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Abstract:We exploit the possibility of deforming a shell by

assigning a targetmetric,which, for 2D structures, is decom-

posed into the �rst and second target fundamental-forms.

As well known, an elastic shell may change its shape under

two di�erent kinds of actions: one are the loadings, the

other one are the distortions, also known as the pre-strains.

Actually, the target fundamental forms prescribe a sought

shape for the solid, and the metric e�ectively realized is the

one that minimizes the distance, measured through an elas-

tic energy, between the target and the actual fundamental

forms. The proposed method is very e�ective in deforming

shells.

Keywords: shell, elastic metric, distortions, non linear elas-

ticity, target metric

1 Introduction: shape and change in

shape in a nutshell

The problem of the shape reconstruction from local geo-

metrical properties, such as the metric or the curvature, is

common to di�erent �elds, among themare ShapeAnalysis,

Computer Graphics [1, 2] and Solid Mechanics [3, 4].

In the last years, the concepts of target metric, non-

euclideanplates [5] andnon-lineardistortions [6], havebeen

widely used to describe shape formation processes in both

natural (e.g. growth and remodeling of biological struc-

tures), and arti�cial contexts (e.g. design of actuators). In

particular, the local strain, in the deformation of a solid
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body (or a shell), can be characterized by the change of

metric and curvature [7, 8].

Deformations in engineering structures are generally

studied according to the e�ect of loadings, assuming both

small or large displacements. Other causes of deformation

and stress in structures are the distortions, for example,

the thermal distortions. The e�ects of distortions are usu-

ally studied in small displacement regime, and few studies

tackle the problem of large distortions that can yield large

deformations; even more interesting are the cases where

distortions induce large shape changes without stressing

the structure. This last phenomenon is typical of biological

structures [9]. In this work we investigate the morphing of

elastic shell-like structures, with a view towards engineer-

ing and architectural problems.

Our aim is to morph a material body basing on the the-

ory of �nite elasticity with large distortions, i.e. an assigned

distortion induces a target metric and the con�guration

which is actually realized is the one that minimizes the dis-

tance, measured through the elastic energy, between the

target metric and the actual one.

In order to do that, it is very important to recall some

key concepts, which cross all the aforementioned �elds,

and which concern, in general, geometric issues.

The fundamental concept is that of di�erentiable mani-

fold, that is, of parametrized geometry, a natural extension

of the concept of parametric surface.

In the simplest case, the parameterization of a geomet-

ric object living in Euclidean space occurs through a map

which, by establishing a correspondence between a region

of RN (where N is 2 for two-dimensional bodies and 3 for

three-dimensional bodies) and a region of the Euclidean

space E (the geometric object), allows the user to “move”

inside the considered object, or to identify, through the

coordinates, any point of the object itself.

A geometric object, embedded in three-dimensional

Euclidean space, can be three-dimensional or two-

dimensional, depending on the number of coordinates

needed to describe it.

We can refer to parametric surfaces as two-dimensional

objects and to parametric solids as three-dimensional ob-

jects.

Object parameterization is a di�erentiable function f

from R
2 to E, for a surface, and from R

3 to E, for a solid. In
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both cases the output of the function are the 3 coordinates

(x, y, z) that identify a point in the Euclidean space. For this

reason, we can say that the function f provides a global

description of the object.

From a geometric point of view it is very important

to introduce a local description, namely, the one that de-

scribes the geometry of the neighborhood of a considered

point. This description is made through the tangent map

∇f , being∇ the gradient operator.

The distinction between global and local description

of the shape of an object is very important. The shape of an

object can be described through a (regular) function f up

to a rigid transformation (global isometry), which has Eu-

clidean space as its codomain, and a two-dimensional RN

region as its domain (surfaces: N = 2) or three-dimensional

(solid: N = 3). The local description gives the shape of the

neighborhood of a point of the object. Given a global de-

scription it is possible to obtain, by di�erentiation, the local

description.

In the geometry of surfaces their local description is

given by the �rst fundamental form A (metric of the sur-

face) and by the second fundamental form B (curvature of

the surface). In simple terms the metric describes how an

in�nitesimal element of surface is shaped, while the curva-

ture describes how an in�nitesimal element is rotated with

respect to the immediately adjacent in�nitesimal elements.

An important result from the di�erential geometry

is that assigning the �elds A and B, corresponding to a

local description, and provided that these �elds respect

the so-called compatibility equations (Gauss and Mainardi-

Codazzi), it is then possible to obtain the global geometry

of a surface by integration [7].

This alsomeans that by locally changing themetric and

curvature of a surface, it is possible to change its overall

geometry.

This principle is continuously exploited in nature in

particular in 2 contexts: growth and active deformation. In

the �rst case, the global geometry is determined by adding

new material and re-organizing the existing one at a local

level. Let us think of the case of the growth of a tree that

develops its trunk in such away as to reach the sunlight. On

the other hand a simple example of active deformation is

that of muscle activation: to move a hand towards an object

(global displacement) a contraction of the arm’ muscles

(local shape change) is needed.

In Mechanics the introduced purely geometric facts

are then related to elasticity and, in this context, we do

not speak simply about geometrical objects, but we speak

about bodies. A body is a di�erentiable manifold which, at

any time, �ll a given con�guration in the Euclidean space.

A motion is a sequence of con�gurations parametrized by

the time, and is described by a map ft, which associate a

con�guration in the space E for each instant t . Elasticity is

the phenomenon whereby a body, locally, tends to prefer

one shape rather than another. The preferred con�guration

of a body is generally associated with a reference con�g-

uration, or initial con�guration, otherwise known as the

rest con�guration. In that con�guration the body is not sub-

jected to internal stresses. When, due to external causes

(for example a load), the body moves from the rest con�g-

uration then elastic energy accumulates in every point of

the body. The elastic energy is a function that gauges the

elastic strain (also known as elastic metric).

The elastic strain is the di�erence (calculated in some

linear or non-linear way) between the local shape (metric

and/or curvature) in the current con�guration and the local

shape in the rest con�guration (target metric and target

curvature). The global con�guration that will take place

will be the one that minimize the total potential energy,

given by the elastic energy minus the potential energy of

the loads. Therefore, in the absence of loads, the body will

tend to return to its rest con�guration.

A di�erent case is when so-called inelastic deforma-

tions (thermal expansion, swelling, plasticity) are present,

where the target metric (curvature) is no longer associated

with the reference con�guration or, more in general, with a

global con�guration, but is locally assigned in the body. If

the assigned target metric respects the compatibility equa-

tions, above recalled, and it is compatible with some given

boundary conditions, then it will be possible to realize a

global con�guration (target con�guration), whose local

form corresponds to the target metric. In absence of loads

the bodywill assume the target con�guration, whichwill be

free of internal stresses. If the target metric does not respect

the compatibility equations or the compatibility with the

boundary conditions, no target con�guration exists and,

in the absence of loads, the body will arrange itself in a

con�guration which will be as locally as possible similar to

the elastic metric, in order to minimize the elastic energy.

Within this con�guration internally self-balanced stresses

are present, named self-stresses.

In summary, to generate a change in shape of an object

it is possible to follow at least two paths:

1. applying a load (potential energy of the loads:

global), generating as a response an elastic energy

and, consequently, local deformations and tensions.

2. assigning a local shape change (pre-strain) and ob-

taining a global shape change, which can be stress-

free (if the target metric is compatible) or having self-

stresses (if the target metric is not compatible).
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In recent years an interesting topic that involves shell-

like structures is the Form-Finding (FF) [10], where an

optimal structural form is searched for minimizing the

contribution of the bending moments in its mechanical

behavior. This means that an architectural shell can be

shaped, according to certain load and boundary conditions,

to carry design loads only by exploiting membrane forces.

Form-Finding methods are generally based on equilib-

rium conditions to be satis�ed in the actual con�guration

(namely force methods). What here proposed could be also

interesting to reformulate new FF methods based on target

metric assignment, where compatibility conditions could

integrate or substitute the force conditions given in the

classical FF. A very recent example shows how a discrete

change in the metric of the surface of a wooden pavilion,

made of assembled panels, is the tool used to design its

target shape [11]. We will show how, in order to obtain a

con�guration very di�erent from the initial is more easy,

from a computational point of view, to assign local strains

instead of loads.

The paper is hence structured as in the following. In

Section 2we give an introduction of distortions and the elas-

tic metric for 3D elasticity. These concepts will be speci�ed

for a 2D shell-like body in Section 3, where also the elas-

tic Fundamental Forms will be derived. In Section 4 some

numerical examples of shell morphing will be presented

considering both initially �at and curved shell-like bodies.

Finally the Conclusions will be followed by an appendix

devoted to the nonlinear shell model used in this work.

2 3D Distortions and the elastic

metric

We give a short introduction of the notion of distortions and

the associated elastic metric [6]. Given a reference con�gu-

rationBȳ of a 3D body, we de�ne a new con�gurationBy

via the map f :

f : Bȳ → E (1)

ȳ ↦→ y = f (ȳ) , (2)

where E is the 3D Euclidean ambient space; the gradient

F = ∇f is the tangent map from the tangent bundle TBȳ

of Bȳ, to the tangent bundle TBy of By. Distortions are

described by a smooth tensor-valued �eld

Fo : Ȳ → Lin(TBȳ , TBȳ) , (3)

with Lin(TBȳ , TBȳ) an endomorphism of TBȳ, with Jo :=

detFo > 0 . The key distinction between a distortion Fo and

the gradient of a deformation F can be brie�y summarized

as follows: F embeds body elements onto E; conversely,

Fo is not required to be the gradient of any map, and in

general it does not exist an embedding for the distorted

body elements, that is Fo is not compatible. The extra strain

that must be added to Fo is called elastic strain, a notion

put forward in [12, 13] to tell the di�erence between elastic

and plastic strains

Fe = FF
−1
o , (4)

The three tangent maps F, Fo, and Fe (see Figure 1), prompt

the de�nition of the following metric tensors, having the

role of right Cauchy-Green strain-measures:

Co = F
T
o Fo , target metric, due to Fo , (5)

C = F
T
F, actual metric, given by F ,

Ce = F
⊤
e Fe = F

−⊤
o CF

−1
o elastic metric .

The name target metric, also known as natural or intrin-

sic metric [14], stems from the fact that, in order to get a

minimum of the elastic energy, the actual metric Cwill be

as close as possible, in the energy norm, to the target one;

in particular, if C is equal to Co, then the elastic metric is

trivial: C = Co ⇔ Ce = I. In general, Co is not Euclidean,

i.e., it does not exist any embedding compatible with Co,

and the actual con�guration will have Ce ≠ I.

ȳ

dvȳ = Jȳ dV

Fo

ȳ

dvo = Jo dvȳ

Fe = FF
−1
o

y

dvy = J dvȳ = Je Jo dvȳ

F

Figure 1: The essence of a distortion. The volume element dvȳ,

attached to a point ȳ ∈ Bȳ of the source con�guration (top, right) is

mapped by Fo onto a distorted element dvo, attached to the same

point ȳ (top, left). To get a compatible volume element dvy (bottom,

left), we must add a further strain to Fo, called the elastic strain Fe.

The embedding F is thus given by F = Fe Fo.
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3 2D Distortions and the elastic

fundamental forms

3.1 The representation of the metric tensor
for shell-like bodies

Let {o; c1, c2, c3} be an orthonormal frame of E; to de-

note the Cartesian components, we shall use the subscripts

α, β = 1, 2 and i, j = 1, 2, 3. We de�ne a shell-like do-

main as a �at 3D volume S = Z × H, the Cartesian prod-

uct of Z ∈ span(c1, c2), and H ∈ span(c3), whose char-

acteristic diameter is much larger than the thickness H:√
area(Z)/H >> 1. A point of S is represented by the three

coordinates (z1, z2, ζ ). Following [15], we de�ne a shell-like

body as the 3D volume fk extruded from the surfaces f̂k,

with k = ȳ, y, along their normals nk

fk : S → E, (6)

with fk(z1, z2, ζ ) = f̂k(z1, z2) + ζ nk(z1, z2),

We always consider a reference surface f̂ȳ and an actual

surface f̂y, the unknown of our problem. The tangent vec-

tors akα to the surfaces f̂k, and the surface normals nk, are

de�ned in terms of the partial derivatives of f̂k:

akα = f̂k,α = ∂f̂k/∂zα; nk =
ak1 × ak2

‖ak1 × ak2‖
. (7)

Given (6), its gradient Fk = ∇fk is represented by

Fk = F̂k + nk ⊗ e3 + ζ ∇nk ,with F̂k = ∇f̂k . (8)

The matrix-like representation [Fk] of Fk is given by

[Fk] = [ ak1 | ak2 |nk ] + ζ
[
nk,1 |nk,2 |0

]
(9)

=



f̂k1,1 f̂k1,2 nk1
f̂k2,1 f̂k2,2 nk2
f̂k3,1 f̂k3,2 nk3


 + ζ



n1,1 n1,2 0

n2,1 n2,2 0

n3,1 n3,2 0




with f̂ki = f̂k · ci, and nki = nk · ci the Cartesian components

of f̂k, nk, respectively. Given (8), the associated metric Ck
can be written in terms of the surface Fundamental Forms

(FFs) by

Ck = F
T
k Fk = U

2
k
.
= Ak + 2 ζ Bk , (10)

where Uk is the right stretch tensor associated to polar de-

composition of Fk, and

Ak = F̂
T
k F̂k , Bk =

1

2

(
F̂
T
k ∇nk +∇n

T
k F̂k

)
, (11)

are the �rst and the second fundamental forms, respectively.

We note that the other summands in FTk Fk contain a term

quadratic in ζ , which is neglected, plus a term which is

constant, that is e3 ⊗ e3, and �nally the term

F̂
T
k (nk ⊗ e3) + (e3 ⊗ nk) F̂k = 0 , (12)

which is null, being akα ⊥nk. The matrix-like representa-

tion of Ck is given by

[Ck]=̇




ak1 · ak1 ak1 · ak2 0

ak1 · ak2 ak2 · ak2 0

0 0 1


 (13)

+ 2 ζ




ak1 · nk,1 ak1 · nk,2 + nk,1 · ak2 0

ak1 · nk,2 + nk,1 · ak2 ak2 · nk,2 0

0 0 0




Following the linear representation of Ck, see (10), we as-

sume a similar linear representation for the right stretch

Uk:

Uk
.
= Uk0 + ζ Uk1 , (14)

Using (14), we can represent Ck in terms of Uk0 and Uk1; as

previously done for (10), we neglect the quadratic terms,

and write

Ck = (Uk0 + ζ Uk1)
2 .
= U

2
k0 + 2 ζ sym(Uk0 Uk1) (15)

= Ak + 2 ζ Bk ;

it follows a relation between the 3D stretches Uk0, Uk1 and

the 2D FFs Ak, Bk:

Uk0 ,Uk1 ⇒ Ak = U
2
k0 , Bk = sym(Uk0 Uk1) ; (16)

Ak , Bk ⇒ Uk0 =
√
Ak , (17)

Uk1 =
1

tr(Uk0)

(
Bk + det(Uk0)U

−1
k0 Bk U

−1
k0

)
;

The equation (17)2 is the solution for Uk1 of (16)2. In the

following, we shall also need the linear expansion of the

inverse of Uk; from (14), we have

U
−1
k

.
= U

−1
k0 − ζ Dk , with Dk = U

−1
k0 Uk1 U

−1
k0 . (18)

The relative metric Cȳy of f̂y with respect to f̂ȳ is given by

Cȳy = (U−1
ȳ Uy) (U

−1
ȳ Uy)

T ; from (10, 18), we have

Cȳy = (U−1
ȳ Uy) (U

−1
ȳ Uy)

T = U
−1
ȳ Cy U

−1
ȳ (19)

= (U−1
ȳ0 − ζ Dȳ) (Ay + 2 ζ By) (U

−1
ȳ0 − ζ Dȳ)

= U
−1
ȳ0 Ay U

−1
ȳ0 + 2 ζ U

−1
ȳ0

(
By − sym(Ay U

−1
ȳ0 Uȳ1)

)
U
−1
ȳ0

+ o(ζ )
.
= Aȳy + 2 ζ Bȳy .

It follows a representation formula for the relative FFs of f̂y

with respect to f̂ȳ

Aȳy = U
−1
ȳ0 Ay U

−1
ȳ0 , (20)

Bȳy = U
−1
ȳ0

(
By − sym(Ay U

−1
ȳ0 Uȳ1)

)
U
−1
ȳ0 .
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3.2 The representation of the target metric
for shell-like bodies

Given (9), we assume the following representation for a

distortion Fo to be used for shell-like bodies

|Fo| = [ ao1 | ao2 |do ] + ζ [do,1 |no,2 |0 ] , (21)

with the key di�erence that the �eld do, with |do| = 1, can

be in general independent from the two �elds aoα. Here, we

are interested in developing a Kirchho�-like shell model,

and we assume do ⊥ aoα. From (21), and the orthogonality

between do and aoα, we can de�ne a 3D target metric Co

which includes the target FFs Ao and Bo

Co = F
T
o Fo = U

2
o = Ao + 2 ζ Bo + o(ζ ) , (22)

where Uo is the right stretch tensor associated to polar de-

composition of Fo, and

Ao = F̂
T
o F̂o , Bo =

1

2

(
F̂
T
o ∇do +∇d

T
o F̂o

)
. (23)

The matrix-like representation of Co is given by

|Co|=̇




ao1 · ao1 ao1 · ao2 0

ao1 · ao2 ao2 · ao2 0

0 0 1


 (24)

+ 2 ζ




ao1 · do,1 ao1 · do,2 + do,1 · ao2 0

ao1 · do,2 + do,1 · ao2 ao2 · do,2 0

0 0 0




As done for Uk, we also consider a linear expansion of Uo,

and of its inverse U−1
k ; we have

Uo
.
= Uo0 + ζ Uo1, U

−1
o

.
= U

−1
o0 − ζ Do , (25)

with Do = U
−1
o0 Uo1 U

−1
o0.

Following the same reasoning done with Ck, see (15, 16, 17),

we can write a relation between the 3D target stretches Uo0,

Uo1 and the 2D target FFs Ao, Bo:

Uo0 ,Uo1 ⇒ Ao = U
2
o0 , Bo = sym(Uo0 Uo1); (26)

Ao , Bo ⇒ Uo0 =
√
Ao , (27)

Uo1 =
1

tr(Uo0)

(
Bo + det(Uo0)U

−1
o0 Bo U

−1
o0

)
;

3.3 The elastic FFs

The elastic metric (5)3 for shell-like bodies can be repre-

sented as follows

Ce = U
−1
o Cȳy U

−1
o . (28)

Following (19), we compute the linear expansion of Ce;

from (19, 25) we have:

Ce = U
−1
o Cȳy U

−1
o (29)

= (U−1
o0 − ζ Do) (Aȳy + 2 ζ Bȳy) (U

−1
o0 − ζ Do)

.
= U

−1
o0

[
Aȳy + 2 ζ (Bȳy − sym(Aȳy U

−1
o0 Uo1)

]
U
−1
o0

= Ae + 2 ζ Be .

At this point, we can identify the elastic FFs Ae and Be:

Ae = U
−1
o0 Aȳy U

−1
o0, (30)

Be = U
−1
o0

(
Bȳy − sym(Aȳy U

−1
o0 Uo1)

)
U
−1
o0.

Using the same procedure, we compute the strain Ee =

1/2 (Ce − I); the last equality of (29) yields

Ee =
1

2
(Ce − I) =

1

2
(Ae − I + 2 ζ Be) = Ee0 + ζ Ee1 (31)

⇒ Ee0 =
1

2
(Ae − I), Ee1 = Be .

The �rst equality of (19), together with (25, 29), yield

Ee =
1

2
(U−1

o Cȳy U
−1
o − I) (32)

=
1

2
(U−1

o0 − ζ Do) (Aȳy + 2 ζ Bȳy − I) ) (U
−1
o0 − ζ Do).

Performing all the computations, it follows

Ee0 =
1

2
U
−1
o0 (Aȳy − Ao)U

−1
o0, (33)

Ee1 = U
−1
o0 (Bȳy − Bo − sym( (Aȳy − Ao)U

−1
o0 Uo1)U

−1
o0.

We note that Ee0 in (31) and (33) coincide, while Be from

(30)2 looks quite di�erent from Ee1 in (33)2; actually, after

somemanipulations it can be proved that they are the same:

Be = U
−1
o0

[
Bȳy − sym

(
Aȳy U

−1
o0 Uo1

) ]
U
−1
o0 (34)

= U
−1
o0

[
(Bȳy − Bo) − sym

(
(Aȳy − Ao)U

−1
o0 Uo1

) ]
U
−1
o0

The apparent diversity of the representations of Be can be

worked out by considering that Ao0 = U
2
o0 and using (26)2,

from which it follows that

sym
(
Ao U

−1
o0 Uo1

)
= sym (Uo0 Uo1 ) = Bo . (35)

3.4 Some Special cases

We list here some cases of target FFs and their associated

elastic FFs:
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– f̂ȳ is a rigid motion

f̂ȳ = rigid motion ⇒
{
Aȳ = I

Bȳ = O
(36)

⇒
{
Uȳo = I

Uȳ1 = O
⇒

{
Aȳy = Ay

Bȳy = By

– Ao = I

Ao = I ⇒
{
Uo0 = I

Uo1 = Bo

(37)

⇒
{
Ee0 =

1
2 (Aȳy − I)

Ee1 = Bȳy − sym(Aȳy Bo)

– Ao = I & Aȳ = I

{
Ao = I

Aȳ = I
⇒





Uo0 = I , Uo1 = Bo

Uyo = I , Uy1 = By

Aȳy = Ay

Bȳy = By − sym(Ay Bȳ)

(38)

⇒
{
Eeo =

1
2 (Ay − I)

Ee1 = By − sym
(
Ay (Bȳ + Bo)

)

– Second target FF is null

Bo = O ⇒
{
Uo0 =

√
Ao

Uo1 = O
(39)

⇒
{
Eeo =

1
2 U

−1
o0 (Aȳy − Ao)U

−1
o0

Ee1 = Bȳy

4 Worked examples of shell

morphing

In this section we present some worked examples of the

proposed approach, showing the morphing of a shell in-

duced by a target metric. We use the Nagdhi-shell model

presented in the Appendix A; the shell model has been

solved with the Finite Element Method (FEM) by imple-

menting our equations system into the software COMSOL

Multiphysics. FEM implementation is quite straightforward

within the choosen software; in particular, the key steps are

the followings: write the weak form of the balance equation

(A12); select appropriate shape functions; draw and mesh

a 2D computational domain Ω; run a solver. We note that

our implementation requires Ω to be a �at domain, without

restriction on its shape. The reference shell is then de�ned

through a map f̂ȳ : Ω → E.

Given the orthonormal frame {o; c1, c2, c3}, in our exam-

ples we always consider a rectangular computational do-

main Z ∈ span(c1, c2), where Z is the region (z1, z2) ∈
[−L/2, L/2] × [−W/2,W/2] (see Figure 2); the thickness H

of the shell-like region is assumed to be H = L/100. For the

�rst �ve examples the ratio L/W has no role; for the last

one it is very important, and we set L/W = 10.

4.1 Bending at constant stretch (flat
reference)

Weconsider as reference shell f̂ȳ a �at domain obtained by a

π/4 rotation of the computational domain. The matrix-like

Actual shell

Fȳy

Reference shell

Z

f̂ȳ

f̂y

(z1 , z2)

Figure 2: Given a flat computational domain Z, the map f̂ȳ : Z → E de�nes a reference shell. The actual shell f̂y : Z → E is the unknown of

our problem; the con�guration f̂y is found by assigning a target metric. The map Fȳy is the deformation of f̂y with respect to f̂ȳ.
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(a) Ro = R = 1 m (b) Ro = R = 1/2 m (c) Ro = R = 1/4 m

Figure 3: Bending of a flat shell obtained by a change of the target metric Bo. Each of the three plots shows the computational domain

(gray), the reference surface (cyan), and the actual shape (color map of curvature). Each deformed con�guration is stress-free.

representation [f̂ȳ] of f̂ȳ is given by the map

[f̂ȳ] =



z1 cos(π/4) − z2 sin(π/4)

z1 sin(π/4) + z2 cos(π/4)

0


 . (40)

In this example f̂ȳ is a rigidmotion, and equations (36) hold.

The shell is clamped along one edge, and free at the remain-

ing edges. We impose an increasing bending distortion Bo

at constant target stretch Ao, by assigning the following

target FFs:

Ao =

[
1 0

0 1

]
, Bo =

[
1/Ro 0

0 0

]
. (41)

Given (41), also (37) hold; the FFs are compatible, and any

deformed con�guration will be stress-free; from (30) and

(36, 37) it follows

Ee0 =
1

2
(Ay − I) , Ee1 = By − sym(Ay Bo) . (42)

The elastic energy has a minimum for Ay = I and Ee1 = 0;

this last condition yields

0 =
1

R
−

1

Ro
⇒ R = Ro . (43)

Thus, the actual con�guration lies on a cylinder with radius

Ro. In this examplewe set L = π/2m; thus, the �at shellwill

become a cylinder when the actual curvature radius R =

L/(2 π) = 1/4m. We solve a sequence of elastic problems

with the target curvature radius Ro running from Ro >> 1

m, corresponding to an almost undeformed con�guration,

to Ro = 1/4m, corresponding to the closed cylinder. Three

solutions of this morphing problem are shown in Figure 3.

4.2 Bending at constant stretch (cylindrical
reference)

We consider as reference shell f̂ȳ, a shell having the shape

of half cylinder, with axis parallel to c2; the matrix-like

representation [f̂ȳ] of f̂ȳ is given by the map

[f̂ȳ] =



Rc sin(z1/Rc)

z2
Rc cos(z1/Rc)


 , (44)

with Rc the curvature radius of the reference shell. The shell

is clamped along one edge, and free at the remaining edges.

We impose an increasing bending distortion Bo at constant

target stretch Ao, by assigning the following target FFs:

Ao =

[
1 0

0 1

]
, Bo =

[
1/Ro 0

0 0

]
. (45)

For this example the FFs in (41) are compatible, and any

deformed con�guration will be stress-free; as equations

(38) hold, the elastic energy has a minimum when

Ee0 =
1

2
(Ay − I) = 0, (46)

Ee1 = By − sym
(
Ay (Bȳ + Bo)

)
= 0.

The minimum condition yields Ay = I and Ee1 = 0; it fol-

lows

1

R
=

1

Rc
+

1

Ro
⇒ R =

Rc Ro
Rc + Ro

, Ro =
Rc R

Rc − R
. (47)

Thus, the actual con�guration lies on a cylinder with radius

R. In this example we set L = π/2m, Rc = 1/2m, and the

reference half cylinder will become a cylinder when the

actual curvature radius R = 1/4m. We solve a sequence of

elastic problems with the target curvature radius Ro run-

ning from Ro >> 1 m, corresponding to an almost unde-

formed con�guration, to Ro = 1/2m, corresponding to a

closed cylinder. Three solutions of this morphing problem

are shown in Figure 4.
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(a) Ro = 10 m , R = 10/21 m ≃ Rc (b) Ro = 1 m , R = 1/3 m (c) Ro = 0.5 m , R = 1/4 m

Figure 4: Bending of a cylindrical shell obtained by a change of the target metric Bo. Each of the three �gures shows the computational

domain (gray), the reference surface (cyan), and the actual shape (color map of curvature). Each deformed con�guration is stress-free.

4.3 Bending at constant stretch (cylinder
with slide)

We consider as reference shell f̂ȳ, the same shell of the

previous example, see (44). The shell is pinned along one

edge, and has a slide constraint on the opposite edge; we

impose a bending distortion at constant stretch; the target

FFs Ao, Bo are given by

Ao =

[
1 0

0 1

]
, Bo =

[
1/Ro 0

0 0

]
. (48)

The FFs in (48) are compatible, (46) holds, and the solutions

of this example coincide with the solutions of the previous

one, but a rigid motion. In this example L = π/2 m; the

curvature radius Ro runs from Ro >> 1m, corresponding to

an almost undeformed con�guration, to Ro = 0.6m. Three

solutions of this morphing problem are shown in Figure 5.

4.4 Stretching at constant curvature
(cylindrical reference)

We consider as reference shell f̂ȳ, a shell having the shape

of half cylinder, with axis parallel to c2; the matrix-like

representation [f̂ȳ] of f̂ȳ is given by the map

[f̂ȳ] =



Rc sin(z1/Rc)

z2
Rc cos(z1/Rc)


 , (49)

The shell is clamped along one edge, and free at the re-

maining ones.We assign amembrane distortion at constant

curvature; the target FFs Ao, Bo are given by

Ao =

[
λ2 0

0 1

]
, Bo =

[
1/Ro 0

0 0

]
, (50)

where λ is a parameter measuring the membrane stretch.

The FFs in (50) are compatible, any deformed con�guration

will be stress-free, and the elastic energy has a minimum

(a) Ro = 10 m , R = 10/21 m ≃ Rc (b) Ro = 1 m , R = 1/3 m (c) Ro = 3/5 m , R = 3/11 m

Figure 5: Bending of a cylindrical shell obtained by a change of the target metric Bo; edge at left is pinned, edge at right has a slide. Each of

the three �gures shows the computational domain (gray), the reference surface (cyan), and the actual shape (color map of curvature). Each

deformed con�guration is stress-free.
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(a) λ = 1 m (b) λ = 1.5 m (c) λ = 2 m

Figure 6: E�ects of the membrane distortion at constant curvature of a cylindrical shell. Each of the three �gures shows the computational

domain (gray), and the actual surface (cyan up and green at bottom) for three di�erent values of the stretch λ. Each deformed con�guration

is stress-free.

when Ee0 = 0 and Ee1 = 0. This minimum condition yields

Aȳy = U
−1
ȳ0 Ay U

−1
ȳ0 = Ao , (51)

Bȳy = U
−1
ȳ0

(
By − sym(Ay U

−1
ȳ0 Uȳ1)

)
U
−1
ȳ0 = Bo = const,

which implies, being Uȳ0 = I, Uȳ1 = Bȳ, the following con-

ditions

Ay = Ao , By − sym(Ao Bȳ) = Bo . (52)

We assume a trial solution f̂y having the same form of (49),

and we compute the associated FFs by using (11); we have

[f̂y] =



R sin(δ z1/R)

z2
R cos(δ z1/R)


 , Ay =

[
δ2 0

0 1

]
, (53)

By =

[
δ2/R 0

0 0

]
.

From (50), (52), it follows δ = λ, and

λ2

R
=

1

Ro
+
λ2

Rc
. (54)

We set Ro → ∞; it follows that any actual con�guration lies

on a cylinder with radius R = Rc; with L = π Rc, Rc = 1/2

m, we obtain a closed cylinder with λ = 2. Three di�erent

con�gurations are shown in Figure 6.

4.5 Curling (flat reference)

Here, we curl a �at shell by imposing a curvature which de-

pends on the z1 coordinate. We consider as reference shell

f̂ȳ the reference domain; the matrix-like representation [f̂ȳ]

of f̂ȳ is given by the map

[f̂ȳ] =



z1
z2
0


 , (55)

The shell is clamped along one edge, and free at the remain-

ing ones. The curling is achieved by imposing the following

FFs:

Ao =

[
1 0

0 1

]
, Bo =

[
1/Ro(z1) 0

0 0

]
, (56)

(a) ro = 1 m (b) ro = 1/4 m (c) ro = 1/10 m

Figure 7: E�ects of the non-homogeneous bending distortion for a flat shell. Each of the three �gures shows the reference surface (cyan),

which in this case coincides with the computational domain, and the actual surface (red up and blue at bottom) for three di�erent values of

the parameter ro. Each deformed con�guration is stress-free.
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Figure 8: Curvature versus Distance from clamp for three di�erent values of the parameter ro. The numerical solutions (markers) equal the

explicit solution (solid line) given by (58).

with Ro(z1) = ro (1 − z1/1[m]). Given (56), equations (36,

38) hold; the FFs are compatible, and any deformed con-

�guration will be stress-free; the condition that minimizes

the elastic energy is:

Ee0 =
1

2
(Ay − I) = 0, (57)

Ee1 = By − sym
(
Ay (Bȳ + Bo)

)
= 0.

It follows Ay = I; moreover, being the reference shell �at,

we have Bȳ = 0, and the actual curvature is equal to the

target one:
1

R(z1)
=

1

Ro(z1)
. (58)

Three con�gurations corresponding to di�erent values of

ro are shown in Figure 7; in Figure 8 we benchmark the

explicite curvature against the curvature computed from

the numerical solution.

4.6 Twist of a flat shell

Wemorph a �at shell by imposing an uniaxial distortion,

described by two parameters, the stretch Λ‖, and the orien-

tation θ of the distortion axis with respect to the bar axis.

We consider as reference shell f̂ȳ the reference domain with

aspect ratio L/W = 10; the matrix-like representation [f̂ȳ]

of f̂ȳ is given by the map

[f̂ȳ] =



z1
z2
0


 . (59)

The twisting is achieved by imposing the following FFs:

Ao = Λ
+

[
1 0

0 1

]
+ Λ− a

[
cos(2 θ) sin(2 θ)

sin(2 θ) cos(2 θ)

]
, (60)

Bo =
3

H
b Λ−

[
sin(2 θ) cos(2 θ)

cos(2 θ) sin(2 θ)

]
,

θ = 0

θ = π/6

θ = π/3

Λ‖ = 1.05 Λ‖ = 1.10

Figure 9: Twist of a flat shell. Each row shows, from left to right: 1) the eigenvectors of By (green) and Bo (violet) against the axis of the

reference domain (red, dashed line); 2) The actual con�guration for Λ = 1.05; 3) The actual con�guration for Λ = 1.10. To highlight the

ribbon-like shape, the two sides of the actual shape have di�erent colors (blue and red). The eigenvectors correspond to Λ = 1.10; their

misalignment is a clue about the incompatibility of the target metric. We note that also the eigenvalues of By and Bo are di�erent.
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with

Λ+ =
Λ‖ + Λ⊥

2
, Λ− =

Λ‖ − Λ⊥

2
, Λ⊥ =

1√
Λ‖

, (61)

a =
sin(γ)

γ
, b =

sin(γ) − γ cos(γ)

γ2
.

We set γ = π/2. The FFs (60) are not compatible, and any

deformed con�guration will be stressed; to minimize the

reaction to the constraints, we �x the displacements of the

point z1 = 0 m, z2 = 10−4 m along z1 and z2 and those

of the point z1 = 0 m, z2 = 0 m along the directions z1
and z3, respectively. We run a parametric analysis with

θ = 0, π/3, 2 π/3, and Λ‖ ∈ (1, 1.1); six solutions of this

morphing problem are shown in Figure 9.

5 Conclusions

This work presents a new method for morphing shell-like

bodies. The morphing is obtained by assigning a distortion

�eld, which in turns, induces a target metric: the actual

con�guration will minimize the elastic energy, measuring

the distance between the target metric and the actual one.

This procedure could be useful in computer graphics and

shape analysis, for example in physics-basedmodeling and

character animation for the movie industry. We note that

the proposed technique may be used to the full hierarchy

of geometric manifolds, that is, for 1D curves, 2D surfaces,

and 3D solids, provided the appropriate metric information

is used.

We provided some simple, yet non trivial, examples

to demonstrate the e�ectiveness of the procedure; we also

de�ned an error function to measure the metric gap be-

tween the assigned target metric and the metric realized by

the embedding. The numerical experiments clearly show

good results, and the method is able to transport compati-

ble metric changes, even in the presence of very di�erent

geometries. The error function shows that the lack of com-

patibility is localized in a small portion of the manifold,

where very large deformations need to be realized to meet

the demands of the targetmetric. The presence of this errors

seems to not a�ect the global performance of the method.
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A The Shell model

We summarize the shell model used in our analyses, a

model derived from the Naghdi-Shell model [16] which in-

cludes a constraint on the out-of plane shear.

Figure A1: Top. Computational domain Ω (gray), reference surface

f̂ȳ(Ω) (cyan) and actual surface f̂y(Ω) (red). Bottom. Displacement

�eld u = f̂y − f̂ȳ (red arrows), represented as a spatial �eld u =

u(f̂ȳ(Ω)).

A.1 State variables

Given the orthonormal frame {o, c1, c2, c3}, let Ω ∈
span(c1, c2) be a �at, 2D domain. The surface f̂ȳ : Ω → E

is our reference shell, while the surface f̂y : Ω → E is the

actual shell shape, and represents the unknownof our prob-

lem, see Figure A1, top. Given the source shell fȳ = f̂ȳ + ζ nȳ,

using (7) we de�ne the moving frame {e1, e2, nȳ}, com-

posed of the unit tangent vectors eα and the normal vector

nȳ:

e1 =
aȳ1

‖aȳ1‖
, e2 =

aȳ2

‖aȳ2‖
, nȳ = e1 × e2 ; (A1)

The state variables of the model comprehend three kine-

matical �elds, displacement, rotation and shear, plus a

dynamical �eld, the shear stress:

u = u1e1 + u2 e2 + u3 nȳ displacements; (A2)

☞ = (β1, β2) rotation parameters;

✌ = (γ1, γ2) shear stretch;

✜ = (τ1, τ2) shear stress.

Then, the target shell fy = f̂y+ζ ny is describedbydisplacing

f̂ȳ along e1, e2, nȳ with

f̂y = f̂ȳ + u , (A3)

see Figure A1, bottom. We de�ne the normal d to the actual

surface in terms of the state variable βα through a rotation

R(βα) of the moving frame, and the shear deformation ✌d
in terms of d as follows

d = R(β1, β2) {e1, e2, nȳ} , ✌d = F̂
T
y d . (A4)

Denoting with eαj, nȳj the Cartesian component of the mov-

ing frame {e1, e2, nȳ}, the Cartesian components of dj are

given by

d1 = (sin β1 e21 + cos β1 nȳ1) cos β2 + sin β2 e11, (A5)

d2 = (sin β1 e22 + cos β1 nȳ2) cos β2 + sin β2 e12,

d3 = (sin β1 e23 + cos β1 nȳ3) cos β2 + sin β2 e13.

Analogously, the two components of ✌d are given by

γdα = ayα · d with ayα = f̂y,α ⇒ ✌d = F̂
T
y d . (A6)

The second fundamental formBy is then computedbyusing

the gradient of d: By = ∇d
T
F̂y.

A.2 The elastic energy

We assume the elastic energy density ψ, a density per unit

distorted area, to be the sum of three contributions, a mem-

brane energy ψm, a bending energy ψb and a shear energy

ψγ :

ψ = (ψm(Eeo) + ψb(Ee1) + ψγ(✌)) Jo Jȳ (A7)

Here, Jo measure the relative area change between the dis-

torted area-element and the reference area-element

Jo =
√
detAo = detUo , (A8)
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and Jȳ = det(Uȳ0). The three energy densities are de�ned

as:

ψm(Ee0) = µ1 tr(Ee0)
2 + µ2 tr(E

2
e0), (A9)

ψb(Ee1) = b1 tr(Ee1)
2 + b2 tr(E

2
e1),

ψγ(✌) =
1

2
µ2 ✌ · ✌.

We note that the target fundamental forms enter into the

membrane and bending energies through the strains Ee0
and Ee1, see (33). In the framework of mixed methods, we

require the shear variable ✌ to be equal to the shear de-

formation ✌d, that is, we introduce the shear constraint

✌ = ✌d; it follows that the dynamical state variable ✜must

be considered as the shear-stress reaction enforcing such

a kinematical constraint. Then, we relax the energy ψ by

considering the work done by the shear stress on the shear

constraint

ψr = ψm(Ee0) + ψb(Ee1) + ψγ(✌) − ✜ · (✌ − ✌d) . (A10)

The variation of ψr identi�es the elastic dynamical-actions

asderivatives of the energywith respect to the elastic strains

ψ̃r =
∂ψm(Ee0)

∂Ee0︸ ︷︷ ︸
Se0

·Ẽe0 +
∂ψb(Ee1)

∂Ee1︸ ︷︷ ︸
Se1

·Ẽe1 (A11)

+

(
∂ψγ(✌)
∂✌

− ✜

)

︸ ︷︷ ︸
✜e

·✌̃ + ✜ · ✌̃d − ✜̃ · (✌ − ✌d)︸ ︷︷ ︸
constraint

.

The solution of the problem satis�es the following balance

equation in weak form:

ψ̃r = 0, ∀ ũ, ☞̃, ✌̃, ✜̃ (A12)

compatible with the boundary conditions.

It is worth noting that, given (30), (32)2, Ẽeo contains the

variation of both Ay and By; in turns, being By = ∇d
T
F̂y, it

follows that B̃y contains variations of d and F̂y.

A.3 The sti�ness parameters

The shell sti�nesses are given in terms of the Lame param-

eters λ and µ as follows. The membrane sti�nesses µi are

de�ned by

µ1 = h
λ µ

λ + 2 µ
, µ2 = h µ; (A13)

the bending sti�nesses bi are given by

b1 =
h3

12

λ µ

λ + 2 µ
, b2 =

h3

12
µ. (A14)

We note that introducing the bulk modulus k = λ + 2/3 µ,

we can write the sti�ness in µ1 and b1 as a function of µ, k

λ µ

λ + 2 µ
=
(3 k − 2 µ) µ

3 k + 4 µ
. (A15)

It is worth noting the importance of the values of the elastic

moduli; in particular for isotropic material it is important

the ratio k/µ between the bulk and the shear modulus. In

our examples we used k/µ ∼ 1. In our computations, we

used the values for the Lamé parameters: λ = 1.5N/m2,

and µ = 1N/m2.
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