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Abstract—A signal intensity based maximum-likelihood (ML)
target location estimator that uses quantized data is proposed for
wireless sensor networks (WSNs). The signal intensity received
at local sensors is assumed to be inversely proportional to the
square of the distance from the target. The ML estimator and its
corresponding Cramér-Rao lower bound (CRLB) are derived.
Simulation results show that this estimator is much more accurate
than the heuristic weighted average methods, and it can reach the
CRLB even with a relatively small amount of data. In addition,
the optimal design method for quantization thresholds, as well as
two heuristic design methods, are presented. The heuristic design
methods, which require minimum prior information about the
system, prove to be very robust under various situations.

Index Terms—Cramér-Rao lower bound, location estimation,
quantization, wireless sensor networks.

I. INTRODUCTION

ITH the significant advances in networking, wireless
Wcommunications, microfabrication, and microproces-
sors, the topic of wireless sensor networks (WSNs) has become
a fast-growing research area. Recently, many aspects of WSNss,
including network architectures, routing protocols, distributed
data compression and transmission, and distributed signal
processing, have drawn extensive attention [1]-[3]. Typically,
a WSN consists of a large number of low-cost, low-power,
densely distributed, and possibly heterogeneous sensors. Sensor
nodes in a WSN are usually battery driven and hence operate on
an extremely frugal energy budget, and they have very limited
sensing and communication ability.

An important task that WSNs need to perform is target lo-
cation estimation, which is imperative for an accurate tracking
of the target and higher level motion analysis. Many methods
for acoustic source localization in sensor networks or sensor
arrays are available in the literature [4]-[9]. In [4]-[6], tech-
niques based on direction of arrival (DOA) estimation have been
investigated for narrowband sources. For broadband sources,
methods based on time-delay of arrival (TDOA) estimation are
more suitable [7]-[9]. In a WSN, usually the sensors are very
inexpensive and not accurately synchronized, and hence, the
TDOA, which requires accurate timing of sensors, is not very
practical.
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In a WSN, typically there are a large number of inexpensive
sensors which are densely deployed in a region of interest (ROI).
This makes accurate intensity (energy) based target localiza-
tion possible. Signal intensity measurements are usually used
for target detection. Hence, it is very convenient and econom-
ical to utilize them to localize a target, without the need for ad-
ditional sensor functionalities and measurement features, such
as the DOA. Energy-based methods have been proposed and de-
veloped in [10]-[12]. In [11], least-square methods are proposed
to localize a single acoustic source based on the energy ratios
between sensors. In [12], a maximum-likelihood (ML) acoustic
source localization method has been presented. In both papers,
the fact that the intensity (energy) of acoustic signal attenuates
as a function of distance from the source, has been used. En-
ergy-based methods are suitable for WSNs because they only
require the energy readings of the sensors.

However, in [10]-[12], analog measurements from sensors
are required to estimate the source location. For a typical WSN
with limited resources (energy and bandwidth), it is important
to limit the communication within the network. Therefore,
it is desirable that only binary or multibit quantized data be
transmitted from local sensors to the processing node (fusion
center). Motivated by this, we propose an intensity based ML
target location estimation method using only quantized data.
In [13], a related work on sensor localization using quantized
received signal strength (RSS) is presented. There, quantized
pairwise measurements and a priori knowledge of reference
sensors’ locations are employed to estimate sensors’ locations.
The problem in our work is different from that in [13], because
we will estimate a target’s location in a sensor field, based on
quantized received signal intensity at local sensors and a priori
information about these sensors’ locations.

In the proposed location estimation method, each sensor node
collects and processes raw signal from its environment, and
then the processed signal is quantized to discrete data. These
discrete data are transmitted via a wireless channel to the pro-
cessing node (fusion center). Based on data transmitted from all
N sensor nodes, the processing node estimates the location of
the target.

In Section II, we introduce the signal intensity attenuation
model and some basic assumptions to formulate the target local-
ization problem. In Section I1I, the ML estimators that use quan-
tized data and analog data, are developed and their theoretical
performance bounds, the Cramér-Rao lower bounds (CRLBs),
are derived. Simulation results are provided to show that the ML
estimator using quantized data outperforms heuristic weighted
average (WA) methods, and that the proposed ML estimator can
reach the CRLB even with relatively small amount of data. In
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Fig. 1. The signal intensity contours of a target located in a sensor field.

Section IV, the optimal quantization thresholds at local sen-
sors are designed by minimizing the summation of estimation
error variances for the target’s two coordinates. In Section V,
two heuristic quantizer design methods are introduced, which
require minimum prior information about the system, and lead
to very robust estimation performance under various situations.
We present some concluding remarks in Section VI.

II. PROBLEM FORMULATION

As illustrated in Fig. 1, the signal intensity attenuates as the
distance from the target increases. Note that our method can
handle any sensor deployment pattern and the uniform sensor
deployment shown in Fig. 1 is only a special case. Further, we
make the following assumptions:

* A target has been correctly detected in a sensor field with

N sensors, whose locations are known.
* We adopt an isotropic signal intensity attenuation model

G; P}
az — 0

2 d_,l n
do

where a; is the signal amplitude at the sth sensor, G; is the

gain of the ith sensor, P} is the emitted power of the target

measured at a reference distance dg, and d; is the Euclidean
distance between the target and the sth sensor

(D

d; = \/(ﬂil —x4)? + (yi —yr)? 2

in which (z;,y;) and (z;,y;) are the coordinates of the
ith sensor and the target, respectively, and n is the power
decay exponent. For simplicity, we assume that G; = G
fori =1,---, N, andlet P, = GP}. In this paper, we also
assume that dy = 1 m. As a result, (1) becomes

Py

a? =
d;

We assume that all the sensors are in the far field, and

the target is at least dy meters away from any sensor at all

times.

3)
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In this paper, we do not specify the type of the passive
sensors and the intensity decay model adopted here is quite
general. For example, when spherical acoustic waves radi-
ated by a simple source are propagating through the air, the
intensity of the waves will decay at a rate inversely propor-
tional to the square of the distance [14]. Similarly, (3) is
also a widely adopted model for signal attenuation of an
isotropically radiated electromagnetic wave that is propa-
gating in free space [15].

* At each sampling instance, signals emitted from the target
are measured by sensors and data collected from all the
sensors are called a frame of data. The time interval be-
tween frames (samples) is small enough such that the target
is assumed static for 7' frames. As a result, the signal
strength at a specific sensor ¢ during frame j, a;;, is in-
variant for T" frames, i.e., a;; = a; forj =1,---,T.

This is a reasonable assumption. For example, if the
sampling rate is 4000 Hz, a vehicle with a speed of 80 km/h
only moves 0.28 m during 1" = 50 sampling intervals.

* At each sensor, the signal a; is corrupted by an additive
Gaussian noise

Tij = a; + Vij “)

where r;; is the received signal amplitude at the 7th sensor
during frame j. The noises follow an identical Gaussian
distribution for all the sensors and during all the frames,
and they are independent across sensors. To reduce the ef-
fect of the additive noise and hence improve the signal-to-
noise ratio (SNR), an average received signal amplitude is
obtained as follows:
1 Z
DT
j=1

a; + w; (5)

T
Al
wi:—g Vij
T
i=1

and obviously it follows a Gaussian distribution. Note that
for a sufficiently large T, according to the central limit the-
orem (CLT), w; approaches a Gaussian distribution even
for non-Gaussian noises v;;’s. Here we assume that

1>
Nl

where

w; ~ N(O 0'2)

for: = 1,---, N. Ateach sensor, the average signal ampli-
tude s; is quantized and transmitted to the processing node.

III. DEVELOPMENT OF LOCATION ESTIMATOR
USING QUANTIZED DATA

A. Location Estimator Using Multibit Data

In this section, we study the location estimation problem
using discrete data. We assume that each sensor sends quan-
tized multibit (M-bit) data to the processing node, which are
denoted as D = {D; : i = 1,---, N}, where D; can take any
discrete value from 0 to 2™ — 1. To simplify the notation, we
define I = 2M . Further, we assume that the set of quantization
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thresholds for the ith sensor is 7; = [0, 71, - -], Where
N0 = —oo and 7;;, = oo. The quantization process for the +th
sensor is such that

0 —00 < 8; < Mi1
1 i1 < 8; < M2

Di=q: : (6)
L—2 myp—2 <si <mnir-1)

Ni(L—1) < i < 00.

Due to the Gaussian noise assumption, the probability that D;
takes a specific value [ is

7, il — G Uh —
pil('f]i,e):Q <77IT> —Q (L

a

) (0<I<L-1)
)

where ()(-) is the complementary distribution function of the
standard Gaussian distribution

o q 2

After collecting data D, the processing node estimates the pa-
rameter vector: § = [Py z; y:|’. Based on the above notations
and assumptions listed in Section II, it is easy to derive the like-
lihood function at the processing node

N

L—-1
p(DI0) =[] [ patis. 0)°® )

i=1 1=0

where 6(-) is defined as follows:

r=0

L
6(z) = {07 240, (10)
The log-likelihood function of D is therefore
N L-1
np(D|0) =Y "> " 8(D; = DIn[pu(ii,0)]. (1)
i=1 =0

ML estimation is now the following optimization problem:

meaxlnp(DW). (12)
The CRLB for this estimation problem has been derived and
stated in the following theorem.

_ Theorem I: Assuming the existence of an unbiased estimator
6(D), the CRLB is given by

E { [é(D) - 9] [é(D) - a]T} > J! (13)
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in which J is the Fisher information matrix (FIM) and its ele-
ments are as follows:

J11 = Z I‘iLdZ_Zn/(],L2

Jig =Jo1 = nz Kid n+2)(

.’l?t)

Jiz =J31 = ”Z rad; "
Jay =n? Z n‘ia?d; (z

Joz = Jzg = n* Z riatd

K2
_ .2 9 -
J3z=mn E riaid; "~ (
i

Yi — yt)

P l’t)2
T — @) (i — )
Yi — yr)? (14)

where

i = 871'02 Z

le "717
and
212
(g —a)? ( (1+1) ")
Yii = |e 202 —e 202

Proof: See Appendix 1.
The closed form of the CRLB matrix R can be derived by
taking the inverse of J

Joodzs—J3y  Jigdaz—Ji2J3s Jiadaz—Jiz 2o
R:ﬁ Jisdos—Jiadss  Jiidss—J3  Jiadiz—Ji1Jes
Jiodoz—Jizdos JioJiz—Jiidas  JiiJaa—Jh

(15)
where the determinant of J is
|| = Ji1 2233 + 2J12 013023 — J11J223 — J22J123 - J33J122-
(16)

B. Location Estimator Using Analog Data

For the purpose of comparison, we have also derived the
CRLB of the location estimator using analog data. We denote
analog data from N sensors as S = {s; : ¢ = 1,---, N}. Based
on the additive Gaussian noise assumption, it is easy to show
that the log-likelihood function is

- i [_L _2(”)2 —Inv2r|.

i=1

In f(S516) (17)

The ML estimation procedure is to find the optimal § that max-
imizes the log-likelihood

m;xxlnf(SW). (18)
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The FIM for this estimation problem is derived and provided
in the following theorem.
Theorem 2: The FIM for estimators using analog data is

1 N
=1

where
1 n(z;—x) n(yi—y:)
IPyd" ar 4dz1+2 4d7 T2
C. = n(z;—z) Pon®(z;—x,)*? Por® (zi—24) (yi—y1)
7 — 4d_:1+2 4d21+4 4d;n+4
n(yi —y¢) Pon® (zi—x4)(yi —y¢) M
4dt? 4d7t? 4dtt

Proof: See Appendix II.
The corresponding CRLB matrix R can be derived with a
similar procedure as used in Section III-A.

C. Simulation Results

In this subsection, we give simulation results for the ML es-
timator discussed in Section III-A. For the purpose of compar-
ison, the performances of several heuristic estimation methods
based on WAs are also provided.

In order to find the global maximum during ML estimation,
we first employ a systematic grid search to find an approxi-
mate maximum point. From this point, a sequential quadratic
programming (SQP) based procedure provided by MATLAB is
used to perform the maximization.

As for the WA methods, the estimated target location is ob-
tained by taking a weighted average of all the sensors’ locations.
In the first WA method (WA-I), the 7th sensor’s weight is pro-
portional to the data D; it sends to the fusion center

£ = Y. D&
= N
Zi:l D;

where & = [z y¢]' and & = [z; v

In the second WA method (WA-II), the sth sensor’s weight is
proportional to the square of the data (D;) it sends to the fusion
center

19)

N
ét _ Zi:l D?fi
L N -
Zi:l D1,2

Note that in both WA-I and WA-II methods, in the case that all
the sensors send a “0” to the fusion center, the average (centroid)
of all the sensors’ location will be taken as the estimate of the
target location.

In the third WA method (WA-III), only those sensors, whose
data have the highest value of D;, get equal nonzero weights.
Other sensors are assigned a zero weight

g __E:Dﬁdxmx&
, = Si=Dmax ¥
|Smax|

(20)

2

where Dynax = max; D;, and |Spax| denotes the cardinality of
the set Smax = {Di : Di = Dpax,? = 1,---, N}. Note that
while WA methods can estimate the target’s location, they are
unable to make an estimate of F.
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Fig. 3. RMS errors of different estimation methods (n = 2, P, = 25000,
xy = 15m,y, =20m, M = 2,0 = 1). RMS estimation errors for x; and
y: are in meters. Sensors are uniformly deployed as shown in Fig. 1. Solid line:
CRLB, dashed line: ML, dash-dot line: WA-I, dash-dot line + circle: WA-II,
dash-dot line + star: WA-III. Quantization threshold 7f = [0.82,1.70,2.72].

In Fig. 2, the performance of the ML estimator using binary
data is compared with the CRLB and that of the WA methods.
The performances are based on 1000 simulation runs. Note
that when binary quantization is used by local sensors, all three
WA methods are equivalent. Sensors are uniformly deployed
as shown in Fig. 1. The performance is plotted as a function
of K, where K = /N is the square root of the number of
sensors. It is clear that the ML method has a better performance
than the WA methods, except when the number of sensors
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TABLE 1
AVERAGE NEES BASED ON 100 MONTE CARLO RUNS FOR THE ML ESTIMATOR (n = 2, Py = 25000, 2; = 15m,y; =20m, 0 = 1)
Total number of sensors (N) | 36 64 100 | 144 | 196 | 256 | 324 | 400
Binary data (M = 1) 438 | 4.17 | 408 | 3.80 | 3.35 | 3.04 | 3.11 | 2.85
Quaternary data (M = 2) 3.68 | 3.41 | 3.20 | 3.22 | 2.93 | 3.18 | 2.86 | 3.22
—~ . simulation runs. As we can see, the RMS estimation errors for
& 2500 4 the ML estimator using analog data is indistinguishable from
g 2000 1 values obtained from the theoretical CRLB. The performance of
$ :Z£ the ML estimator using quantized data is also very close to its
= 500 . . . . . . CRLB. As the number of bits increases, the performance of ML
o 1 2 3 4 5 6 7 8 . . . .
estimator using quantized data converges to that using analog
& : : : . . ; data. The ML estimator based on 6-bit quantized data has little
g a | difference from the ML estimator based on analog data, in terms
5 , of estimation accuracy.
%J —— To verify the results we derived in Section III-A, we use the
o 0, 2 3 " 5 6 7 g normalized estimation error squared (NEES) [16], which is de-
fined as
S 4 N 1 . R
5 - co=(0-0)"J(0—0) (22)
n 2t i
= — ® - . . .
o o 5 3 ' s ; ; s Where 0 is the estimate, and J is the FIM. It is well known

4
Number of Bits M

Fig. 4. RMS errors for ML estimators using quantized data and analog data
n=2,FP, =25000,z;, =y, =0m, N = 196, 0 = 1). RMS estimation
errors for x; and y, are in meters. Sensors are uniformly deployed as shown
in Fig. 1. Solid line: CRLB for analog data, dotted line: ML estimator using
analog data, solid line + circle: CRLB for quantized data, dashed line + star:
ML estimator using quantized data. Quantization thresholds are calculated using
the Fisher information based heuristic quantization (FIHQ) method, which is
described in Section V-B.

in the ROI is relatively small (N = 36). As the number of
sensors [V increases, the ML estimator’s performance improves
significantly and quickly converges to the CRLB, but the WA
methods do not gain much in estimation accuracy.

In Fig. 3, the performance of the ML estimator using qua-
ternary data is compared with the CRLB and those of heuristic
WA methods. It is clear that the ML method has a much
better performance than the WA methods. As the number of
sensors [V increases, the ML estimator’s performance quickly
converges to the CRLB. Among the WA methods, it appears
that in general, the methods that assign a heavier weight to
a sensor with a larger quantized data (D;), achieve a better
performance. That is, WA-II and WA-III always outperform
WA-I, and WA-III, which only assigns nonzero weights to those
sensors with highest D;’s, has the best performance, except
when the number of sensors is very small (N = 36). This is not
surprising and can be explained intuitively. Because the closer
the sensors are to the target, the higher their received signals,
and hence the greater quantization outputs they will have. It is
better to give those sensors much greater weights than others.

In Fig. 4, the ML estimator using quantized data is compared
with that using analog data. Again, the RMS estimation error
for the ML estimator is calculated based on 1000 Monte Carlo

that the ML estimate is asymptotically Gaussian with the mean
equal to the true value of the parameter to be estimated and
variance given by the CRLB. Assuming that the estimation error
is approximately Gaussian, the NEES is Chi-square distributed
with ng degrees of freedom, where ng = 3 is the dimension of
the parameter being estimated, namely, §. For multiple Monte
Carlo simulations, the average of NEES is usually used, which
is defined as

IR
=5 Zl e (23)
where N,,, is the number of Monte Carlo simulations. V,,,€g
has a Chi-square density with N,,,ng degrees of freedom. Based
on 100 Monte Carlo runs, our results are listed in Table 1. The
two-sided 95% confidence region for the average NEES is
[2.54,3.50]. The results show that for a system with binary
quantization, when the total number of sensors (V) is greater
than or equal to 196, the average NEES falls in the two-sided
95% confidence region. This means that our ML estimator is
efficient, that is, the errors “match” the covariance given by the
CRLB. For quaternary quantization, the average NEES falls in
the 95% confidence region even when the number of sensors is
as low as 64.

In Fig. 5, for a WSN with 196 uniformly deployed sensors
and binary quantization, the results of location estimation,
along with the theoretically calculated covariance are shown.
The latter is presented as an ellipse corresponding to the 99%
confidence regions of the position estimates based on the CRLB
provided by Theorem 1. We can see that in 99 out of 100 Monte
Carlo runs, the estimated positions fall in the 99% confidence
region.
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IV. OPTIMAL QUANTIZATION THRESHOLDS

As we can see from Theorem 1, the FIM and, hence, the
CRLB are functions of the quantization thresholds. Therefore,
the quantization thresholds at local sensors can be designed to
achieve better system performance (estimation accuracy). Be-
cause in this paper, we are more concerned about the estimation
accuracy of the target location rather than the signal power at
distance dy (Py), a natural choice for the cost function is the
summation of variances for location estimation errors in two di-
mensions, namely, the summation of the (2,2) and (3, 3) ele-
ments of the CRLB matrix. We denote this quantity as V', and
from (15), we have

_ Ju() [J33(7) + J22 ()] — J75(17) — J35(7)
I (77)]

where 7 = {7; : 4 = 1,---, N} is the set of thresholds at all the

sensors. The optimal threshold set 77 is then the solution of the

following optimization problem:

V(i)

(24)

min V (77)
]

(25)

Note that 7 has N(L — 1) elements. For example, for a system
using 64 sensors and 10-bit quantization, the minimization
problem has to be solved over 65472 variables, and the opti-
mization problem cannot be decoupled into subproblems with
smaller number of variables. For simplicity, both in theoretical
analysis and in practice, a realistic assumption is that all the
sensors employ identical thresholds. The optimization problem
can be performed over just L — 1 variables.

Implicitly, the threshold optimization method proposed in this
section requires the knowledge of the signal power Py, and
target location (¢, y¢), which are nothing but the unknown pa-
rameters that need to be estimated. Furthermore, the optimal
threshold also depends on the locations of the sensors. For many
WSN applications, the sensors will be deployed randomly in
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a surveillance area. Due to the uncertainty in the locations of
these sensors, it is impossible to set the optimal thresholds be-
fore deployment. A possible solution is to assume that all the
unknown parameters, including Py, (x¢,y:), and (x;,y;) for
i =1,---, N, follow a uniform distribution in an interval (for
FPp) and in the surveillance region (for target and sensor loca-
tions). An average cost function then can be calculated by em-
ploying a multiple-fold integration over these unknown param-
eters. However, this is a very complicated problem that leads
to prohibitive computation load. As a result, the design of op-
timal threshold is not practical and its corresponding estimation
performance can only serve as a benchmark for other quantiza-
tion thresholds. It is imperative to find some intuitive methods to
design quantization thresholds, which should be simple to cal-
culate and robust in various scenarios.

V. HEURISTIC METHODS FOR THRESHOLD DESIGN

A. Entropy-Based Heuristic Quantization

The entropy-based heuristic quantization (EHQ) method is
inspired by the fact that the threshold of a binary quantizer
should not be too high or too low, in order to convey useful in-
formation about the target. Hence, it is important to investigate
the distribution of the signal amplitude a;. From (2) and (3), we
know that the signal amplitude is a function of Py, (z;,;), and
(2, yt). We further assume that the signal power at distance dg
follows a uniform distribution within the interval [0, P,,,]

f(PO):{PLm 0<POSPm,

. (26)
0, otherwise

where P,, is the maximum value that P, can take. We also
assume that x;, x, y;, y; are independent and identically dis-
tributed (i.i.d.) random variables that follow a uniform distribu-
tion in the interval [—b/2,b/2]

b b
f(fv)z{%’ AL @7)

0, otherwise

where b is the length of the ROI, which is a square with area
b2. In addition, the distance between any sensor and the target
should be greater than dy, and the power decay exponent is
n = 2. Given these assumptions and conditions, we derived the
probability density function (pdf) of the signal amplitude mea-
sured at a random location, which is stated as follows.

Theorem 3: The pdf of the signal amplitude measured at a
random location is

)=

b2
?_

VP
0<z< NS

L Py VP VP
fe)= [-pro(B)]s <ase
QL a 5 e
i~ s ey — 07 YR <z <Y
07 0.W.
where (28)
8d3 d:  di
(1:1—{——0—71'—0__0 (29)

363 b2 2b4
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which is the probability that a sensor is at least dy meters away
from the target,

8dj
5b3

6
T 4 dy

= oot gpr

b 3b4

(30)

and the function g(+) is defined as

t? (207 B
g(t) = praresin | —— — 1) - R

+% Vit —b2(12t2 + %t + 2b*).  (31)
Proof: See Appendix III.

In the theorem, « gives the probability that a sensor is at least
dy meters away from the target. For b = 200 m, the probability
that a randomly deployed sensor is within a distance of 1 m
from a target with random location, is 1 — a = 7.8 X 1075,
which is quite low. Simulations have been carried out to sup-
port the theoretical results in Theorem 3. The pdf of the signal
amplitude estimated by simulation is identical to that provided
by Theorem 3. The simulation results are not shown here due to
limited space.

Once the pdf of the signal amplitude z = a; is available,
according to (7), the probability that the quantization process
has an output symbol [ ({ = 0,---,L — 1) is

\/ Pm

- [T o(5) -o() o

(32)
An intuitive method to design quantization thresholds is to max-
imize the entropy of the symbols sent by sensors. The max-
imum entropy can be achieved by choosing a set of thresholds
so that the probabilities of each symbol are the same, namely
P =1/L, (I = 0,---,L — 1). For example, for a binary
quantization, a threshold should be chosen so that both symbols
“1” and “0” have a probability of 1/2. For a WSN with a large
number of sensors, there are, on an average, half of the sensors
sending “1’s” to the processing node and the other half sending
“0’s.” As a result, this method significantly reduces the proba-
bility that almost all the sensors are sending the same symbols.
The thresholds can be found numerically by using (32).

B. Fisher Information Based Heuristic Quantization (FIHQ)

All the information about § = [Py x+ y;|’ is contained in sen-
sors’ signal amplitudes (a;’s). Intuitively, if all the signal ampli-
tudes a; (i = 1,---, N) can be accurately recovered from their
corresponding quantized data D; (¢ = 1,---, N), an accurate
estimate of # can be obtained. Similar to the derivation of (11),
the log-likelihood function of quantized data D at any sensor is

L-1

Inp(D]z) = Y 6(D =) In[pi(7F, 2)]

=0

(33)
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Fig. 6. CRLB RMS errors of estimators using multibit data as a function of
number of bits M (N = 100, n = 2, P, = 25000, 2, =y, =0m, P, =
50000,b = 200 m). Sensors are uniformly deployed as shown in Fig. 1. Dashed
line + star: optimal quantization, das-dot line: analog data, solid line + circle:
EHQ, solid line + triangle: FIHQ.

where z is the signal amplitude at that sensor. Based on (33),
it is not difficult to derive the Fisher information of this scalar
estimation problem

2

(g —2)? _(’n+1*l)2
e 2052 —e 202

F(ij)=FE
(n) 27r02pl(ﬁ7 Z)

(34)

Interestingly enough, the Fisher information is proportional to
the average value of the scaler x;, which has appeared in the
FIM provided by Theorem 1. Now its physical meaning is clear.
That is, 4k, is nothing but the amount of Fisher information
about a; that is contained in data D;. The threshold 7j then can
be designed such that in data D, there is maximum amount of
Fisher information about z

max F (7). (35)

i
Since here the Fisher information F'(7) is a scalar, maximizing
it with respect to 7] is equivalent to minimizing its reciprocal,
namely the CRLB on the estimation variance.

Note that both of the heuristic methods do not require the
knowledge of the sensor location, the target location, or the
signal power at distance dy (). So the thresholds can be set
before deployment, as long as there is some prior knowledge
about the ROI (b), and the possible range of Py, i.e., Pp,. These
two methods are applicable to situations where sensors are de-
ployed randomly.

C. Performance Evaluation of Heuristic Methods

In Fig. 6, the theoretical values of CRLB on RMS errors are
plotted for different quantization methods. For comparison, the
CRLB on the estimation RMS errors for the estimator using
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TABLE II
SQUARE ROOT OF LOCATION VARIANCE V. (n = 2, P,, = 50000, 2, =y, =0m,0c = 1,b =200m, M = 1)
Py 200 1000 4000 10000 | 20000 | 40000 | 50000
Optimal threshold | 1.25 x 102 | 1.61 x 10° | 1.47 x 10° | 103.68 | 230 | 7.87 | 105.26
EHQ 18.43 8.02 10.17 9.25 9.89 10.93 11.65
FIHQ 17.45 8.47 11.02 10.10 10.94 12.42 13.40
analog data is also plotted. In this figure, V' is the summation :o . ; . . : . : .
of the variances for estimation errors of x; and y;, as defined %’ \\\
in (24). 5 Y
As we can see, the optimal thresholds provide a significant ¢ 10\ E
improvement in estimation accuracy, compared with those given E 4 o -
by EHQ and FIHQ. As the number of bits M increases, the o L e P - e
CRLB on RMS error for multibit data converges to that for £ 1¢° ' ' . ' ' ‘ ' .
®) 1 2 3 4 5 6 7 8 9 10

analog data, for all the three quantization methods. The supe-
riority of the optimal thresholds is not surprising, because much
more knowledge, including the sensors’ locations, the target’s
location, and the exact value of P has been used. Another phe-
nomenon is that when binary data are used, EHQ outperforms
FIHQ; when multibit data are employed, FIHQ has a better per-
formance. This is because the main intuition behind EHQ is to
improve robustness, as explained in Section V-A. When binary
data are used, robustness is a critical issue and EHQ outperforms
FIHQ. However, there is no explicit and direct relationship be-
tween the entropy of symbols and estimation performance, es-
pecially when M > 1. On the other hand, for FIHQ, the phys-
ical meaning of Fisher information is well understood, and we
know heuristically that larger Fisher information usually leads
to a better estimation performance, as explained in Section V-B.
Hence, it is not surprising that based on multibit data, FIHQ has
a better performance than EHQ.

It is important to test the performance of all the three kinds of
quantization thresholds for various system parameters. We as-
sume that the optimal thresholds, which are obtained by using
the parameters given in Fig. 6, remain the same in all the exam-
ples below.

First, the target location is changed to (5, 10) instead of (0, 0).
The results are shown in Fig. 7. As we can see, when binary
quantization is used, the MSE errors for optimal thresholds are
much higher than heuristic methods. To make things even worse,
even when the number of bits is very large (M = 10), the
performance for optimal thresholds cannot reach that of analog
data. On the contrary, both of the two heuristic methods provide
reliable performances.

Based on the above example, an important observation is that
the choice of thresholds is critical when binary quantization is
used. Now we keep the target location as (0, 0), and introduce
a mismatch in Fp. In Table II, the performances of the esti-
mator using “mismatched” optimal threshold, and those using
heuristic thresholds are listed for varying Pys. Again, the op-
timal threshold gives a very poor performance for “mismatched”
Py values. For example, when Py = 200, the optimal threshold
leads to an ill-conditioned estimation problem and gives rise
to an estimation error of v/V = 1.25 x 10'2 meters. This is
because the optimal thresholds, which are designed to match a
greater P, are too high in this case. There are hardly any “1”s
that are sent to the processing node. By contrast, both the EHQ

10'4

V1/2

10 , . . . , .
5 6
Number of Bits M

Fig. 7. CRLB RMS errors of estimators using multibit data as a function of
number of bits M (N = 100,n = 2, P, = 25000,2; =5m, y; = 10 m,
P,, = 50000,b =200 m). Sensors are uniformly deployed as shown in Fig. 1.
Dashed line + star: optimal thresholds, dash-dot line: analog data, solid line +
circle: EHQ, solid line + triangle: FIHQ.

and FIHQ methods, which require minimum prior information
about the system, have very robust performances, even when F,
has extreme values.

VI. CONCLUSION AND DISCUSSION

In this paper, based on an isotropic signal attenuation model,
we presented an intensity-based ML target location estimator
that uses quantized data for WSNs. Simulation results show that
this estimator is much more accurate than heuristic weighted av-
erage methods and it is efficient even with a very small number
of quantization bits and a relatively small number of sensors.
In addition, the estimator’s corresponding CRLB is derived. Its
performance bound (CRLB) converges to that of the estimator
using analog data very quickly as the number of bits M in-
creases. The optimal quantization thresholds at local sensors are
designed to obtain a better estimation performance. In addition,
more practical and heuristic quantizer design methods are pre-
sented and are shown to be very robust under various situations.

In this paper, the effect of small-scale fading due to multipath
is not considered. In many practical situations, the assumption
that the source is omnidirectional and the propagation of the
signal is isotropic may not be true. Our future work will include
research on target localization under these imperfect situations.
Also, our algorithm proposed here deals with a single target, and
it can be modified and extended to deal with multiple targets in
the future.
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APPENDIX |
PROOF OF THEOREM 1

As we know, the FIM can be obtained as follows:

J = —E[VeV}np(D|9)] . (36)

First, we derive the (1,1) element of J. From (11), we have

821np D|9 Ipu(1;, 8) ?
= S | o)
5(Di —1) 0?pu(i;, 0)
= 37
putin0) orz O
and
0% Inp(D|h) ] -1 [31711}
EF|l———— 38
e B S @

Note the fact that E[6(D; —1)] = pi(7j;, 6) has been used in the
derivation of (38). With

2
(nj1—a;)”

9Q[(nit —ai)/o] _ e =7 (39)
P, 2V2roa;d?
it is easy to show that
Op(7,0)] Vil
[ oP, ] - 8ro2a?d?"’ (40)
Substituting (40) into (38), we finally have
02 Inp(D|0) ol Ki
E|l—————~| = — . 41
R ROV

=1

Following a similar procedure, it is easy to derive other ele-
ments of J. We skip their derivations for the sake of brevity of
the paper.

APPENDIX II
PROOF OF THEOREM 2

First, we derive the (1, 1) element of J. From (17), we have

Plf(S)h) 1 2a; [ a; \*
orz o2 z:: aP2 - <ap0> “2)
Therefore
B[P is] _ 1 Z da; \ > @)
8P0 - 02 8P0
where the fact that F[s;] = a; has been used. With
aai 1
Py~ 2/Podr “44)
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it is easy to show that
9%1n £(816) 1
F|l————| = . 45
[ OP} } o2 Z 4P0d” (45)

Similarly, it is easy to derive other elements of J. We skip
their derivations for the sake of brevity of the paper.

APPENDIX IIT
PROOF OF THEOREM 3

‘We have assumed that x; and —x; are i.i.d. and follow a uni-
form distribution in the interval [—b/2, b/2]. Define t = x; — x.
The pdf of ¢ equals the convolution of the two uniform pdf
functions

bt —b<t<0
0<t<b
otherwise.

fr(ty=1 bt (46)

0

7

Given the pdf of £, it is easy to show that «, which is defined as
w2 (; — x4)% = 12, has the following pdf:

fU(U):{ﬁ_b%’ 0<usb?

. (47)
0, otherwise.

Define v = (z; — z4)* + (y; — y¢)? as the square of the distance

from a sensor to the target. Obviously, the pdf of v is the con-

volution of two fy(+) functions

AT YCH 0<v<b?
2 : 20°—v) _ w
fV (’U) _ b2 arcsin ( P ) 4 (48)
pAR 2 b2 < v < 2b2
0 otherwise.

The probability of a sensor is at least dyp meters away from the
target is therefore

8d3  wd? di
—14 =0 _270_ 70 4
R TR PR T “49)
Hence, given the condition v > dg, the pdf of v is
1
v (v|v > d%) = afv(v) (d% <wv< 2b2) . (50)

In this paper, we choose n = 2, and define that w = a?. There-
fore, w = Py/v. We also assume that P follows a uniform
distribution in [0, P,,,]. Because Py and v are independent, we
have

262
fw(w) = /d2 vfp(wo)fy (v|v > d%) dv (51)

0
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where fp(-) denotes the pdf of P;. Here we skip the tedious
derivation and give the results as follows:

2

% - ﬂ? 0O<w S ggzl
b2 Py, Py,
Jfw(w) = Ep ST ﬂtg(s)’ 2 < WS g
: 3 5 2 P,, P,
Pl i - S5+ 55 -8, Fr<w<l

0, otherwise
52)

where s = P, /w, and function ¢(-) has been defined in The-
orem 3. Finally, we define z = \/w and its pdf can be easily
derived through the following relationship:

fz(2) = 2z fw(2?). (53)
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