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Abstract The quantum field theoretic treatment of inclu-
sive deep-inelastic diffractive scattering given in a previ-
ous paper (Blümlein et al. in Nucl. Phys. B 755:112–136,
2006) is discussed in detail using an equivalent formula-
tion with the aim to derive a representation suitable for data
analysis. We consider the off-cone twist-2 light-cone opera-
tors to derive the target-mass and finite t corrections to dif-
fractive deep-inelastic scattering and deep-inelastic scatter-
ing. The corrections turn out to be at most proportional to
x|t |/Q2, xM2/Q2, x = xBJ or xP, which suggests an ex-
pansion in these parameters. Their contribution varies in
size considering diffractive scattering or meson-exchange
processes. Relations between different kinematic amplitudes
which are determined by one and the same diffractive GPD
or its moments are derived. In the limit t,M2 → 0 one ob-
tains the results of (Blümlein and Robaschik in Phys. Lett. B
517:222, 2001) and (Blümlein and Robaschik in Phys. Rev.
D 65:096002, 2002).

PACS 24.85.+p · 13.88.+e · 11.30.Cp

1 Introduction

The process of deep-inelastic diffractive lepton–nucleon
scattering can be measured at high energy colliders and con-
stitutes a large fraction of the inclusive statistics, although
being a semi-inclusive process. It was first observed at the
electron–proton collider HERA some years ago [4, 5] and
is now measured in detail [6–8]. The structure function
FD

2 (x,Q2) was extracted. In the same manner it is desir-
able to compare the longitudinal diffractive structure func-
tion FD

L (x,Q2) with the longitudinal structure function in
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the inclusive case [9, 10]. The measurement of the polar-
ized diffractive structure functions gD

1,2(x,Q2) will be pos-
sible at future facilities like EIC [11], which are currently
planned. The experimental measurements clearly showed
that the scaling violations of the deep-inelastic and the dif-
fractive structure functions in the deep-inelastic regime, af-
ter an appropriate change of kinematic variables, are the
same. Furthermore, the ratio of the two quantities, did not
vary strongly, cf. [12]. While the former property is clearly
of perturbative nature, the latter is of non-perturbative ori-
gin. For diffractive scattering, however, another mass scale
is of importance, which is given by the invariant mass t =
(p2 − p1)

2. Here p1(2) denote the 4-momenta of the incom-
ing and outgoing proton, where for the latter a sufficiently
large rapidity gap between this particle and the remainder
final state hadrons is demanded as process signature. A sim-
ilar class of processes are the so-called meson-exchange
processes, cf. e.g. [13], where the finite rapidity gap is not
required, but the rôle of the formerly diffractive final state
proton is taken by a leading hadron, which distinguishes it-
self due to its high momentum from the remaining hadrons.
Also in this case one may try a leading twist description, al-
though the signature for this process is less clear than in the
diffractive case.

The process of deep-inelastic diffractive scattering was
first described phenomenologically [14–23]. A consistent
field-theoretic description of the process requires factoriza-
tion for the twist-2 contributions [24–26]. It is due to this
description that reference to specific pomeron models are
thoroughly avoided. In Refs. [2, 3, 27] two of the present au-
thors gave a corresponding field-theoretic description of the
process in the limit t,M2 → 0. In [2] we proved that under
these conditions the scaling violations for diffractive scatter-
ing and inclusive deep-inelastic scattering are the same, up
to a change in the momentum-fraction variable in the former
case.
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At low 4-momentum transfer Q2 both target-mass (M2)

and finite momentum transfer (t) corrections have to be con-
sidered for the diffractive and leading hadron processes with
meson exchange. In the deep-inelastic case the target-mass
corrections were studied in Refs. [28–32], see also [33–
38]. The kinematics of the diffractive and leading hadron
processes is similar to that in deeply virtual non-forward
scattering. Considering this general class of processes, one
finds that the treatment of target-mass effects and finite t-
effects can only be performed by combining both, see [39,
40]. If compared with the deep-inelastic case the number of
hadronic structure functions enlarges in the diffractive case
from two to four for unpolarized scattering and to eight for
polarized scattering, as shown in [2, 3], if the general kine-
matics is considered. In Ref. [1] we worked out these correc-
tions for the hadronic tensor in general, yet without quan-
tifying the result. If one departs form the limit t,M2 → 0
the corresponding representations require to carry out a one-
dimensional definite integral which kinematically relates the
two proton momenta p1 and p2. As the integration is to be
performed over unknown non-perturbative functions there is
no a priori experimental way to unfold the non-perturbative
distributions, which also would invalidate the partonic de-
scription in case of diffractive scattering. Moreover, the M2

and t effects dealt with in this case are not yet complete,
since there emerge other contributions more in the scat-
tering cross section. One may expand the complete solu-
tion in two variables t/Q2,M2/Q2. It is found that these
terms multiply at least with a factor x = xBJ(P), which is
bounded in the diffractive case to values below 0.01 and in
the meson-exchange case � 0.3. Thus the leading terms be-
yond t,M2 = 0 give a good first estimate for the corrections.
The further corrections turn out to be widely suppressed in
the diffractive case, while they are larger for leading particle
cross sections in the meson-exchange case.

In the present paper we will discuss both the unpolar-
ized and polarized case. The paper is organized as follows.
In Sect. 2 we derive the differential scattering cross section
for inclusive diffractive scattering at the Lorentz level. Main
aspects of the relation of this process to the Compton ampli-
tude within the light-cone expansion including finite M2 and
t effects are summarized in Sect. 3. The hadronic tensors for
the unpolarized and polarized case are expanded in terms of
the variables t/Q2, M2/Q2 in Sect. 4 to show the size of
the correction terms. Section 5 contains the conclusions. In
Appendix A we summarize some kinematic relations. The
present formalism is specified to the case of deep-inelastic
forward scattering (DIS) in Appendix B, where we obtain
the target-mass corrections given in [29–32] before.

2 The Lorentz structure

The process of deep-inelastic diffractive scattering belongs
to the class of semi-inclusive processes. It is described by an
effective 2 → 3 diagram, cf. Fig. 1 of Ref. [2], with incom-
ing and outgoing charged lepton and nucleon lines and an
effective 4-vector for all the other hadron lines in the final
state, which are well separated in rapidity from the outgoing
diffractive nucleon line.

The differential scattering cross section for single-photon
exchange is given by

d5σdiffr = 1

2(s − M2)

1

4
dPS(3)

∑

spins

e4

Q2
LμνW

μν. (2.1)

Here s = (p1 + l1)
2 is the cms energy squared of the process

and M denotes the nucleon mass. The phase space dPS(3)

depends on five variables since the mass MX of the diffrac-
tively produced inclusive set of hadrons varies. We choose
as basic variables

xBJ = Q2

Q2 + W 2 − M2
= − q2

2qp1
, (2.2)

y = Q2

xBJ(s − M2)
, (2.3)

t = (p2 −p1)
2 the 4-momentum difference squared between

incoming and outgoing nucleon, a variable describing the
non-forwardness w.r.t. the incoming proton direction,

xP = Q2 + M2
X − t

Q2 + W 2 − M2
= −qp−

qp1
≥ xBJ, (2.4)

and the angle φb between the lepton plane p1 × l1 and the
hadron plane p1 × p2,

cos(φb) = (p1 × l1).(p1 × p2)

|p1 × l1||p1 × p2|
(2.5)

in the frame p1 +q = 0. Here Q2 = −q2 denotes the photon
virtuality and W is the hadronic mass with W 2 = (p1 + q)2.
We also refer to x = Q2/qp+. It is useful to introduce the
4-vectors

p± = p2 ± p1. (2.6)

The diffractive mass squared is given by M2
X = (q − p−)2.

The momenta p± obey

(p+p−) = 0,
p2+
p2−

= 4M2

t
− 1. (2.7)
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For later use we refer to the non-forwardness η and the vari-
able β defined by

η = qp−
qp+

= −xP

2 − xP

∈
[
−1,

−x

2 − x

]
,

β = q2

2qp−
= xBJ

xP

≤ 1.

(2.8)

The variable xP is directly related to η but is more com-
monly used in experimental analyzes,

xP = 2η

η − 1
. (2.9)

More kinematic invariants are given in Appendix A.
The transverse momentum variable, introduced as π̂−,

[1], or π− = −ηπ̂− is of special importance,

π− = p− − p+η, (qπ−) = 0. (2.10)

Later on it will play the role of an expansion parameter. The
variables xBJ, xP, β and η obey the inequalities

0 ≤ xBJ ≤ xP ≤ 1, 0 ≤ xBJ ≤ β ≤ 1, (2.11)

−∞ ≤ 1 − 2

xBJ
≤ 1 − 2β

xBJ
= 1

η
≤ −1 ≤ η ≤ −xBJ

2 − xBJ

≤ 0. (2.12)

For the spin averaged cross section, the leptonic tensor is
symmetric. Taking into account conservation of the electro-
magnetic current one obtains [2]

Ws
μν = −gT

μνW
s
1 + pT

1μpT
1ν

Ws
2

M2
+ pT

2μpT
2ν

Ws
4

M2

+ [
pT

1μpT
2ν + pT

2μpT
1ν

]Ws
5

M2
. (2.13)

Here and in the following we do not assume that azimuthal
integrals are performed as sometimes is done in experiment.
In the latter case the number of contributing structure func-
tion reduces.

In the case of polarized nucleons we consider the initial
state spin-vector S1 ≡ S, S2 = −M2, only and sum over the
spin of the outgoing hadrons. One usually refers to the lon-
gitudinal (‖) and transverse (⊥) spin projections choosing

S‖ = (√
E2 − M2;0,0,0,E

)
, (2.14)

S⊥ = (0; cosγ, sinγ,0)M, (2.15)

in the laboratory frame with p1 = (E;0,0,
√

E2 − M2),
with S.p1 = 0. Here γ denotes the azimuthal angle. In the
case of longitudinal polarization the contraction of S‖ with
l1 and p2 being nearly collinear to p1 are of O(μ2/Q2),
μ2 = |t |, M2, see Appendix A.

The antisymmetric part of the hadronic tensor was de-
rived in [3] and is given by

Wa
μν = i

[
pT

1μpT
2ν − pT

1νp
T
2μ

]
εp1p2qS

Wa
1

M6

+ i
[
pT

1μενSp1q − pT
1νεμSp1q

]Wa
2

M4

+ i
[
pT

2μενSp1q − pT
2νεμSp1q

]Wa
3

M4

+ i
[
pT

1μενSp2q − pT
1νεμSp2q

]Wa
4

M4

+ i
[
pT

2μενSp2q − pT
2νεμSp2q

]Wa
5

M4

+ i
[
pT

1μεT
νp1p2S

− pT
1νε

T
μp1p2S

]Wa
6

M4

+ i

[
pT

2μεT
νp1p2S

− pT
2νε

T
μp1p2S

]
Wa

7

M4

+ iεμνqS

Wa
8

M2
, (2.16)

where εμναβ denotes the Levi-Civita symbol. The kinematic
factors above are constructed out of the 4-vectors q,p1,p2

and S as well as gμν and εv0v1v2v3 using

pT
μ = pμ − qμ

q.p

q2
, gT

μν = gμν − qμqν

q2
, (2.17)

εT
μv1v2v3

= εμv1v2v3 − εqv1v2v3

qμ

q2
, (2.18)

εT T
μνv1v2

= εμνv1v2 − εqνv1v2

qμ

q2
− εμqv1v2

qν

q2
. (2.19)

One may rewrite (2.16) into an equivalent form using the
Schouten identities [41, 42].

Target-mass and finite t corrections to the differential
scattering cross section (2.1) in the leading twist approxima-
tion emerge from three sources: (i) from kinematic terms at
the Lorentz level after contracting the leptonic and hadronic
tensor; (ii) from the expectation value of the Compton oper-
ator; (iii) the t-behavior of the non-perturbative distribution
functions.

We will first consider the contributions (i) and discuss the
terms (ii) in Sect. 4. The non-perturbative effects cannot be
calculated by rigorous methods within Quantum Chromody-
namics at present, but are left to phenomenological models
or are determined through fits to data, cf. [14–23].

For pure photon exchange the leptonic tensor is given by

Lμν = 2
(
l1μl2ν + l2μl1ν − gμνl1.l2 − iεμναβlα1 qβ

)
, (2.20)

cf. [43], in case of longitudinal lepton polarization.
We consider the Bjorken limit,
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2p1.q = 2Mν → ∞, p2.q → ∞, Q2 → ∞,

with xBJ and xP = fixed. (2.21)

Here,

MWs
1 → F1, (2.22)

νWs
k → Fk, k = 2,4,5, (2.23)

with ν = y(s − M2)/(2M).
In the unpolarized case we obtain in the limit M2, t → 0

w.r.t. the kinematics of the momenta p1 and p2, keeping the
target-mass dependence

dsσ unpol

dxBJ dQ2
= 2πα2

Q4xBJ

[
2xF1 · y2

+ [
F2 + (1 − xP)F4 + (1 − xP)2F5

]

· 2

(
1 − y − x2

BJy
2M2

Q4

)]
, (2.24)

where Fk = Fk(xBJ, xP,Q2; t) are the diffractive structure
functions, cf. [2]. The correction terms are of O(M2/Q2,
t/Q2). In the limit M2, t → 0 the azimuthal dependence on
φb vanishes.

Likewise we obtain in the polarized case for longitudinal
nucleon polarization,

d3σ pol(λ,±S‖)
dxBJ dQ2 dxP

= ∓4πsλ
α2

Q4

[
y

(
2 − y − 2xBJyM2

s

)
xg1

− 4xBJy
M2

s
g2

]
, (2.25)

d4σ pol(λ,±S⊥)

dxBJdQ2 dxP dΦ

= ∓4πsλ

√
M2

s

α2

Q2

√

xBJy

[
1 − y − xBJyM2

s

]

× cos(γ − Φ)[yxBJg1 + 2xBJg2]. (2.26)

Here Φ denotes the angle between the �l1 − �S and the
�l1 − �l2 plane and γ is the angle between �l1 and �S. The
structure functions g1,2(xBJ, xP,Q2; t) are obtained from
Wa

2 ,Wa
3 ,Wa

4 ,Wa
5 and Wa

8 by

g1 = p.q1

M2
Wa

8 , (2.27)

g2 = (p.q1)
3

q2M4

[
Wa

2 + (1 − xP)
[
Wa

3 + Wa
4

]

+ (1 − xP)2Wa
5

]
(2.28)

and the different structure functions Fi and gi depend on the
variables xBJ, xP,Q2 and t .

3 The Compton amplitude

The hadronic tensor for deep-inelastic diffractive scattering
can be obtained from a Compton amplitude as has been out-
lined in [1–3] before. We limit the description to the level
of the twist-2 contributions, where factorization holds for
the semi-inclusive diffractive process [24–26]. Furthermore,
Mueller’s generalized optical theorem [44–48] allows one to
move the final state proton into an initial state anti-proton,
where both particle momenta are separated by t and form
a formal ‘quasi two-particle’ state |p1,−p2, S; t〉. These
states are used to form the operator matrix elements. The
correctness of this procedure within the light-cone expan-
sion relies, first, on the rapidity gap between the outgo-
ing proton and the remaining hadronic part with invariant
mass MX and, second, on the special property of matrix el-
ements of the contributing light-cone operators to contain
no absorptive part. Independently, one could argue that the
corresponding matrix element is a pure phenomenological
quantity satisfying restrictions imposed by quantum field
theory. The general structure of the scattering amplitude
is completely determined by the off-cone structure of the
twist-2 Compton operator (3.4), cf. [49]. We mention that in
the present process the electromagnetic current is conserved
unlike the case in [39, 40] since the operator expectation
value (3.2) is taken for forward scattering using a quasi two-
particle state.

The structure functions for the diffractive process can
thus be obtained by analyzing the absorptive part

Wμν = ImTμν (3.1)

of the expectation value

Tμν(x) = 〈p1,−p2, S; t |T̂μν(x)|p1,−p2, S; t〉, (3.2)

with the well-known operator T̂μν of (virtual) Compton scat-
tering defined as

T̂μν(x) ≡ iRT

[
Jμ

(
x

2

)
Jν

(
−x

2

)
S

]
. (3.3)

In [1], based on a general quantum field theoretic consider-
ation of virtual Compton scattering at twist 2 [40, 50–52],
we specified the various terms which contribute to the gen-
eral structure of the hadronic tensor Wμν = ImTμν in case
of deep-inelastic diffractive scattering. As shown in [53, 54]
the operator T̂μν in lowest order of the non-local light-cone
expansion [55, 56] contains the vector or axial vector opera-
tors only. The scattering amplitude is obtained by the Fourier
transform of the operator T̂{μν}(x) and forming the matrix
element (3.2). Here, we want to study its twist-2 contribu-
tions including target-mass and finite momentum transfer
corrections. This is obtained by harmonic extension [51, 52,
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57, 58] of the twist-2 light-cone operators to twist-2 off-cone
operators [59], leading to

T̂ tw2
μν (q) = −e2

∫
d4x

2iπ2

eiqxxλ

(x2 − iε)2

{
Sμν|αλ O tw2

α (κx,−κx)

+ εμν
αλ O tw2

5α (κx,−κx)
}
, (3.4)

with

O tw2
α (κx,−κx) = i

[
ψ(κx)γαψ(−κx)

− [
ψ(−κx)γαψ(κx)

]]tw2
,

O tw2
5α (κx,−κx) = [

ψ(κx)γ5γαψ(−κx)

+ [
ψ(−κx)γ5γαψ(κx)

]]tw2
,

and κ = 1/2. The matrix elements can be written in terms
of vectors Ka

μ,(5)
and 2-dimensional Fourier integrals over

partonic twist-2 distributions fa(5)(z+, z−, t) summing over
a,

〈p1,−p2; t | e2 O tw2
μ (κx,−κx) |p1,−p2; t〉

= Ka
μ(p±)

∫
DZ

(2π)4
eiκx(p−z−+p+z+)fa(z+, z−, t), (3.5)

〈p1,−p2, S; t | e2 O tw2
5μ (κx,−κx)|p1,−p2, S; t〉

= Ka
5μ(p±, S)

∫
DZ

(2π)4
eiκx(p−z−+p+z+)f5a(z+, z−, t),

(3.6)
which is defined as asymptotic expression on the light-cone
at x2 = 0.

We choose as kinematic factors for the representation of
the matrix element of the non-local operator for the symmet-
ric part (3.5)

K1μ = p
μ
+, K2μ = π

μ
− ≡ p

μ
− − ηp

μ
+, (3.7)

and for its antisymmetric part (3.6)

K1μ
5 = Sμ, K2μ

5 = p
μ
+(p2S)/M2,

K3μ
5 = π

μ
−(p2S)/M2.

(3.8)

The normalization to M2 in (3.8) is arbitrary and has to
be arranged with the definition of the corresponding dis-
tribution functions fa,(5a)(z+, z−), respectively. The cor-
responding Lorentz-invariant has to be formed out of the
hadronic momenta, except the spin vector, since the polar-
ization symmetries are assumed to be linear in the spin.

The momentum fractions z± in (3.5), (3.6) corresponding
to the momenta p± are

P = (p+,p−) = (p2 + p1,p2 − p1),

Z = (z+, z−) = (
(z2 + z1)/2, (z2 − z1)/2

)
,

(3.9)

with the measure DZ

DZ = 2dz+dz−θ(1 − z+ + z−)θ(1 + z+ − z−)

× θ(1 − z+ − z−)θ(1 + z+ + z−). (3.10)

We refer to fa(5)(z+, z−, t) as diffractive generalized
parton distribution functions (dGPD), in distinction to the
GPDs emerging in deeply virtual Compton scattering [60–
65]. These amplitudes are directly connected to the total
cross sections and polarization asymmetries, respectively.
Both kinds of GPDs are expectation values of the same light-
cone operator, however, between different states. Interest-
ing limiting cases can be derived from them. For the dGPDs
these are the quasi collinear limit: π− → 0,M2 → 0, [2, 3],
and the limit of deep-inelastic scattering, see Appendix B.
Furthermore, for both types of GPDs the evolution equations
are derived from the renormalization group equation for the
same light-cone operators. It is remarkable, that the evo-
lution equations for the dGPDs are two-variable equations
which reduce to the simple evolution equation for forward
scattering in the quasi collinear limit, cf. [2].

The (dimensionless) amplitudes f(5) a(z+, z−, t) depend
on t and η explicitly. In addition, there appears a t- and
M2-dependence of the amplitude (3.2) in momentum space,
which finally, on the one hand, results from the Fourier
transform in (3.4) where the operator O tw2

(5)α
(κx,−κx) is off

the light cone, i.e. with all trace subtractions. On the other
hand, the dependence results from the kinematic pre-factors
Ka

(5)μ
(p±, S).1

Concerning the independent kinematic factors one has
two possibilities, which are mathematically equivalent, de-
pending on whether one chooses p− or p+ as essential vari-
able as we did in our previous papers [1] and [40], respec-
tively. The corresponding choices lead to different dGPDs.
(1) In the first case, which we considered in [1], cf. also
[2] and [3], p− was chosen as essential variable, by start-
ing from the physical picture using the generalized optical
theorem, and the parameterization2

p−z− + p+z+ = λ̂ [p− + ζ̂ (p+ − p−/η)]
= λ̂

[
p− + ζ̂ π̂−

] ≡ λ̂ P̂ , (3.11)

with

λ̂ = z− + z+/η,

z+ = λ̂ ζ̂ , (3.12)

z− = λ̂ (1 − ζ̂ /η).

1In the following the explicit t -dependence of the distribution functions
is always understood and we drop this variable to lighten the notation.
2For later convenience the notation (ϑ, ζ ) of Ref. [1] has been changed

into (λ̂, ζ̂ ).
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(2) A mathematically equivalent description is obtained
starting from p+ as the essential variable [40]. In this ap-
proach we introduce the new variables λ and ζ instead of z+
and z−,

p−z− + p+z+ = λ
[
p+ + ζ(p− − ηp+)

] = λ(p+ + ζπ−)

≡ λP = 2Π, (3.13)

with

λ = z+ + ηz−,

z− = λζ, (3.14)

z+ = λ(1 − ζη).

Here the variable λ plays the role of a common scale for
z±. Compared to Ref. [40] we list the essential kinematic
variables using the above parameterization

P (η, ζ ) = p+(1 − η ζ ) + p−ζ, (3.15)

P 2 = p2+ − 2 ζ ηp2+ + ζ 2(p2− + p2+η2), (3.16)

qP = qp+,

P 2/
(

P T)2 = x2(P 2/Q2)/
[
1 + x2(P 2/Q2)], (3.17)

and

ξ± = 2x

1 ± √
1 + x2 P 2/Q2

,

x = Q2

qp+
= Q2

2qp1
(1 − η) = xBJ(1 − η) = −2βη.

(3.18)

Obviously, ξ+ ≡ ξ is the appropriate generalization of the
Nachtmann variable. With these definitions the measure of
the Z-integration is

DZ = 2|λ|dλdζθ
(
1 − λ + (1 + η)λζ

)

× θ
(
1 + λ − (1 + η)λζ

)

× θ
(
1 − λ − (1 − η)λ ζ

)

× θ
(
1 + λ + (1 − η)λ ζ

)
. (3.19)

In the present treatment we choose p+ as the essential vari-
able.

In Ref. [1] deep-inelastic diffractive scattering has been
worked out within the first approach. The resulting expres-
sions contain an internal ζ̂ -integral which is not well suited
for the direct comparison of experimental data with the dif-
fractive GPDs. One way out is to introduce new ‘integrated
distributions’. Furthermore, we can perform a systematic
1/Q2 expansion which leads to an expansion in terms of
P 2/Q2 directly. Since P 2 is a polynomial of second order

in the variable ζ we are led to a ζ -expansion,

P̂ 2 = t − 2ζ̂ t/η + (
4M2 − t + t/η2)ζ̂ 2

∣∣
ζ̂→0= t, (3.20)

P 2 = P̂ 2/η2

= (
4M2 − t

)
(1 − 2ηζ ) + [

t + (
4M2 − t

)
η2]ζ 2|ζ→0

= (
4M2 − t

)
. (3.21)

We prefer the second parameterization which leads to ex-
pressions which contain as lowest approximation the mass
corrections known from deep-inelastic scattering, without
requiring any further redefinition of the dGPDs. We use the
original expression for the Compton scattering amplitude
[40] with the λ-parameterization and apply the matrix ele-
ments (3.5), (3.6).

4 The hadronic tensor

In the following we discuss the symmetric and antisymmet-
ric contributions to the hadronic tensor, which correspond to
the unpolarized and polarized case, separately.

4.1 The symmetric part

The symmetric part of the hadronic tensor for diffractive
scattering, cf. [1, 40] is given by

W tw2{μν}(q) = Im
q2

2

∫
DZ

A{μν}(q, P )

λ
√

(qP )2 − q2 P 2

×
(

1

1 − ξ+/λ + iε
− 1

1 − ξ−/λ − iε

)

= −2π

∫
dζ

q2
√

(qP )2 − q2 P 2

×
{

qKa

qP

[
gT

μνFa 1(ξ, ζ ) − P T
μ P T

ν

(P T)2
Fa 2(ξ, ζ )

]

+
(

qKa

qP − P Ka

P 2

)

×
[
gT

μνFa 3(ξ, ζ ) − P T
μ P T

ν

(P T)2
Fa 4(ξ, ζ )

]

−
( KaT

μ P T
ν + P T

μ Ka T
ν

(P T)2

− 2
qKa

qP
P T

μ P T
ν

(P T)2

)
Fa 5(ξ, ζ )

}
. (4.1)

The relevant imaginary part belongs to the δ-distribution
δ(1 − ξ+/λ) in terms of variables (ξ+ ≡ ξ, ζ ), with the λ-
integration, (3.19), being carried out. It implies the pole con-
dition, cf. [40], (6.6)–(6.10) and [1],

1 + 1

2
ξxP 2/Q2 =

√
1 + x2 P 2/Q2 = −(1 − 2x/ξ), (4.2)
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which we use below. The structure functions Fai , i =
1, . . . ,5 are given by

Fa 1(ξ, ζ ) = Φ(0)
a (ξ, ζ ) + 1

2

x P 2/Q2
√

1 + x2 P 2/Q2
Φ(1)

a (ξ, ζ )

+ 1

4

(x P 2/Q2)2

1 + x2 P 2/Q2
Φ(2)

a (ξ, ζ ), (4.3)

Fa 2(ξ, ζ ) = Φ(0)
a (ξ, ζ ) + 3

2

xP 2/Q2
√

1 + x2 P 2/Q2
Φ(1)

a (ξ, ζ )

+ 3

4

(xP 2/Q2)2

1 + x2 P 2/Q2
Φ(2)

a (ξ, ζ ), (4.4)

Fa3(ξ, ζ )

= −1

2

ξxP 2/Q2
√

1 + x2 P 2/Q2
Φ(0)

a (ξ, ζ )

+ 1

2ξ

(
ξ x P 2/Q2

√
1 + x2 P 2/Q2

− (ξxP 2/Q2)2

1 + x2 P 2/Q2

)
Φ(1)

a (ξ, ζ )

− 1

ξ

(
ξ x P 2/Q2

√
1 + x2 P 2/Q2

− (ξxP 2/Q2)2

1 + x2 P 2/Q2

+ 3

8

(ξxP 2/Q2)3

√
1 + x2 P 2/Q23

)∫ 1

ξ

dy

y
Φ(1)

a (y, ζ )

− 1

ξ

(
(ξxP 2/Q2)2

1 + x2 P 2/Q2
− 3

4

(ξxP 2/Q2)3

√
1 + x2 P 2/Q23

+ 3

16

(ξxP 2/Q2)4

[1 + x2 P 2/Q2]2

)∫ 1

ξ

dy

y2
Φ(2)

a (y, ζ ), (4.5)

Fa4(ξ, ζ )

= −1

2

ξxP 2/Q2
√

1 + x2 P 2/Q2
Φ(0)

a (ξ, ζ )

+ 1

ξ

(
5

2

ξxP 2/Q2
√

1 + x2 P 2/Q2
− 3

2

(ξ xP 2/Q2)2

1 + x2 P 2/Q2

)
Φ(1)

a (ξ, ζ )

− 3

ξ

(
ξxP 2/Q2

√
1 + x2 P 2/Q2

− 2
(ξ xP 2/Q2)2

1 + x2 P 2/Q2

+ 5

8

(ξxP 2/Q2)3

√
1 + x2 P 2/Q23

)∫ 1

ξ

dy

y
Φ(1)

a (y, ζ )

− 3

ξ

(
(ξ xP 2/Q2)2

1 + x2 P 2/Q2
− 5

4

(ξ xP 2/Q2)3

√
1 + x2 P 2/Q23

+ 5

16

(ξ xP 2/Q2)4

[1 + x2 P 2/Q2]2

)∫ 1

ξ

dy

y2
Φ(2)

a (y, ζ ), (4.6)

Fa5(ξ, ζ )

= 1

ξ

[
Φ(1)

a (ξ, ζ ) + 3

2

ξ xP 2/Q2
√

1 + xP 2/Q2

∫ 1

ξ

dy

y
Φ(1)

a (y, ζ )

+ 3

4

(ξ xP 2/Q2)2

1 + xP 2/Q2

∫ 1

ξ

dy

y2
Φ(2)

a (y, ζ )

]
, (4.7)

whereas Fa 1(2)(ξ, ζ ) are direct generalizations of the well-
known deep-inelastic structure functions. Fa k(ξ, ζ )|k=3,4,5

are new structure functions, which vanish in the forward
limit, cf. Appendix B. The typical square roots√

1 + x2 P 2/Q2 for the mass corrections depend on the gen-
eralized momentum P = P (ζ ). After substituting λ → ξ in
(4.3)–(4.7), we introduce the following iterated representa-
tions for the basic dGPDs fa(λ, ζ ), cf. (3.5):

Φ(0)
a (ξ, ζ ) ≡ fa(ξ, ζ ), (4.8)

Φ(1)
a (ξ, ζ ) ≡

∫ 1

ξ

dy1fa(y1, ζ ) = ξ

∫ 1

0

dτ

τ 2
fa

(
ξ

τ
, ζ

)
, (4.9)

Φ(2)
a (ξ, ζ ) ≡

∫ 1

ξ

dy2

∫ 1

y2

dy1fa(y1, ζ )

= ξ2
∫ 1

0

dτ1

τ 3
1

∫ 1

0

dτ2

τ 2
2

fa

(
ξ

τ1τ2
, ζ

)
, (4.10)

Φ(i)
a (ξ, ζ ) ≡

∫ 1

ξ

dy Φ(i−1)
a (y, ζ ), for i ≥ 1, (4.11)

∫ 1

ξ

dy

y
Φ(1)

a (y, ζ ) ≡
∫ 1

ξ

dy1

y1

∫ 1

y1

dy Φ(0)
a (y, ζ )

= ξ

∫ 1

0

dτ1

τ 2
1

∫ 1

0

dτ2

τ 2
2

fa

(
ξ

τ1τ2
, ζ

)
, (4.12)

∫ 1

ξ

dy

y2
Φ(2)

a (y, ζ ) ≡
∫ 1

ξ

dy1

y2
1

∫ 1

y1

dyΦ(1)
a (y, ζ )

= ξ

∫ 1

0

dτ1

τ 3
1

∫ 1

0

dτ2

τ 2
2

∫ 1

0

dτ3

τ 2
3

×fa

(
ξ

τ1τ2τ3
, ζ

)
. (4.13)

Let us now investigate the effect of target masses and finite
terms in t in more detail. It turns out that both the M2- and
t-contributions in the diffractive structure functions emerge
due to the parameter ρ

ρ = εx2 p2+
Q2

1

1 + x2p2+/Q2
, (4.14)
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with ε given by P 2 = p2+(1 + ε),

ε = 1

p2+

[
2ζp+π− + ζ 2π2−

]

= −2ηζ +
(

η2 + t

p2+

)
ζ 2. (4.15)

Since

−η � xP � 1, (4.16)

ρ effectively takes values ρ � 10−3 for xP � 10−2, |t | ≈
(0.1, . . . ,1)M2,Q2 ≈ (1, . . . ,5)M2. The range of ζ is de-
termined both by the support condition (3.19) and the con-
dition P 2 = p2+(1 + ε) > 0 in the diffractive case.

To prepare the expansion in ρ we rewrite the hadronic
tensor as

W tw2{μν}(q)

= 2π

∫
dζ

qKa

qP

[
−gT

μν W diff
a1

(
x,

P 2

Q2
; ζ

)

+ P T
μ P T

ν

M2
W diff

a 2

(
x,

P 2

Q2
; ζ

)]
,

+
{(

qKa

qP − P Ka

P 2

) P 2

Q2

[
−gT

μνW
diff
a3

(
x,

P 2

Q2
; ζ

)

+ P T
μ P T

ν

M2
W diff

a 4

(
x,

P 2

Q2
; ζ

)]

+
(

P T
μ KaT

ν + P T
ν KaT

μ − 2P T
μ P T

ν

qKa

qP

)

× 1

M2
W diff

a5

(
x,

P 2

Q2
; ζ

)}
. (4.17)

The integral over ζ cannot be performed easily. Here, the
un-integrated structure functions W diff

a k (x, P 2(ζ )/Q2; ζ ) are
given by

W diff
a1

(
x,

P 2(ζ )

Q2
; ζ

)
≡ − x√

1 + x2 P 2/Q2
Fa 1(ξ, ζ ), (4.18)

W diff
a3

(
x,

P 2(ζ )

Q2
; ζ

)
≡ − x√

1 + x2 P 2/Q2

Q2

P 2

×Fa3(ξ, ζ ), (4.19)

W diff
a k

(
x,

P 2(ζ )

Q2
; ζ

)
≡ −M2

Q2

(
x√

1 + x2 P 2/Q2

)3

× Fa k(ξ, ζ ) for k = 2,5, (4.20)

W diff
a4

(
x,

P 2(ζ )

Q2
; ζ

)
≡ −M2

P 2

(
x√

1 + x2 P 2/Q2

)3

×Fa 4(ξ, ζ ). (4.21)

As noted in [1] a generalized Callan–Gross [66] relation be-
tween W diff

a 1 and W diff
a 2 , which holds for diffractive scattering

in the limit M2, t → 0, [2], is broken as in the case of deep-
inelastic scattering [29]. Correspondingly, the distribution
functions W diff

a (1,2) are related to W diff
a L , the diffractive ana-

logue of the longitudinal structure function of deep-inelastic
scattering, by

W diff
aL

(
x, P 2/Q2; ζ ) = −W diff

a 1

(
x, P 2/Q2; ζ )

+
(

1 + x2 P 2

Q2

)
qp+
xM2

× W diff
a2

(
x, P 2/Q2; ζ )

. (4.22)

To see this in detail, we insert (4.3), (4.4) and (4.20), so that

W diff
a L

(
x, P 2/Q2; ζ )

= x√
1 + x2 P 2/Q2

(
Fa 1(ξ, ζ ) − Fa 2(ξ, ζ )

)

≈ O
(

x2 P 2

Q2

)
. (4.23)

The last relation follows by direct inspection of Fa i and is
explicit in

W diff
aL

(
x, P 2/Q2; ζ )

= −x2 P 2

2Q2

∂

∂x

(
x

ξ
√

1 + x2 P 2/Q2
Φ(2)

a (ξ, ζ )

)
(4.24)

derived in [40], cf. also [29–31] for the case of forward scat-
tering.

Most of the above quantities depend on P 2, (3.15), which
we write now as

P 2 = p2+ + 2ζp+π− + ζ 2π2− = p2+(1 + ε). (4.25)

Let us simplify the contraction of the kinematic coefficients
in (4.17). For K1 = p+, observing qP = qp+ and (4.25) for
P 2, we obtain

qK1

qP = 1, (4.26)

(
qK1

qP − P K1

P 2

) P 2

Q2

= p2+
Q2

(
−ηζ + ζ 2

(
η2 + t

p2+

))
, (4.27)

KT
1μP T

ν + P T
μ KT

1ν − 2
qK1

qP P T
μ P T

ν

= −ζ
(
pT+μπ−ν + pT+νπ−μ

) − 2 ζ 2π−μπ−ν, (4.28)
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and for K2 = π−, due to the transversality of π−, one finds

qK2

qP = 0, (4.29)

(
qK2

qP − P K2

P 2

) P 2

Q2
= p2+

Q2

(
η − ζ

(
η2 + t

p2+

))
, (4.30)

KT
2μP T

ν + P T
μ KT

2ν − 2
qK2

qP P T
μ P T

ν

= (
pT+μπ−ν + pT+νπ−μ

) + 2ζπ−μπ−ν . (4.31)

It is remarkable that only for K1 = p+ the first invariant
qK1/qP contributes to the zeroth power in ζ , whereas the
other ones start at most with the first power. The contribu-
tions of invariants belonging to kinematic coefficients con-
taining π− are less important because this variable is trans-
verse to q with π−q = 0. The corresponding invariants

π2− = t + η2p2+, π−p+ = −ηp2+,

π−p− = t,

(4.32)

are small compared to Q2.
Having now expressed the ζ -dependence in all kinematic

factors explicitly, we may perform the ζ -integral introducing
nth moments:

W
(n)diff
a k

(
x,η, t,p2+/Q2)

=
∫

dζ ζ nW diff
a k

(
x, P 2/Q2; ζ )

. (4.33)

The hadronic tensor reads

1

2π
Im T tw2{μν}(q)

= −gT
μν

{
W

(0)diff
1 1 + p2+

Q2

[
η
(
W

(0)diff
2 3 − W

(1)diff
1 3

)

+
(

η2 + t

p2+

)(
W

(2)diff
1 3 − W

(1)diff
2 3

)]}

+ pT+μpT+ν

M2

{
W

(0)diff
1 2 + p2+

Q2

[
η
(
W

(0)diff
2 4 − W

(1)diff
1 4

)

+
(

η2 + t

p2+

)(
W

(2)diff
1 4 − W

(1)diff
2 4

)]}

+ pT+μπ−ν + pT+νπ−μ

M2

×
{
W

(1)diff
1 2 + p2+

Q2

[
η
(
W

(1)diff
2 4 − W

(2)diff
1 4

)

+
(

t

p2+
+ η2

)(
W

(3)diff
1 4 − W

(2)diff
2 4

)]

+ W
(0)diff
2 5 − W

(1)diff
1 5

}

+ π−μπ+ν

M2

{
W

(2)diff
1 2 + 2W

(1)diff
2 5 − 2W

(2)diff
1 5

+ p2+
Q2

[
η
(
W

(2)diff
2 4 − W

(3)diff
1 4

)

+
(

η2 + t

p2+

)(
W

(4)diff
1 4 − W

(3)diff
2 4

)]}
. (4.34)

Here the momentum fraction argument of the structure
functions W diff

ak is the original Nachtmann variable (3.18),

whereas for the functions W
(n)diff
a k (x, η, t,p2+/Q2) it is x.

These structure functions are in principle accessible ex-
perimentally, varying the external kinematic parameters
xBJ,Q

2, t and xP, (η = η(xP)).
Up to this point no approximations have been made. We

would now like to discuss the above structure. Note that
disregarding of π− as transversal degree of freedom cor-
responds to the limit ε → 0, (4.25). However, ε, (4.15), is
not necessarily a small quantity. The Taylor expansion in ε

would retain the DIS-like target-mass corrections and lead
to the physically relevant power series in p2+/Q2 of the de-
nominators. Because of the smallness of ρ (4.14) and also
x2p2+/Q2 we use the latter as expansion parameter. Thereby
the Nachtmann variable is substituted by x in lowest order,
whereas by setting π− = 0 we would retain an approximate
Nachtmann variable,

ξ0 = 2x/
(
1 +

√
1 + x2p2+/Q2

)
. (4.35)

For simplicity we proceed as follows:

• effective expansion w.r.t. the parameter p2+/Q2,

(
1 + x2 P 2

Q2

)−n

=
(

1 + x2 p2+(1 + ε)

Q2

)−n

=
(

1 − nx2 p2+
Q2

(1 + ε) + · · ·
)

, (4.36)

• expansion of the Nachtmann variable (3.18),

ξ − x = −1

4
x

x2p2+
Q2

(1 + ε) + · · · , (4.37)

• use of x instead of the Nachtmann variable ξ .
• For the treatment of the denominators we shift the inte-

gration variable λ = λ′ + ξ − x,

1

λ − ξ + iελ
= 1

λ′ − x + iελ
. (4.38)

Through this procedure we avoid the expansion of the de-
nominator in favor of an expansion of the dGPDs. In princi-
ple problems could arise because of possible differences in
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ε(λ − λ′). Therefore we have to expand the basic dGPD

Φ(i)
a (λ, ζ ) = Φ(i)

a (λ′ + ξ − x, ζ )

= Φ(i)
a (λ′, ζ ) + ∂λ′Φ(i)

a (λ′, ζ )(ξ − x) + · · ·

= Φ(i)
a (λ′, ζ ) − 1

4
x

x2p2+
Q2

(1 + ε)

× ∂λ′Φ(i)
a (λ′, ζ ) + · · · .

As a test we can study the limit of deep-inelastic scatter-
ing, whereby we reproduce the standard result. For diffrac-
tive DIS it is sufficient to consider the lowest approximation
which extends our results [2, 3]. In the following we define
moments of the dGPDs by

Φ(i n)
a (x) =

∫
dζ ζ nΦ(i)

a (x, ζ ). (4.39)

This corresponds to a change from a GPD to a parton den-
sity.

Now we apply our approximation procedure directly to
(4.17) using (4.18)–(4.21) and (4.3)–(4.7). We write the re-
sult separately for the invariants K1 = p+,

1

2π
ImT tw2{μν}(q)|1

= gT
μν

[
xΦ

(0 0)
1 (x) + x2p2+

Q2

(
t0
1 1 + t0

1 3 − t̃0
1 3 + ηt̃1

1 3

)]

− pT+μpT+ν

Q2

[
x3Φ

(0 0)
1 + x2p2+

Q2
x2

× (
t0
1 2 + t0

1 4 − t̃0
1 4 + ηt̃ 1

1 4

)]

− pT+μπ−ν + pT+νπ−μ

Q2

[
x3Φ

(0 1)
1 − x2Φ

(1 1)
1

+ x2p2+
Q2

x2(t1
1 2 + t1

1 4 − t̃ 1
1 4 − t1

1 5 + ηt̃ 2
1 4

)]

− π−μπ−ν

Q2

[
x3Φ

(0 2)
1 − 2x2Φ

(1 2)
1

+ x2p2+
Q2

x2(t2
1 2 + t2

1 4 − t̃ 2
1 4 − 2t2

1 5 + ηt̃ 3
1 4

)]
, (4.40)

and for K2 = π−,

1

2π
ImT tw2{μν}(q)|2

= gT
μν

x2p2+
Q2

[
ηt̃ 0

2 3 −
(

η2 + t

p2+

)
t̃ 1
2 3

]

− pT+μpT+ν

Q2

x2p2+
Q2

x2
[
ηt̃ 0

2 4 −
(

η2 + t

p2+

)
t̃ 1
2 4

)]

− pT+μπ−ν + pT+νπ−μ

Q2

[
x2Φ

(1 0)
2

+ x2p2+
Q2

x2
(

t0
2 5 + ηt1

2 4 −
(

η2 + t

p2+

)
t̃ 2
2 4

)]

− π−μπ−ν

Q2

[
2x2Φ

(1 1)
2

+ x2p2+
Q2

x2
(

2t1
2 5 + ηt2

2 4 −
(

η2 + t

p2+

)
t̃ 3
2 4

)]
. (4.41)

Here tnai and t̃ nai are given by

tna1 =
∫

dζ
(
1 + ε(ζ )

)
ζ n

(
−1

2
xΦ(0)

a (x, ζ )

+ 1

2
Φ(1)

a (x, ζ ) − 1

4
x2∂xΦ

(0)
a (x, ζ )

)
,

tna2 =
∫

dζ
(
1 + ε(ζ )

)
ζ n

(
−3

2
xΦ(0)

a (x, ζ )

+ 3

2
Φ(1)

a (x, ζ ) − 1

4
x2∂xΦ

(0
a (x, ζ )

)
,

tna3 =
∫

dζ
(
1 + ε(ζ )

)
ζ n

(
−1

2
xΦ(0)

a (x, ζ )

+ 1

2
Φ(1)

a (x, ζ ) −
∫ 1

x

dy

y
Φ(1)

a (y, ζ )

)
,

(4.42)

tna4 =
∫

dζ
(
1 + ε(ζ )

)
ζ n

(
−1

2
xΦ(0)

a (x, ζ )

+ 5

2
Φ(1)

a (x, ζ ) − 3
∫ 1

x

dy

y
Φ(1)

a (y, ζ )

)
,

tna5 =
∫

dζ
(
1 + ε(ζ )

)
ζ n

(
−5

4
Φ(0)

a (x, ζ )

+ 3

2

∫ 1

x

dy

y
Φ(1)

a (y, ζ ) − 1

4
x∂xΦ

(1)
a (x, ζ )

)
,

(4.43)

and

t̃ n
a1 =

∫
dζζ n

(
−1

2
xΦ(0)

a (x, ζ ) + 1

2
Φ(1)

a (x, ζ )

− 1

4
x2∂xΦ

(0)
a (x, ζ )

)
. (4.44)

Similar for all other terms t̃ nak , the factor (1+ ε(ζ )) is absent
compared to tnak .

It is remarkable that each kinematic coefficient Ka con-
tributes to all possible kinematic structures. Because of the
transversal behavior of π− we expect that the last two struc-
tures pT+μπ−ν + pT+νπ−μ and π−μπ−ν as well as the com-
plete contributions of the second invariant (4.41) are less im-
portant in comparison with the structures gT

μν and pT+μpT+ν
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and the first invariant in (4.40). Moreover the leading contri-
butions to the first two structures in (4.41) contain the small
coefficient η. In (4.40), (4.41) the contributions ∝ M2, t

emerge as

x2p2+
Q2

= x2(4M2 − t)

Q2
, (4.45)

x2p2−
Q2

= x2t

Q2
, (4.46)

respectively. Noting that |η| � xP, and xP ∼ O(xBJ) for dif-
fractive scattering the target-mass and finite t corrections are
suppressed by O(x2M2/Q2), with x � 10−2. In the meson-
exchange case, x-values of around x � 0.3 may be reached
and O(10% × (M2/Q2)) effects may be obtained.

Let us consider the complete zeroth order term

1

2π
ImT tw2{μν}(q)|0

= gT
μν xΦ

(0 0)
1 (x) − pT+μpT+ν

Q2
x3Φ

(0 0)
1

− pT+μπ−ν + pT+νπ−μ

Q2
x2

[
x Φ

(0 1)
1 + Φ

(1 0)
2 − Φ

(1 1)
1

]

− π−μπ−ν

Q2
x2

[
xΦ

(0 2)
1 − 2Φ

(1 2)
1 + 2Φ

(1 1)
2

]
. (4.47)

Also here we can see that the contributions to the first two
kinematic structures result from the distribution functions
Φ

(0 0)
1 (x) of the first kinematic structure only. This repro-

duces our result [2] obtained for vanishing t , target mass,
and negligible transversal momenta π−,

1

2π
ImT tw2{μν}(q)|0 = gT

μνxΦ
(0 0)
1 (x) − pT+μpT+ν

Q2
x3Φ

(0 0)
1 .

The leading t-dependence is contained in the first structure
gT

μν of (4.40)

1

2π
ImT tw2{μν}(q)|t = gT

μν

x2t

Q2
χ(x), (4.48)

χ(x) ≈
{

1

2
x
(
Φ

(0 0)
1 − Φ

(0 2)
1 − η

(
3Φ

(0 1)
1 + Φ

(0 3)
1

))

− 1

2

(
Φ

(1 0)
1 − Φ

(1 2)
1 − η

(
3Φ

(1 1)
1 + Φ

(1 3)
1

))

+ 1

4
x2∂x

(
Φ

(0 0)
1 − Φ

(0 2)
1 − 2ηΦ

(0 1)
1

)

−
∫ 1

x

dy

y

(
ηΦ

(1 1)
1 + ηΦ

(1 3)
1 + Φ

(1 2)
1

)}
. (4.49)

Terms ∝ η2 � x2
P

are dropped.
A last remark concerns the generalized Callan-Gross re-

lation (4.22). This relation can be written for ζ -moments

(4.33) as

W
(n)diff
a L

(
x,p2+/Q2)

= −W
(n)diff
a 1

(
x,p2+/Q2)

+ p2+ + (qp+)2/Q2

M2
W

(n)diff
a 2

(
x,p2+/Q2)

+ p2+
M2

∫
dζζ nεW diff

a 2

(
x, P 2/Q2, ζ

)
. (4.50)

Finally we remark that an equivalent kinematic parameteri-
zation can be obtained using

pT± = pT
2 ± pT

1 ,

π− = p− − ηp+ = p2(1 − η) − p1(1 + η) (4.51)

= pT
2 (1 − η) − pT

1 (1 + η).

These relations allow one to link different representations
of the hadronic tensor, which linearly relates various def-
initions of structure functions, cf. (2.13). All contributions
due to M2- and t-effects in the above are suppressed like
∝ x2

(P)
μ2/Q2 with μ2 = |t |,M2.

There are, however also other contributions emerging in
the scattering cross sections, which are of kinematic ori-
gin and stem from 4-vector products contributing to the
process contracting the leptonic and hadronic tensor, see
Appendix A for details. Most of these invariants are large,
like l1.l2 and l1.p1. The invariant l1.p2, (A.37), leads to
kinematic power corrections further to those considered in
(2.24–2.26). Here the leading contribution beyond the low-
est order term is of O(cos(φb)xBJ

√
μ2/Q2),μ2 = |t |,M2.

The terms, which do not vary with the angle φb are of
O(xBJμ

2/Q2). In conclusion, the largest dependences from
the limiting case |t |,M2 → 0 are obtained from the kine-
matic terms in the cross section. Those resulting from the
target-mass and t-corrections of the hadronic matrix ele-
ments always occur with an extra power in xBJ or xP.

4.2 The antisymmetric part

The contribution to the antisymmetric part of the hadronic
tensor is given by, cf. [1, 40],

W tw2[μν](q) = −πε αβ
μν

∫
dζ

{
qα Ka

5β

qP

× [
ga1(x; ζ ) + ga2(x; ζ )

]

− qα Pβ

qP
(qKa

5)

qP ga2(x; ζ )

+ 1

2

qα Pβ

qP
(P Ka

5)

Q2
ga0(x; ζ )

}
, (4.52)
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in terms of the ζ -integral. Here the coefficients Ka
5μ are

given by (3.8) and the functions ga k(x; ζ ) ≡ ga k(x, ξ,

P 2/Q2, ζ )|k=0,1,2 read

ga1(x; ζ ) = x

ξ

1

[1 + x2 P 2/Q2]3/2

×
[
Φ

(0)
5a (ξ, ζ ) + x(ξ + x) P 2/Q2

[1 + x2 P 2/Q2]1/2
Φ

(1)
5a (ξ, ζ )

− xξ P 2

2Q2

2 − x2 P 2/Q2

1 + x2 P 2/Q2
Φ

(2)
5a (ξ, ζ )

]
, (4.53)

ga2(x; ζ ) = −x

ξ

1

[1 + x2 P 2/Q2]3/2

×
[
Φ

(0)
5a (ξ, ζ ) − 1 − xξ P 2/Q2

[1 + x2 P 2/Q2]1/2
Φ

(1)
5a (ξ, ζ )

− 3

2

xξ P 2/Q2

1 + x2 P 2/Q2
Φ

(2)
5a (ξ, ζ )

]
, (4.54)

ga1(x; ζ ) + ga2(x; ζ )

= x

ξ

1

[1 + x2 P 2/Q2]3/2

[(
1 + xξ P 2

2Q2

)
Φ

(1)
5a (ξ, ζ )

+ xξ P 2

2Q2
Φ

(2)
5a (ξ, ζ )

]

= x

ξ

1

1 + x2 P 2/Q2

[
Φ

(1)
5a (ξ, ζ )

+ 1

2

xξ P 2/Q2

[1 + x2 P 2/Q2]1/2
Φ

(2)
5a (ξ, ζ )

]
, (4.55)

ga0(x; ζ ) = x2

[1 + x2 P 2/Q2]3/2

×
[
Φ

(0)
5a (ξ, ζ ) − 3

[1 + x2 P 2/Q2]1/2
Φ

(1)
5a (ξ, ζ )

+ 2 − x2 P 2/Q2

1 + x2 P 2/Q2
Φ

(2)
5a (ξ, ζ )

]
. (4.56)

The dGPDs Φ
(i)
5a(ξ, ζ ) are based on (3.6) and, similar to the

definitions (4.8)–(4.11) of Φ
(i)
a (ξ, ζ ),

Φ
(0)
5a (ξ, ζ ) ≡ ξ f5a(ξ, ζ ), (4.57)

Φ
(i)
5a(ξ, ζ ) =

∫ 1

ξ

dy

y
Φ

(i−1)
5a (y, ζ ), i ≥ 1. (4.58)

As shown before [1, 40] the Wandzura–Wilczek (WW) rela-
tion [67] holds for the un-integrated distribution functions

gtw2
a2 (x; ζ ) = −, gtw2

a1 (x; ζ ) +
∫ 1

x

dy

y
gtw2

a1 (y; ζ ), (4.59)

between gtw2
a2 and gtw2

a1 . All target-mass and t-corrections
can uniquely be absorbed into the structure functions. Note
that this relation holds for all invariants Ka

5 independently.
The validity of the Wandzura–Wilczek relation for diffrac-
tive scattering at general hadronic scales M2, t is a further
example in a long list of cases. It was observed using the
covariant parton model and light-cone expansion [68–70].
For forward scattering, target- and quark-mass corrections
could be completely absorbed into the structure functions
maintaining the WW-relation [30–32]. It is valid for gluon-
induced heavy flavor production [71], non-forward scatter-
ing [72], and diffractive scattering in the limit M2, t → 0
[3]. In the electro-weak case further sum rules exist [69, 70].
Considering the target-mass corrections there are new twist-
3 integral relations [30, 31]. The distribution function gtw2

a0
is also related to gtw2

a1 but in a more complicated manner:

gtw2
a0 (x; ζ ) = xξ gtw2

a1 (x; ζ )

− 2x2 + xξ

[1 + x2 P 2/Q2]1/2

∫ 1

x

dy

y
gtw2

a1 (y; ζ )

+ 2x2

[1 + x2 P 2/Q2]3/2

∫ 1

x

dy

y

∫ 1

y

dy′

y′

× gtw2
a1 (y′; ζ ). (4.60)

From (4.52)–(4.56) we now extract the ζ -independent
functions. In the kinematic factors ζ appears only up to sec-
ond power. As a preliminary classification we therefore can
perform the ζ -integrals according to the ζ -powers of the
kinematic factors, not counting the internal ζ -dependence
of the GPDs gak(x; ζ ) itself.

For each invariant a let us define

G
(n)
a k

(
x,η, t,p2+/Q2) =

∫
dζ ζ n ga k(x; ζ ),

k = 0,1,2, (4.61)

so that from (4.52) one obtains

ImT tw2[μν](q)

= −π ε αβ
μν

{
qα Ka

5β

qp+
(
G

(0)
a1 + G

(0)
a2

)

− qα p+β

qp+

(
qKa

5

qp+
G

(0)
a2

− 1

2

p+Ka
5

Q2
G

(0)
a0 − 1

2

π−Ka
5

Q2
G

(1)
a0

)

− qα π−β

qp+

(
qKa

5

qp+
G

(1)
a2

− 1

2

p+Ka
5

Q2
G

(1)
a0 − 1

2

π−Ka
5

Q2
G

(2)
a0

)}
(4.62)
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≈ −πε αβ
μν

{
qα Ka

5β

qp+
(
G

(0)
a1 + G

(0)
a2

) − qα p+β

qp+
qKa

5

qp+
G

(0)
a2

− qα π−β

qp+
qKa

5

qp+
G

(1)
a2

}
. (4.63)

In the last line the leading terms are written only. Now, in-
serting the three invariants Ka

5 in (3.8) explicitly, one ob-
tains, disregarding sub-leading terms in 1/Q2:

ImT
(0) tw2
[μν] (q)

≈ −π ε αβ
μν

{
qαST

β

qp+
(
G

(0)
1 1 + G

(0)
1 2

)

− qαpT+β

qp+

[
qS

qp+
G

(0)
1 2 − p2.S

M2
G

(0)
2 1

]

− qαπT−β

qp+

[
qS

qp+
G

(1)
1 2 + p2.S

M2

× (
G

(1)
2 2 − G

(0)
3 1 − G

(0)
3 2

)]}
. (4.64)

Due to the presence of the Levi-Civita symbol, only transver-
sal components (2.17) contribute. Note that p1.S = 0. The
approximate expressions for G

(n)
a k are

G
(n)
a1 (x) ≈ Φ

(0n)
5a (x) − x2 p2+

Q2
γ n
a1,

G
(n)
a2 (x) ≈ −[

Φ
(0n)
5a (x) − Φ

(1n)
5a (x)

] − x2 p2+
Q2

γ n
a2,

G
(n)
a1 (x) + G

(n)
a2 (x) ≈ Φ

(1n)
5a (x) − x2 p2+

Q2
γ n
a12,

G
(n)
a0 (x) ≈ x2[Φ(0n)

5a (x) − 3Φ
(1n)
5a (x) + 2Φ

(2n)
5a (x)

]

− x2 p2+
Q2

γ n
a0,

(4.65)

with

γ n
a1 =

∫
dζ

(
1 + ε(ζ )

)
ζ n

(
5

4
Φ

(0)
a5 (x, ζ ) − 2Φ

(1)
a5 (x, ζ )

+ Φ
(2)
a5 (x, ζ ) + 1

4
x∂xΦ

(0)
a5 (x, ζ )

)
,

γ n
a2 =

∫
dζ

(
1 + ε(ζ )

)
ζ n

(
−5

4
Φ

(0)
a5 (x, ζ )

+ 11

4
Φ

(1)
a5 (x, ζ ) − 3

2
Φ

(2)
a5 (x, ζ )

− 1

4
x∂x

(
Φ

(0
a5(x, ζ ) − Φ

(1)
a5 (x, ζ )

))
,

γ n
a12 =

∫
dζ

(
1 + ε(ζ )

)
ζ n

(
−1

2
xΦ

(2)
a5 (x, ζ )

+ 3

4
Φ

(1)
a5 (x, ζ ) + 1

4
x∂xΦ

(1)
a5 (x, ζ )

)

and

γ̃ n
a1 =

∫
dζ ζ n

(
5

4
Φ

(0)
a5 (x, ζ ) − 2Φ

(1)
a5 (x, ζ )

+ Φ
(2)
a5 (x, ζ ) + 1

4
x∂xΦ

(0)
a5 (x, ζ )

)
,

with similar expressions for the other terms γ̃ n
ak . The func-

tions Φ
(1n)
5a (x) are determined as in (4.39). The last function

G
(n)
a0 does not contribute to leading order. As final approxi-

mate result in leading order we obtain

ImT
(0) tw2
[μν] (q)|0

≈ −π ε αβ
μν

{
qαST

β

qp+
Φ

(1,0)
51 (x)

+ qαpT+β

qp+

[
qS

qp+
(
Φ

(0,0)
51 (x) − Φ

(1,0)
51 (x)

)

+ p2S

M2
Φ

(0,0)
52 (x)

]

+ qαπT−β

qp+

[
qS

qp+
(
Φ

(0,1)
51 (x) − Φ

(1,1)
51 (x)

)

+ p2S

M2

(
Φ

(1,0)
53 (x) + Φ

(0,1)
52 (x) − Φ

(1,1)
52 (x)

)]}
. (4.66)

In Ref. [3] the terms ∝p2.S were neglected treating p2||p1

and vanishing contributions ∝ π−. While this is correct
for t → 0, a finite contribution remains for M2 → 0,
(A.23),

lim
t→0

p2.S

M2
= xP

1 − xP/2

1 − xP

+ O
(

xBJxP

M2

Q2

)
. (4.67)

So the previous result [3] is to be modified by a third
term

ImT
(0) tw2
[μν] (q)|0

≈ −πε αβ
μν

{
qαST

β

qp+
Φ

(1,0)
51 (x)

+ qαpT+β

qp+

[
qS

qp+
(
Φ

(0,0)
51 (x) − Φ

(1,0)
51 (x)

)

+ xPΦ
(0,0)
52 (x)

]}
. (4.68)

The t-dependent correction terms result from the (η2 +
t/p2+)-contributions in ε and they are entirely contained in
correction terms γ n

ak :

ImT
(0) tw2
[μν] (q)|t
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≈ +πε αβ
μν

x2 t

Q2

{
qαST

β

qp+
((

γ̃ 2
1 1 + γ̃ 2

1 2

)

+ 2η
(
γ̃ 1

1 1 + γ̃ 1
1 2

) − (
γ̃ 0

1 1 + γ̃ 0
1 2

))

− qαpT+β

qp+

[
qS

qp+
(
γ̃ 2

1 2 + 2ηγ̃ 1
1 2 − γ̃ 0

1 2

)

− p2S

M2

(
γ̃ 2

2 1 + 2ηγ̃ 1
2 1 − γ̃ 0

2 1

)]

− qαπT−β

qp+

[
qS

qp+
(
γ̃ 3

1 2 + 2ηγ̃ 2
1 2 − γ̃ 0

1 2

)

+ p2S

M2

((
γ̃ 3

2 2 − γ̃ 2
3 1 − γ̃ 2

3 2

) + 2η
(
γ̃ 2

2 2 − γ̃ 1
3 1 − γ̃ 1

3 2

)

− (
γ̃ 1

2 2 − γ̃ 0
3 1 − γ̃ 0

3 2

))]}
. (4.69)

The corresponding terms are of the same size as in the un-
polarized case, Sect. 4.1, and may have a quantitative effect
only in the low Q2-region in the meson-exchange case.

It is remarkable that the Wandzura–Wilczek relation [67]
remains intact after ζ -integrations and is valid for the exper-
imentally observable moments,

G
(n)
a 2

(
x,η, t,p2+/Q2)

= −G
(n)
a 1

(
x,η, t,p2+/Q2)

+
∫ 1

x

dy

y
G

(n)
a 1

(
y,η, t,p2+/Q2). (4.70)

The second integral relation (4.60) contains the ζ -dependent
denominator

√
1 + x2 P 2/q2 so that we obtain after ζ -

integration more complicated expressions. In the approxi-
mation π− = 0 one obtains

G
(n)
a 0

(
x,η, t,p2+/Q2)

≈ xξ0G
(n)
a 1

(
x,η, t,p2+/Q2)

− 2x2 + xξ0

[1 + 4x2 p2+/Q2]1/2

∫ 1

x

dy

y
G

(n)
a 1

(
y,η, t,p2+/Q2)

+ 2x2

[1 + 4x2 p2+/Q2]3/2

∫ 1

x

dy

y

∫ 1

y

dy′

y′

× G
(n)
a 1

(
y′, x, η, t,p2+/Q2). (4.71)

ξ0 denotes the Nachtmann variable (4.35). However the
functions G

(n)
a 0 (x, η, t,p2+/Q2) contribute to sub-leading

terms only.

5 Conclusions

Deep-inelastic diffractive scattering, like other hard scatter-
ing processes off nucleons, requires target-mass corrections

in the region of lower Q2-scales. In fact, the nucleon mass
M is not the only hadronic scale relevant to that process
where both the incoming and outgoing nucleon play a role.
The invariant t = (p2 − p1)

2 on average is of the same size
as M2.3 In the present paper we investigated in detail the
conditions under which terms like M2/Q2 or |t |/Q2 con-
tribute.

We considered the leading twist contributions for which
factorization theorems allow a partonic description. With the
help of A. Mueller’s generalized optical theorem it was pos-
sible to reformulate diffractive scattering in terms of deep-
inelastic scattering off an effective two-nucleon pseudo-state
accounting for t . All essential expressions determining ex-
perimentally relevant quantities are the diffractive general-
ized parton densities (dGPD) defined as expectation values
of non-local light-cone operators (3.5), (3.6). The involved
iterated diffractive dGPDs (4.8)–(4.13), respectively (4.57)
and (4.58), Φ(i)

(5)a(λ, ζ, t, η;μ2) depend on at least three vari-
ables, λ, ζ and t . Hereby t is an external variable, whereas
λ is defined as overall scale multiplied with a generalized
momentum in (p+z+ + p−z−) = λP . In the hadronic ten-
sor Wμν = ImTμν it is fixed by ξ , the generalized Nacht-
mann variable (3.18). Moreover the generalized momentum
P = p+ + ζπ− splits into a “longitudinal” and a “transver-
sal” part π− multiplied by a new variable ζ and can be
treated separately. The problem in applying the results of
our previous work [1] is the dependence of the dGPDs on
the ‘internal’ variable ζ which is not measurable in experi-
ment since it contributes through a definite integral in the fi-
nal expressions. We performed an expansion w.r.t. the exter-
nal variable p2+/Q2. This leads to a set of integrated dGPDs
which describe the process and the relevant mass corrections
in a well-defined approximation.

One of our results is a prescription of experimental data
in terms of experimentally accessible integrated diffractive
GPD’s,

Φ
(i n)
(5)a (ξ, t, η) =

∫
dζ ζ nΦ

(i)
(5)a(ξ, ζ, t, η), (5.1)

or approximately by the functions (4.39), which could be
considered as diffractive parton densities, as it is the case
for vanishing masses [2]. For our approximation a simi-
lar relation holds, where ξ is substituted by the variable
x = Q2/qp+. Note that one and the same diffractive input
GPD Φ

(i)
(5)a(ξ, ζ, t, η) determines several amplitudes with

different kinematic factors. This can be seen in the lowest
approximations (4.47) or (4.66) and for the t-dependent cor-
rections (4.49) and (4.69).

3In case of related semi-exclusive processes in which more than one
final-state hadron is well separated in rapidity from the inclusively pro-
duced hadrons other invariants more would emerge.
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The t- and M2-dependence due to the functions
Φ

(in)
(5)a(ξ, t, η), besides the non-perturbative t-behavior, turns

out to be of O(x2
BJ(P)

μ2/Q2), μ2 = |t |,M2. Some of the
kinematic factors emerging in the scattering cross section
turn out to be less suppressed and are of O(xBJ(P)μ

2/Q2).
In the case of diffractive scattering the region of xBJ and xP

is effectively limited by � 10−2. The corresponding correc-
tions cannot be resolved at the experimental accuracy. The
effects are larger in the case of meson-exchange processes
with a fast hadron due to the range x � 0.3. Due to the small-
ness of these corrections the diffractive distribution func-
tions obey a partonic description, where t plays the role of
an additional variable besides β = xBJ/xP.

At the level of twist-2 the structure functions the scatter-
ing cross section can be built from the corresponding oper-
ator expectation values (3.5)–(3.6) as in the case of deep-
inelastic scattering since the specifics of diffractive scat-
tering is moved into the corresponding two-particle wave
functions. Consequently, the logarithmic scaling violations,
which can be completely associated with that of the opera-
tors, cf. [2, 53], are found to be the same as in DIS or DVCS,
if the complete diffractive GPDs are used.

The integral relations (4.22), (4.59) and (4.60) can be
transformed in part to the integrated functions only. The
presence of target-mass and t-effects enlarges the number of
structure functions determining the hadronic tensor if com-
pared to the case of forward scattering. As shown in the
present paper, these corrections are suppressed by at least
one power in xBJ or xP and therefore the picture derived
in [2, 3] remains valid quantitatively. In the polarized case,
there is a new term, cf. (4.68), which contains xP as prefac-
tor. The Wandzura–Wilczek relation remains unbroken and
holds even separately for the contributions of the three dif-
ferent invariants K5

a (3.8). We have also shown how the
present formalism can be used to derive the target-mass cor-
rections in the limit of forward scattering.
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Appendix A: Kinematic relations

In the following we list kinematic relations for the process of
deep-inelastic diffractive scattering. The incoming and out-
going lepton momenta are l1 and l2, those of the nucleon
are p1 and p2 (diffractive nucleon), and the vector of the
remainder hadrons is denoted by r . We disregard the lepton
masses, l1.l1 = l2.l2 = 0. The kinematic invariants of this
2 → 3 particle scattering process are, cf. [73],

p1.p1 = p2.p2 = M2, (A.1)

r.r = M2
X, (A.2)

s = (l1 + p1)
2 = 2l1.p1 + M2, (A.3)

q2 = −Q2 = (l1 − l2)
2 = −2l1.l2, (A.4)

t = (p1 − p2)
2 = 2M2 − 2p1.p2, (A.5)

W 2 = (r + p2)
2 = (q + p1)

2

= Q2
(

1

xBJ
− 1

)
+ M2, (A.6)

l1.q = −Q2/2, (A.7)

l2.q = +Q2/2, (A.8)

s1 = (l2 + r)2, (A.9)

2l1.p2 = s − s1 + t − M2. (A.10)

For the later analysis it will be useful to consider the cms
frame of the momenta

p1 + q = p2 + r = 0. (A.11)

We need to express S‖.p2. This requires a suitable represen-
tation of p2, which cannot be obtained from the invariants
above. In the frame (A.11) the energies and absolute values
of the 3-momenta are given by

Eq = 1

2
√

W 2

[
W 2 − Q2 − M2], (A.12)

Ep1 = 1

2
√

W 2

[
W 2 + Q2 + M2], (A.13)

|q| = |p1| =
1

2
√

W 2
λ1/2(W 2,−Q2,M2), (A.14)

Er = 1

2
√

W 2

[
W 2 + M2

X − M2
1

]
, (A.15)

Ep2 = 1

2
√

W 2

[
W 2 + M2 − M2

X

]
, (A.16)

|r| = |p2| =
1

2
√

W 2
λ1/2(W 2,M2,M2

X

)
, (A.17)

El = |l| = 1

2
√

W 2

[
s − Q2 − M2]. (A.18)

The spin vector S‖ and the 4-vector p2 read

S‖ = 1

2
√

W 2

(
λ1/2(W 2,−Q2,M2);

0,0,W 2 + M2 + Q2), (A.19)

p2 = 1

2
√

W 2

(
W 2 + M2 − M2

X;

p⊥,2, cos θ1,2λ
1/2(W 2,M2,M2

X

))
, (A.20)
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with S2‖ = −M2 and

cos θ1,2 = 2W 2(t − 2M2) + (W 2 + Q2 − M2)(W 2 + M2 − M2
X)

√
λ(W 2,M2,−Q2)λ(W 2,M2,M2

X)

=
{

1 − xP + txBJ

Q2
− 4xBJM

2

Q2

(
1 − xBJ + xBJ

M2

Q2

)

− 2
x2

BJt

Q2

(
1 − M2

Q2

)}

×
{(

1 + 4x2
BJM

2

Q2

)[(
1 − xP − xBJt

Q2

)2

− 4xBJxP

M2

Q2

(
1 − β + β

t

Q2

)]}−1

� 1 − xBJ

1 − xP

[ |t |
Q2

(
1 + 2

1 − xP

)
+ 4M2

Q2

]

+ O
((

x2
BJ,

xBJμ
2

Q2

)2)
, (A.21)

with μ2 = t,M2. Note that the dependence on μ2/Q2 is
here linear with xBJ.

λ(a, b, c) = (a − b − c)2 − 4bc (A.22)

denotes the triangle-function. In the limit t,M2 → 0 one ob-
tains cos θ1,2 = 1.

S‖.p2 is given by

S‖.p2 = 1

4W 2

[
λ1/2(W 2,−Q2,M2)(W 2 + M2 − M2

X

)

− cos(θ1,2)λ
1/2(W 2,M2,M2

X

)(
W 2 + M2 + Q2)]

= M2xP(1 − xP/2)

1 − xP

+ |t |(3 − xP)

4(1 − xBJ)(1 − xP)

+ O
(|t |2,M4, |t |M2). (A.23)

Further S‖.l1 and S‖.q are

S‖.l1 = 1

4W 2

(
s − Q2 − M2)

× Q2

xBJ

[(
1 + 4x2

BJM
2

Q2

)1/2

−
(

1 + 2xBJM
2

Q2

)]

� − 1

2y
(1 − xBJy)M2 + O

(
x2

BJM
4

Q2

)
, (A.24)

S‖.q = − 1

2W 2

(
Q2 − M2)Q2

xBJ

√

1 + 4x2
BJM

2

Q2

= − Q2

1 − xBJ

[
1 − M2

Q2

(
1

1 − xBJ
− 4x2

BJ

)

+ O
((

xBJ
M2

Q2

)2)]
. (A.25)

Note that these expressions contain terms of O(M2/Q2) and
O(xBJM

2/Q2). S‖.l1 and S‖.p2 vanish in the strict collinear
limit t,M2 → 0.

The above invariants, except s1, were all parameterized in
terms of the dimensionless quantities, as xBJ, y, xP keeping
M2 and t , which are normalized to Q2. The invariant

s1 = s + M2 − 1

λ(W 2, q2,M2)

× [
D1 + 2 cos(φb)

√
G1G2

]
, (A.26)

in addition depends on the azimuthal angle φb . Here,

G1 = G
(
s, q2,W 2,0,M2,0

) ≤ 0, (A.27)

G2 = G
(
W 2, t,M2, q2,M2,M2

X

) ≤ 0, (A.28)

where G denotes the Caley determinant

G(x,y, z,u, v,w) = −1

2

∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 v x z

1 v 0 u y

1 x u 0 w

1 z y w 0

∣∣∣∣∣∣∣∣∣

. (A.29)

D1 is the determinant

D1 =
∣∣∣∣∣∣

2M2 W 2 − q2 + M2 2M2 − t

W 2 − q2 + M2 2W 2 W 2 − M2
X + M2

s + M2 s + W 2 0

∣∣∣∣∣∣
.

(A.30)

Let us consider the limit M2, t → 0. Here

G2 = G
(
W 2,0,0, q2,0,M2

X

) = 0, (A.31)

and s1 does not depend on the azimuthal angle φb . Further-
more,

D1 = (
W 2 + Q2)(W 2 − M2

X

)
s = sQ4

x2
BJ

(1 − xP), (A.32)

2l1.p2 = s(1 − xP). (A.33)

Therefore we obtain in the limit M2, t → 0 the hadronic ten-
sors given in [2, 3].

We now expand 2l1.p2 up to terms linear in M2 and t .
One obtains

G1 � −s2Q2
[
(1 − y) − M2

Q2
xy

(
2 − y(1 − x)

)]
, (A.34)

G2 � −Q4

x2
BJ

[
(1 − 2xBJ − xP)

|t |
Q2

− M2

Q2
x2

P
(1 + 2β)2

]
, (A.35)
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D1 � Q6

yx3
BJ

[
1 − xP + |t |

Q2
xBJ

(
y(1 − xBJ) + 2xBJ

)

+ 2
M2

Q2
xBJ

(
2xBJ + y(1 − xBJxP)

)

+ O
(
μ4/Q4)

]
. (A.36)

The ratio l1.p2/l1.p1 receives
√

μ2/Q2 corrections for the
angular term ∝ cosφb and μ2/Q2 corrections otherwise,

l1.p2

l1.p1
= 1 − xP + |t |

Q2
xBJ

[
y(1 − xBJ) + 2xBJ

]

+ 2
M2

Q2
xBJy(1 − xBJxP)

+ 2 cosφbx
√

1 − y

×
[
(1 − 2xBJ − xP)

|t |
Q2

− M2

Q2
x2

P
(1 + 2β)2

]1/2

+ O
(

μ3

(Q2)3/2

)
. (A.37)

Appendix B: The limiting case of deep-inelastic
scattering

As a check of our general result we perform the limit p2 → 0
to obtain the results of Refs. [29–32]. In this limit the kine-
matic variables and invariants are given by

P → p1 ≡ p, x → 2x
f

Bj ≡ Q2

qp
,

(B.1)
η → −1, π− → 0,

P 2 → M2, t → M2,
(B.2)

p−p+ → −M2, K1 → p, K2 → 0.

The generalized Nachtmann variable takes the form

ξ → 2
2x

f

Bj

1 +
√

1 + 4x
f

BjM
2/Q2

= 2ξf . (B.3)

First, we consider the symmetric part of the amplitude. The
second kinematic variable K2 = π− vanishes. In (4.17) only
the contributions for a = 1 remain,

ImT tw2
1 {μν}(q) = 2π

∫
dζ

[
−gT

μν W diff
1 1

(
x, P 2/Q2; ζ )

+ pT
μpT

ν

M2
W diff

1 2

(
x, P 2/Q2; ζ )]

(B.4)

→ 2π

[
−gT

μν W1
(
ξf

) + pT
μpT

ν

M2
W2

(
ξf

)]
.

(B.5)

Because of p2 = 0, the integration over z2 can now be per-
formed,
∫

dz2 φ(z1, z2) = φ̂(z1), (B.6)

where Φ̂(z1) denotes the parton density in the deep-inelastic
case. The variables zi are expressed by

z1 → λ = ξ, z2 → λ(2ζ + 1) = ξ(2ζ + 1),

dz2 = 2ξ dζ.
(B.7)

From the complete integration measure 2|λ|dλdζ the λ-
integral has already been carried out, so that only the ζ -
integration remains.

To get the standard structure functions for deep-inelastic
scattering we take the limits (B.1)–(B.3) and perform the ζ -
integration,

Wk

(
ξf , x

f

Bj,p
2/Q2) =

∫
dζ lim

p2→0
W diff

1k

(
ξ, x, P 2/Q2; ζ )

for k = 1,2. (B.8)

To obtain explicit expressions we use W diff
1 1 (ξ, x, P 2/Q2; ζ )

and W diff
1 2 (ξ, x, P 2/Q2; ζ ) in (4.18) and (4.20) together with

the diffractive structure functions F1 1(ξ, ζ ) and F1 2(ξ, ζ ) as
given by (4.3) and (4.4), respectively. We obtain

W1 = 2x
f

Bj√
1 + 4(x

f

Bj)
2M2/Q2

×
[
Φ̂

(0)
f 1 + x

f

BjM
2/Q2

√
1 + 4(x

f

Bj)
2M2/Q2

Φ̂
(1)
f 1

+ (x
f

Bj M
2/Q2)2

1 + 4(x
f

Bj)
2M2/Q2

Φ̂
(2)
f 1

]
(B.9)

and

W2 = (2x
f

Bj)
3M2/Q2

√
1 + 4(x

f

Bj)
2M2/Q2

3

×
[
Φ̂

(0)
f 1 + 3x

f

Bj M
2/Q2

√
1 + 4(x

f

Bj)
2M2/Q2

Φ̂
(1)
f 1

+ 3 (x
f

Bj M
2/Q2)2

1 + 4(x
f

Bj)
2M2/Q2

Φ̂
(2)
f 1

]
, (B.10)

where the functions Φ̂
(n)
f 1(2ξf ) follow from (4.8)–(4.10).

The ζ -integrals can be performed taking into account

Φ̂
(n)
f 1

(
2ξf

) = 2nΦ
(n)
f 1

(
ξf

)
, (B.11)
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which yields

∫
dζ Φ(0)

a (ξ, ζ ) ≡ Φ̂(0)
a (ξ) → Φ̂

(0)
f a

(
2ξf

) = ff a

(
ξf

)

= Φ
(0)
f a

(
ξf

)
, (B.12)

∫
dζΦ(1)

a (ξ, ζ ) ≡ Φ̂(1)
a (ξ) → Φ̂

(1)
f a

(
2ξf

)

= 2
∫ 1

ξf

dy1 ff a(y1) = 2Φ
(1)
f a

(
ξf

)
, (B.13)

∫
dζ Φ(2)

a (ξ, ζ ) ≡ Φ̂(2)
a (ξ) → Φ̂

(2)
f a

(
2ξf

)

= 4
∫ 1

ξf

dy2

∫ 1

y2

dy1 ff a(y1) = 4Φ
(2)
f a

(
ξf

)
,

(B.14)

in the limit p2 → 0. Finally one obtains

W1
(
ξf

) = 2x
f

Bj√
1 + 4(x

f

Bj)
2M2/Q2

×
[
Φ

(0)
f 1 + 2x

f

BjM
2/Q2

√
1 + 4(x

f

Bj)
2M2/Q2

Φ
(1)
f 1

+ 4 (x
f

Bj M
2/Q2)2

1 + 4(x
f

Bj)
2M2/Q2

Φ
(2)
f 1

]
(B.15)

and

W2
(
ξf

) = (2x
f

Bj)
3M2/Q2

√
1 + 4(x

f

Bj)
2M2/Q2

3

×
[
Φ

(0)
f 1 + 6x

f

BjM
2/Q2

√
1 + 4(x

f

Bj)
2M2/Q2

Φ
(1)
f 1

+ 12 (x
f

Bj M
2/Q2)2

1 + 4(x
f

Bj)
2M2/Q2

Φ
(2)
f 1

]
, (B.16)

the representation for the target-mass corrections in the un-
polarized case given in [29] before.

As in the case of generalized parton densities also here
the diffractive hadronic distribution amplitudes contain as
limit the parton distribution of deep-inelastic scattering.
However, care is needed because

Φ
(0)
f a(ξf ) = Φ̂a

(
2ξf , t = M2) (B.17)

includes an analytic continuation from the physical values
t < 0 to t = M2.

Next, we consider the antisymmetric contributions in the
Compton amplitude, which correspond to the case of po-
larized scattering. From the kinematic factors (3.8) only
K1

5 = S remains in the limit p2 → 0. We consider (4.62)

and (4.64) with the definition (4.61) for G
(n)
1k . This results in

ImT tw2[μν]f (q) = π ε αβ
μν

{
qαSβ

qp

(
G

(0)
11

(
x

f

Bj

) + G
(0)
12

(
x

f

Bj

))

− qαpβ

qp

qS

qp
G

(0)
12

(
x

f

Bj

)}
, (B.18)

the forward scattering limit (B.1) of our general result (4.62)
and (4.64) with the definition (4.61) of G

(n)
1k . The antisym-

metric part of the amplitude simplifies to

G
(0)
11

(
x

f

Bj

) = x
f

Bj/ξ
f

[1 + 4(x
f

Bj)
2M2/Q2]3/2

×
[
Φ̂

(0)
51

(
2ξf

) + 4x
f

Bj(x
f

Bj + ξf )M2/Q2

[1 + (4x
f

Bj)
2M2/Q2]1/2

× Φ̂
(1)
51

(
2ξf

)

− 2x
f

Bjξ
f M2/Q2

2 − 4(x
f

Bj)
2M2/Q2

1 + 4(x
f

Bj)
2M2/Q2

× Φ̂
(2)
51

(
2ξf

)]
, (B.19)

G
(0)
12

(
x

f

Bj

) = −x
f

Bj/ξ
f

[1 + 4(x
f

Bj)
2M2/Q2]3/2

×
[
Φ̂

(0)
51

(
2ξf

) − 1 − 4x
f

Bjξ
f M2/Q2

[1 + 4(x
f

Bj)
2M2/Q2]1/2

× Φ̂
(1)
51

(
2ξf

)

− 6x
f

Bjξ
f M2/Q2

1 + 4(x
f

Bj)
2M2/Q2

Φ̂
(2)
51

(
2ξf

)]
, (B.20)

and

G
(0)
11

(
x

f

Bj

) + G
(0)
12

(
x

f

Bj

)

= x
f

Bj/ξ
f

[1 + 4(x
f

Bj)
2M2/Q2]3/2

× [(
1 + 2x

f

Bjξ
f M2/Q2)Φ̂(1)

51

(
2ξf

)

+ 2x
f

Bjξ
f M2/Q2Φ̂

(2)
51

(
2ξf

)]
. (B.21)
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Again we introduced the (integrated) parton distributions
Φ̂

(0)
5a (ξ) and performed the limit (B.1) as follows:

∫
dζ Φ

(0)
5a (ξ, ζ ) ≡ Φ̂

(0)
5a (ξ) → Φ̂

(0)
5a

(
2ξf

)

= 2ξf f5f a

(
ξf

) = Φ
(0)
5f a

(
ξf

)
, (B.22)

∫
dζ Φ

(1)
5a (ξ, ζ ) ≡ Φ̂

(1)
5a (ξ) → Φ̂

(1)
5a

(
2ξf

)

=
∫ 1

ξf

dy1

y1
Φ

(0)
5f a(y1) = Φ

(1)
5f a

(
ξf

)
, (B.23)

∫
dζ Φ

(2)
5a (ξ, ζ ) ≡ Φ̂

(2)
5a (ξ) → Φ̂

(2)
5a

(
2ξf

)

=
∫ 1

ξf

dy2

y2

∫ 1

y2

dy1

y1
Φ

(0)
5f a(y1)

= Φ
(2)
5f a

(
ξf

)
. (B.24)

Finally we substitute Φ̂
(i)
5a(2ξf ) by Φ

(i)
5f a(ξ

f ) and obtain
the result given in [30–32] before.
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