions on Communications, vol. 22, no. 3, pp. 340–342, Mar. 1974.

[53] E. Cinlar, Introduction to stochastic processes. Englewood Cliffs, NJ: Prentice Hall
PTR, 1975.

[54] M. A. Haleem and A. M. Haimovich, “On the distribution of ambiguity levels in
MIMO radar,” in Proc. 43ed Asilomar Conference on Signals, Systems and
Computers, Pacific Grove, CA, Oct. 2008, pp. 198–202.

[55] A. Papoulis, Probability Random Variables and Stochastic Processes. New York, NY:
McGraw-Hill, 1991.

[56] J. Nocedal and S. J. Wright, Numerical Optimization. New York, NY: Springer,
2007.

[57] E. M. T. Hendrix and B. G. Toth, Introduction to nonlinear and global optimization.
New York, NY: Springer, 2010.

[58] A. Zhigljasky and A. Zilinskas, Stochastic global optimization. New York, NY:
Springer, 2008.

[59] D. R. Jones, C. D. Perttunen, and B. E. Stuckman, “Lipschitzian optimization
without the Lipschitz constant,” Journal of Optimization Theory and
Applications, vol. 79, no. 1, pp. 157–181, Oct. 1993.

[60] B. Shubert, “A sequential method seeking the global maximum of a function,” SIAM
Journal on Numerical Analysis, vol. 9, no. 1, pp. 379–388, 1972.



94

[61] H. Godrich, A. M. Haimovich, and R. S. Blum, “Target localization accuracy gain in
MIMO radar-based systems,” IEEE Transactions on Information Theory, vol. 56,
no. 6, pp. 2783–2803, Jun. 2010.

[62] L. D. Collins, “Asymptotic approximation to the error probability for detecting
Gaussian signals,” Ph.D. dissertation, Massachusetts Institute of Technology,
Cambridge, MA, 1968.

[63] D. F. DeLong, “Use of the Weiss-Weinstein bound to compare the direction-finding
performance of sparse arrays,” MIT Lincoln Lab., Lexington, MA, Tech. Rep.
Tech. Rep. 982, Aug. 1993.

[64] B. D. Steinberg, “The peak sidelobe of the phased array having randomly located
elements,” IEEE Transactions on Antennas and Propagation, vol. 20, no. 2, pp.
129–136, Mar. 1972.

[65] M. A. Haleem and A. M. Haimovich, “Sidelobe mitigation in MIMO radar with
multiple subcarriers,” in Proc. IEEE Radar Conference 2009, Pasadena, CA,
May 2009, pp. 1–6.

[66] J. Li and P. Stoica, “MIMO Radar with Colocated Antennas,” IEEE Signal Processing
Magazine, vol. 24, no. 5, pp. 106–114, Sep. 2007.

[67] A. M. Haimovich, R. S. Blum, and L. J. Cimini, “MIMO radar with widely separated
antennas,” IEEE Signal Processing Magazine, vol. 25, no. 1, pp. 116–129, 2008.

[68] E. Fishler, A. M. Haimovich, R. S. Blum, L. J. Cimini, D. Chizhik, and R. A.
Valenzuela, “Spatial Diversity in Radars - Models and Detection Performance,”
IEEE Transactions on Signal Processing, vol. 54, no. 3, pp. 823–838, Mar. 2006.

[69] J. Li and P. Stoica, MIMO radar signal processing. Hoboken, NJ: John Wiley and
Sons, 2009.

[70] A. W. Rihaczek, Principles of high-resolution radar. Norwood, MA: Artech House,
1996.

[71] R. Sivaswamy, “Multiphase complementary codes,” IEEE Transactions on
Information Theory, vol. 24, no. 5, pp. 546–552, Sep. 1978.

[72] J. P. Costas, “A study of a class of detection waveforms having nearly ideal range-
Doppler ambiguity properties,” Proceedings of the IEEE, vol. 72, no. 8, pp. 996–
1009, Aug. 1984.

[73] J. C. Guey and M. R. Bell, “Diversity waveform sets for delay-Doppler imaging,”
IEEE Transactions on Information Theory, vol. 44, no. 4, pp. 1504–1522, Jul.
1998.

[74] I. Gladkova and D. Chebanov, “On the synthesis problem for a waveform having a
nearly ideal ambiguity surface,” in Proc. The International Conference RADAR
2004, Toulouse, France, Oct. 2004.



95

[75] A. Pezeshki, A. R. Calderbank, W. Moran, and S. D. Howard, “Doppler resilient
Golay complementary waveforms,” IEEE Transactions on Information Theory,
vol. 54, no. 9, pp. 4254–4266, Sep. 2008.

[76] H. He, P. Stoica, and J. Li, “On synthesizing cross ambiguity functions,”
in Proc. IEEE International Conference on Acoustics, Speech, and Signal
Processing,(ICASSP’11), Prague, Czech, May 2011, pp. 3536–3539.

[77] J. J. Zhang, G. Maalouli, A. Papandreou-Suppappola, and D. Morrell, “Cramer-Rao
lower bounds for the joint estimation of target attributes using MIMO radar,”
in International Conference on Waveform Diversity and Design, Feb. 2009, pp.
103–107.

[78] Q. He, R. S. Blum, and A. M. Haimovich, “Noncoherent MIMO radar for location
and velocity estimation: More antennas means better performance,” IEEE
Transactions on Signal Processing, vol. 58, no. 7, pp. 3661–3680, Mar. 2010.

[79] N. Levanon and E. Mozeson, Radar Signals. Hoboken, NJ: John Wiley and Sons,
2004.

[80] R. A. Horn and C. R. Johnson, Matrix analysis. New York, NY: Cambridge Univ
Pr, 1990.

[81] H. L. V. Trees, Optimum array processing, Part IV. New York, NY: John Wiley
and Sons, 2002.

[82] P. M. DeRusso, R. J. Roy, and C. M. Close, State Variables for Engineers. New
York,NY: John Wiley and Sons, 1965.

[83] T. Tsao, M. Slamani, P. Varshney, D. Weiner, H. Schwarzlander, and S. Borek,
“Ambiguity function for a bistatic radar,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 33, no. 3, pp. 1041–1051, Jul. 1997.

[84] M. K. Simon and M. S. Alouini, Digital communication over fading channels: a unified
approach to performance analysis. New York, NY: John Wiley and Sons, 2000.

[85] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products. San
Diego, CA: New York: Academic, 2000.

[86] G. San Antonio, D. Fuhrmann, and F. Robey, “MIMO radar ambiguity functions,”
IEEE Journal of Selected Topics in Signal Processing, vol. 1, no. 1, pp. 167–177,
Jun. 2007.

[87] S. Kay, Fundamentals of Statistical Processing, Volume I: Estimation Theory.
Englewood Cliffs, NJ: Prentice Hall PTR, 1993.

[88] S. S. Mischa Schwartz William R. Bennett, Communication systems and techniques.
New York, NY: McGraw-Hill, 1966.



96

[89] M. J. D. Rendas and J. M. F. Moura, “Ambiguity in radar and sonar,” IEEE
Transactions on Signal Processing, vol. 46, no. 2, pp. 294–305, Feb. 1998.

[90] L. Hanzo, M. Münster, B. Choi, and T. Keller, OFDM and MC-CDMA for broadband
multi-user communications, WLANs, and broadcasting. Chichester, West
Sussex, UK: John Wiley and Sons Ltd., 2003.

[91] N. Levanon, “Multifrequency complementary phase-coded radar signal,” in IEE Proc.,
Radar, Sonar and Navigation, vol. 147, no. 6, 2000, pp. 276–284.

[92] C. C. Tseng and C. L. Liu, “Complementary sets of sequences,” IEEE Transactions
on Information Theory, vol. 18, no. 5, pp. 644–652, Sep. 1972.

[93] C. Zhang, X. Lin, and M. Hatori, “Two dimensional combined complementary
sequence and its application in multi-carrier CDMA,” IEICE transactions on
communications, vol. 88, no. 2, pp. 478–486, 2005.


	Target localization in passive and active systems : performance bonds
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment (1 of 2)
	Acknowledgment (2 of 2)

	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Lower Bounds on the Minimum Mean Square Error
	Chapter 3: Coherent Localization on Passive Systems
	Chapter 4: Coherent Localization in Active Systems
	Chapter 5: Noncoherent Localization of a Moving Target in Active Systems
	Chapter 6: Conclusions and Future Work
	Appendix A: Cramer RAO Lower Bound for Coherent Passive Localization
	Appendix B: Proof of Lemma 1
	Appendix C: Derivation of Probability of Error
	Appendix D: Coded OFDM Waveforms
	References

	List of Figures (1 of 2)
	List of Figures (2 of 2)


