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Summary. Solutions of reaction-diffusion equations on a circular domain are consid-

ered. With Robin boundary conditions, the primary instability may be a Hopf bifurcation

with eigenfunctions exhibiting prominent spiral features. These eigenfunctions, defined

by Bessel functions of complex argument, peak near the boundary and are called wall

modes. In contrast, if the boundary conditions are Neumann or Dirichlet, then the eigen-

functions are defined by Bessel functions of real argument, and take the form of body

modes filling the interior of the domain. Body modes typically do not exhibit pronounced

spiral structure. We argue that the wall modes are important for understanding the for-

mation process of spirals, even in extended systems. Specifically, we conjecture that wall

modes describe the core of the spiral; the constant-amplitude spiral visible outside the

core is the result of strong nonlinearities which enter almost immediately above threshold

as a consequence of the exponential radial growth of the wall modes.

1. Introduction

Spirals are a universal feature of pattern-forming systems, Murray [26], Cross and Ho-

henberg [6]. Since their discovery in the celebrated Belousov-Zhabotinsky reaction,

spirals have been observed in biological systems, for example in the growth pattern of

slime molds (Newell [27]) and in heart muscle (Winfree [38]), in catalysis (Eiswirth et al.

[9]), in fluid systems such as convection (Bodenschatz et al. [4]) and the Faraday system

(Kiyashko et al. [20]), and even in vibrated sand (Umbanhowar et al. [35]). In some of

these cases the spirals form spontaneously; in others a finite amplitude perturbation is

necessary to initiate their formation. In some cases the shape of the container, a circular

disk for example, is instrumental in facilitating spiral formation; in others spirals form

in large aspect ratio systems by a process that is essentially unaffected by the shape of

the container. The ubiquity of spirals is in part due to their role as elementary defects in
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two dimensions. These defects have topological charge and serve as pacemakers emit-

ting waves that (usually) travel outwards. If multiple defects form from random initial

conditions, then the outgoing waves collide, forming a network of shock-like structures

separating regions entrained to the local spiral frequency. These regions, each containing

a single spiral defect, thus serve as building blocks from which more complex patterns

can be constructed.

The formation of spirals (and to a lesser extent target patterns) has been studied from

numerous points of view—numerical simulation, matched asymptotic expansions, phase

equations, and various phenomenological models. Most easily treated are certain PDE

known as λ − ω systems; when truncated at third order in the amplitude, these systems

can be written in the form of an (isotropic) complex Ginzburg-Landau equation in the

plane. For these PDE Kopell and Howard [21] establish the existence of both target

and spiral solutions. Such systems were previously studied by Greenberg [15] who

proved the existence of target patterns under more restrictive hypotheses. An important

advance was made by Hagan [16] who used perturbation theory to establish, on a formal

level, the existence of slowly propagating spiral waves in the complex Ginzburg-Landau

equation for eigenvalues with a small imaginary part. Equations of this type describe

long wavelength spatial modulation of spatially uniform but temporally oscillating states

near onset of oscillation. Although such bifurcations occur in many models of reaction-

diffusion systems (Kramer et al. [22]), they may not be present in the physical system

itself. Consequently, in the following we take a more general point of view and consider

spirals with a finite (as opposed to small) wavenumber in the far field. In this context

the most noteworthy recent mathematical contribution is that of Scheel [30], [31], who

gives a rigorous proof of the existence of solutions of reaction-diffusion equations in

the infinite plane that possess the main characteristics of spirals near infinity. Scheel

studies Hopf bifurcation to solutions in the form of appropriately defined (and possibly

many-armed) spiral waves, and in particular constructs a finite-dimensional manifold

that contains all small rotating waves close to the homogeneous equilibrium. He also

relates his results to earlier work on λ − ω systems.

Our aim here is to study the formation of spirals from the viewpoint of symmetric

bifurcation theory, treating both spirals and target patterns as general, universal phenom-

ena with many common features. We take as our starting point the natural suggestion

that these universal properties of spirals can be understood in terms of a spontaneous

symmetry-breaking bifurcation with a nonzero wavenumber, and seek to understand both

the nature of this bifurcation and the process by which the resulting instability evolves

into a spiral wave in the nonlinear regime.

To do this we find it expeditious to formulate the onset of the instability as a bifurcation

problem on a disk, and to examine its properties as the disk radius becomes large. We

emphasize that in many of the systems mentioned above a primary bifurcation to spiral

waves may not be present in the PDE used to model the system in question. That is,

varying model parameters may not create such a bifurcation. For our purposes this is

immaterial because such bifurcations can be readily introduced by making changes in

the model, for example by introducing additional parameters. Thus such bifurcations

are certainly present in the totality of all reaction-diffusion models, and this fact helps

us to understand their properties, even in systems where they may arise differently—for

example, as the result of a finite-amplitude perturbation.
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The paper begins with the observation that with Robin (otherwise called mixed)

boundary conditions reaction-diffusion equations on a disk can undergo a Hopf bifur-

cation from the trivial state, whose associated eigenfunctions have a prominent spiral

character. Unlike the Bessel function eigenmodes of DeSimone et al. [8], these eigen-

functions are everywhere smooth; in particular they have no singularity at the center of

the disk. They take the form of complex Fourier-Bessel functions, and their amplitude

grows rapidly towards the boundary. Consequently we refer to them as wall modes. In

contrast, with Neumann or Dirichlet boundary conditions, the eigenfunctions take the

form of body modes filling the interior of the domain but lacking the expected spiral

character. For certain parameter values these body modes may, in fact, possess a roughly

spiral character, but with “dislocations” at which the strands of the spiral may split or

join. If their domain is extended to the infinite plane, the body modes decay to zero at

infinity.

The distinction between wall and body modes applies to target patterns as well. Spiral

waves in the form of wall modes have previously been found in single reaction-diffusion

equations on a disk with “spiral” boundary conditions, Dellnitz et al. [7], and in binary

fluid convection in a cylinder with realistic boundary conditions at the sidewall, Mercader

et al. [23], but the connection between the mode type (wall or body) and its physical

appearance as a spiral has not been emphasized. For example, Scheel shows that the

eigenfunctions must take the form of a rotating wave, but his methods do not require an

explicit description of their radial structure.

In this paper, we argue that wall modes give insight into why approximately Archime-

dean spirals are natural in these problems, and that wall modes are important for un-

derstanding the formation process of spirals, even in extended systems. In such systems

these modes saturate almost immediately above threshold to form the observed extended

spiral, with the wall mode being responsible for the structure of the core. In this regime

the structure of the resulting spirals is determined by their frequency (which solves a

nonlinear eigenvalue problem) and becomes effectively independent of the boundary

conditions.

In Section 2 we describe the level curves of complex Fourier-Bessel eigenfunctions

and show that these are suitable for describing both spirals and target patterns. In Section 3

we show, using a mixture of analytical and numerical calculations, that solutions of this

type are produced naturally as a result of a Hopf bifurcation in systems of reaction-

diffusion equations with Robin boundary conditions. We also show that, unlike the

situation for Neumann boundary conditions (Auchmuty [2]), there are few restrictions

if any on the (azimuthal) mode number of the primary bifurcation, or on the sequence

of mode numbers that appear in successive bifurcations from the trivial state.

The paper concludes in Section 4 with a discussion of how the spiral waves obtained

here may relate to the spiral waves observed in experiments, and to spirals on the infinite

plane.

2. Patterns in a Disk

What kinds of pattern should we expect to be generated as solutions of a Euclidean-

invariant system of PDE, such as a reaction-diffusion equation, posed on a circular disk?
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A partial answer to this question is found by considering solutions that bifurcate from

a trivial constant solution. The pattern in these solutions is dominated by the pattern in

the eigenfunctions of the associated linearized system of PDE, at least near the primary

bifurcation.

2.1. Hopf Bifurcation on a Disk

We consider reaction-diffusion systems whose domain Ä is a circular disk of radius R,

defined by

Ut = D1U + F(U ). (1)

Here U = (U1, . . . , Uℓ)
t is a ℓ-vector of functions, D is an ℓ × ℓ matrix of diffusion

coefficients, and F is an ℓ-dimensional smooth mapping. The linearized system is

Ut = D1U + AU, (2)

where A, the linearization of F at the origin, is an ℓ × ℓ reaction matrix. As we discuss

in more detail in Section 3, the eigenfunctions of (2) depend on boundary conditions

and are linear combinations of Fourier-Bessel functions. To be specific, let (r, θ) denote

polar coordinates on Ä and let Jm be the (complex) Bessel function of the first kind of

order m, for some nonnegative integer m. Then a Fourier-Bessel function has the form

f (r, θ, t) = Re
[
z eiωt+imθ Jm(qr)

]
, (3)

where q ∈ C is some nonzero constant and z ∈ C is a constant scalar. The possibility

that q may be complex permits eigenfunctions with spiral geometry.

2.2. Patterns

We assume that the pattern associated with a planar function g: R2 → R is given by

the level contours of g. Typically, the pattern associated with a solution is the pattern

of some observable, some real-valued function of the (components of the) solution. See

Golubitsky et al. [12]. For example, one common observable is the projection onto one

component of the solution vector. The observed pattern is then the pattern of a linear

combination of ℓ Fourier-Bessel functions of the form (3). To gain a feeling for the types

of pattern that can form in these systems, we consider the level contours of (3) for some

appropriate choices of the resulting eigenfunctions.

We imagine producing patterned solutions via bifurcations obtained through variation

of a parameter (typically, a parameter in the reaction matrix A). When posed on a disk the

primary bifurcation from a spatially uniform equilibrium is either a steady-state bifur-

cation with O(2) symmetry or a Hopf bifurcation with O(2) symmetry. The bifurcation

theory of systems with O(2) symmetry is well developed, and the dynamics associated

with the bifurcating solutions is well understood; see Golubitsky et al. [13]. When the

critical eigenvalues are simple, the resulting states are SO(2)-invariant, and the patterns

of contours consist of concentric circles about the origin. When the critical eigenvalues

are double, steady-state bifurcation produces a pitchfork of revolution, and the bifurcat-

ing solutions are always invariant under a reflection. In addition, the action of SO(2) on
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Fig. 1. Contour plots of (3) with m = 4, ω = 0. (Left) q = 1 and (right) q = i . Two contours, 0
and 0.1, are shown on a 30 × 30 square centered at the origin.

the eigenspace has kernel Zm for some integer m ≥ 1, and the bifurcating solution is then

invariant under m different reflections. Hopf bifurcation with double critical eigenvalues

produces two distinct symmetry classes of time-periodic states—-a rotating wave (time

evolution is the same as spatial rotation) and a standing wave (which is invariant under

a reflection for all time and which undergoes a half-period phase shift when rotated

through angle π /m). In addition, the spatial Zm symmetry is present in both solutions.

We now discuss the exact pattern associated with eigenfunctions corresponding to

the different O(2) bifurcations. Which of these eigenfunctions are relevant depends on

boundary conditions. In the most familiar cases of Dirichlet boundary conditions (U = 0

on ∂Ä) or Neumann boundary conditions (Ur = 0 on ∂Ä, where the subscript denotes the

partial derivative with respect to r ), the complex constant q is forced to be real, leading

to real-valued Bessel functions Jm(qr) with a real argument. Such eigenfunctions arise,

for example, in the vibration of a circular drum; see for example, Courant and Hilbert

[5]. On the other hand, as we show in Section 3, Robin (or mixed) boundary conditions

((Uj )r + βjUj = 0 on ∂Ä) can lead to eigenfunctions with complex q . Then Jm(qr)

becomes a complex-valued function on the line {qr : r ∈ R} in the complex plane.

Complex q have also been observed when using spiral boundary conditions (Ur = KUθ

on ∂Ä), see Dellnitz et al. [7], and in oscillatory convection with realistic lateral boundary

conditions, Mercader et al. [23].

After scaling, we may assume |q| = 1. The patterns associated with q = ±1 are well

known. When m ≥ 1, the time-independent states have patterns with m radial nodal

lines and a number of concentric nodal circles (Figure 1(left)). The position of the nodal

circles relative to the boundary depends on the details of the boundary conditions. The

amplitude of the eigenfunction decays like r−1/2, so all contours except the zero contour

are bounded. In the corresponding Hopf bifurcation, the instantaneous time contours are

as in Figure 1(left); in the rotating wave the contours rotate at a uniform speed about the

origin, and in the standing wave the nodal lines are fixed while the remaining contours

oscillate up and down periodically. Note that one cannot distinguish between these two

possibilities because the snapshot retains an m-fold reflection symmetry. However, if

the pattern of Figure 1(left) represents a rotating wave, we expect this symmetry to be

broken once nonlinear terms are added.
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Fig. 2. Contour plot of (4) with m = 4, q = eiπ /4. Two
contours, 0 and 0.1, are shown on a 30 × 30 square centered
at the origin.

Another exceptional case arises when q = ±i . Now there are just m radial nodal lines

(Figure 1(right)). Solutions of this type cannot occur with either Neumann or Dirichlet

boundary conditions. This is because one of the two independent eigenfunctions is

Km(|q|r) which is singular at r = 0 and must therefore be discarded while the other,

Im(|q|r), has no (real) zeros. However, with identical Robin boundary conditions on all

species, solutions of this type are possible although there is at most one, cf. Friedlander

and Siegmann [10]. This is in contrast to the case of real q, for which there is a countable

number of solutions.

In general, however, q is complex (q 6= ±1, ±i) and the structure of the possible

eigenfunctions does not appear to be widely known. Presumably this is because the

traditional boundary conditions employed in many problems are either Dirichlet or Neu-

mann. For q that is neither real nor imaginary, and m > 0, the functions Jm(qr) are

neither real nor purely imaginary. As already discussed, in steady-state bifurcation the-

ory the nonlinear theory picks an eigenfunction that is invariant under a reflection—say

reflection across the real axis. Such a function has the form

Re
[(

eimθ + e−imθ
)

Jm(qr)
]
. (4)

The level contours of (4) are shown in Figure 2.

The contours of the rotating wave in the corresponding Hopf bifurcation are the con-

tours of (3) at an instant of time—an m-armed spiral (Figure 3). In time, these contours

rotate rigidly with uniform angular velocity, Mercader et al. [23]. The amplitude of these

complex Bessel functions Jm(qr) grows exponentially with r instead of decreasing alge-

braically, as in the case of q real. The standard asymptotic formula for Bessel functions,

discussed in Section 2.3, shows that the spiral is asymptotically Archimedean (spaced

equally in the radial direction) for large r . In practice this approximately equal spacing

also remains valid for quite small r .
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Fig. 3. Contour plot of (3) with m = 4, q = eiπ /4, t = 0. Two
contours, 0 and 0.1, are shown on a 30 × 30 square centered
at the origin.

The standing wave in this Hopf bifurcation has nodal lines as in Figure 2, and the

nonzero contours oscillate periodically in time. However, the phasing of this oscillation

is such that the circular sections of the contours drift outward from the origin in a wave-

like motion, cf. [23]. When m = 0 the eigenfunction (3) has no θ -dependence, and the

level contours are concentric circles about the origin, as expected. Figure 4 shows a time

sequence of the level contours showing these contours propagating radially as in a target

pattern. Again the amplitude of the eigenfunction grows exponentially in r .

2.3. Asymptotics of Bessel Functions

We now briefly describe how to employ the standard asymptotic expansion of Bessel

functions, Whittaker and Watson [36], to verify the above statements analytically. Recall

that we are dealing with eigenfunctions of the form

f (z, θ, t) = Re[eiωt+imθ Jm(z)],

where z = reiψ . For large |z| the asymptotics of Bessel functions imply that

f (z, θ, t) ∼

√
1

2πr
er sin ψ cos

(
ωt + mθ −

ψ

2
− r cos ψ +

mπ

2
+

π

4

)
,

sin ψ > 0, (5)

f (z, θ, t) ∼

√
1

2πr
er | sin ψ | cos

(
ωt + mθ −

ψ

2
+ r cos ψ −

mπ

2
+

π

4

)
,

sin ψ < 0. (6)

The zero-sets of the asymptotic eigenfunctions are easily determined. For simplicity

we assume sin ψ > 0. The case sin ψ < 0 is similar, with a few minor changes. The
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Fig. 4. Contour plot of (3) with m = 0, q = e0.35iπ , ω = 1, t = 0, π

4
, π

2
, 3π

4
. Two contours—0,

0.1—are shown on a 20 × 20 square centered at the origin.

zero set of (5) comprises those points (r, θ) in polar coordinates for which

ωt + mθ −
ψ

2
− r cos ψ +

mπ

2
+

π

4
= (2s + 1)

π

2
, (7)

for integer s. It is easy to see that when m > 0 and ψ 6= (2k + 1)π
2

for integer k, this

zero-set is a rotating m-armed set of Archimedean spiral pairs whose “pitch” p = 2mπ
cos ψ

.

By “Archimedean spiral pair,” we mean that the zero-set is comprised of m curves, each

consisting of two separate Archimedean spirals which interlace with each other and meet

at the origin (see Fig. 3); each member of this pair moves radially by a distance p as

the spiral makes one full turn round the origin. The structure of double spirals is natural

because we are considering the zero contour, and we expect to find spiral regions in

which the function is positive, separated from spiral regions in which it is negative.

However, when ψ = (2k+1)π
2

, the function Jm(eiψ ) is either real or purely imaginary,

depending on m. In this case for even m (5) is replaced by

f (z, θ, t) ∼

√
1

2πr
er cos(ωt + mθ) cos

(
(m − k)

π

2

)
, sin ψ > 0, (8)

with a similar expression involving sin(ωt + mθ) for odd m. Thus at given t the only

nodes are at θ = (2s + 1) π
2m

− ωt
m

and there is no outward (or inward) propagation.
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Fig. 5. Contour plot of cos(3θ)J3(r) + 2.5 cos(8θ)J8(0.7r).
Two contours, 0 and 0.1, are shown on a 40 × 40 square
centered at the origin. Courtesy of V.G. LeBlanc.

The case m = 0 is exceptional. Here we get target patterns with no fixed nodal lines,

provided again ψ 6= (2k + 1)π
2

.

2.4. Mode Interactions

The eigenfunctions (3) can also produce a number of other unexpected patterns, even

in the case q real. A striking instance arises in the work of Palacios et al. [29] on

models of the flame experiments of Gorman et al. [14] on cellular flames. Here a “mode

interaction,” leading to a superposition of Bessel functions of different orders, generates

concentric rings consisting of different numbers of cells—for example, a ring of three

cells surrounded by a ring of seven cells. In the interior the pattern appears to have D3

symmetry, and near the boundary the pattern appears to have D7 symmetry (Fig. 5). In

fact, it has neither. The observation of Palacios et al. [29] sheds light on the puzzling

“almost symmetries” of the experimental states; the observation itself depends upon the

fact that the supports of the two Bessel functions are almost disjoint.

We conclude that the geometry of planar patterns generated by Bessel functions

is much richer than normally assumed. Indeed we have only begun to explore and

understand the possibilities. It is also noteworthy that, apart from the exponential growth

of amplitude, the spirals and target patterns in Figures 3 and 4 closely resemble states

observed in reaction-diffusion systems, in particular the celebrated BZ reaction, Winfree

[37], Müller et al. [25]. We have not found this remark in the extensive literature on such

patterns; possibly solutions of this type have been rejected because of their exponential

growth. (Spiral-contoured eigenfunctions involving Bessel functions Yn(z) of the second

kind as well as those of the first kind have long been known—see DeSimone et al. [8]—

but because of the occurrence of Yn(z), these eigenfunctions are singular at the origin.)
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2.5. Relation to Nonlinear Waves

We suggest that exponential growth is no reason for discarding eigenfunctions of the

form (3). On the contrary, such eigenfunctions have a number of important attributes, in

addition to the above, which indicate that they may well provide a new way to understand

the mathematics of targets and spiral waves. In particular we believe that the exponential

growth is not an obstacle because in the nonlinear PDE the amplitude of the waves

must saturate almost immediately above threshold, thereby generating spiral waves of

approximately uniform amplitude outside of a core region, as observed in experiments

(see Section 4). Moreover, the exponential growth favors the spiral appearance of the

modes. The reason is that for a mode with complex amplitude fm(r), we have

Re[ fm(r)eiωt+imθ ] = | fm(r)|eiωt+imθ+i8m (r).

For an exponentially growing mode, 8m(r) is likely to be monotonic. It is this property

that produces a well-defined spiral, and that typically fails for body modes.

In the next section we show that in reaction-diffusion systems on a disk, with Robin

boundary conditions, there can and do exist Hopf bifurcations to spirals (and targets)

corresponding to eigenfunctions of the form (3).

3. Reaction-Diffusion Equations

3.1. General Case

We study the primary bifurcation in the system (2), written in the form

Ut = D1U + (B + σ I )U, (9)

using the method of Goldstein et al. [11]. Here σ ∈ R is the bifurcation parameter,

U = U (r, θ, t), and the linear problem (9) is to be solved subject to Robin boundary

conditions (RBC)

(Uj )r + βjUj = 0 on r = R. (10)

In the following we assume that the βj are all distinct; this assumption excludes the case

of Neumann or Dirichlet boundary conditions on U . We look for Hopf bifurcations and

make the ansatz that

U (r, θ, t) = eiωt V (r, θ).

Substituting this assumption into (9) yields the eigenvalue problem

D1V + (B + λI )V = 0, (11)

where λ = σ − iω. To solve this problem we assume that V is an eigenfunction of the

Laplacian,

1V = −k2V .

Then (11) reduces to

(B + λI − k2 D)V = 0, (12)
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so that (nontrivial) solutions exist provided

det(B + λI − k2 D) = 0. (13)

Equation (13) is a polynomial of degree ℓ in k2. Thus there are ℓ roots k2
1, . . . , k2

ℓ , assumed

to be distinct, which are functions of the complex quantity λ. Let Vj ≡ (v1
j , . . . , v

ℓ
j ) be

the nullvector of (12) corresponding to k2
j .

We now choose a fixed value of m. Using separation of variables we can write the

solutions to (11) as

V (r, θ) = Re
[
a1 Jm(k1r)eimθ V1 + · · · + aℓ Jm(kℓr)eimθ Vℓ

]
,

where a1, . . . , aℓ are complex constants. Applying Robin boundary conditions to V on

the disk of radius R for all t implies that the real parts of the ℓ expressions

{
a1v

1
1(k1 J ′

m(k1 R) + β1 Jm(k1 R)) + · · · + aℓv
1
ℓ (kℓ J ′

m(kℓ R) + β1 Jm(kℓ R))
}

ei(ωt+mθ),
...{

a1v
ℓ
1(k1 J ′

m(k1 R) + βℓ Jm(k1 R)) + · · · + aℓv
ℓ
ℓ(kℓ J ′

m(kℓ R) + βℓ Jm(kℓ R))
}

ei(ωt+mθ),

vanish. These equations hold for all θ precisely when

a1v
1
1(k1 J ′

m(k1 R) + β1 Jm(k1 R)) + · · · + aℓv
1
ℓ (kℓ J ′

m(kℓ R) + β1 Jm(kℓ R)) = 0,

...

a1v
ℓ
1(k1 J ′

m(k1 R) + βℓ Jm(k1 R)) + · · · + aℓv
ℓ
ℓ(kℓ J ′

m(kℓ R) + βℓ Jm(kℓ R)) = 0.

There is a nontrivial solution to these complex equations for a1, . . . , aℓ precisely when

det




v1
1(k1 J ′

m(k1 R) + β1 Jm(k1 R)) · · · v1
ℓ (kℓ J ′

m(kℓ R) + β1 Jm(kℓ R))
...

...

vℓ
1(k1 J ′

m(k1 R) + βℓ Jm(k1 R)) · · · vℓ
ℓ(kℓ J ′

m(kℓ R) + βℓ Jm(kℓ R))


 = 0. (14)

Note that when the βj are distinct we expect the kj to be distinct also.

3.2. Systems of Two Equations

When ℓ = 1 it is easy to show that all bifurcations are steady-state and the corresponding

eigenfunctions are body modes. This is no longer the case when ℓ ≥ 2. In the following

we examine the case ℓ = 2 and write

B =

(
a b

c d

)
.

In this case bc < 0 is a necessary condition for the presence of a Hopf bifurcation; if

bc > 0 all bifurcations are necessarily steady regardless of the values of β1, β2. To find

explicit Hopf bifurcations with eigenfunctions in the form of wall modes, we define

z1 = k1 R and z2 = k2 R,
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and

β̃1 = β1 R and β̃2 = β2 R,

and write equation (14) in the form

v1
1v

2
2(J ′

m(z1)z1 + β̃1 Jm(z1))(J ′
m(z2)z2 + β̃2 Jm(z2)) −

v1
2v

2
1(J ′

m(z2)z2 + β̃1 Jm(z2))(J ′
m(z1)z1 + β̃2 Jm(z1)) = 0.

(15)

In general this is a complex equation for σ and ω. Bessel functions satisfy the identity

z J ′
m(z) = z Jm−1(z) − m Jm(z).

This identity is useful even when m = 0 because J−1 = −J1. Then (15) implies that

v1
1v

2
2(Jm−1(z1)z1 + (β̃1 − m)Jm(z1))(Jm−1(z2)z2 + (β̃2 − m)Jm(z2)) −

v1
2v

2
1(Jm−1(z2)z2 + (β̃1 − m)Jm(z2))(Jm−1(z1)z1 + (β̃2 − m)Jm(z1)) = 0.

(16)

3.3. Numerical Results in Two Dimensions

In this section we describe the solution of equation (16) for a particular choice of the

matrices D and B and the coefficients β1, β2. We solve this equation numerically using

Matlab. First we used a graphical method to locate parameter values at which the primary

bifurcation is to a nonzero mode number, and then we used Matlab’s PDE toolbox to

solve the linearized equation (11) numerically and compute eigenfunctions. The two

methods yield results in close agreement.

To locate suitable parameter values we sketched—for the range of mode numbers

0 ≤ m ≤ 5—the curves along which the real and imaginary parts of the left-hand side

of (16) vanish, as σ and ω vary within suitable ranges. We experimented with parameter

values until the first bifurcation was to a nonzero mode number. This occurs, for example,

at parameter values

D =

(
0.01 0

0 0.015

)
and B =

(
0.5 1

−1 0

)
,

with

R = 1, β1 = 10, and β2 = 0.01;

see Figure 6.

In this example the mode numbers of the primary bifurcations occur in the order 3,

1, 4, 2, 5, 0, as σ increases. By definition, the eigenfunctions corresponding to nonzero

mode numbers have the symmetry of a rotating wave but lack reflectional symmetry. In

our terminology they are therefore “spiral,” although as already discussed they are “good

spirals” only when they are in addition wall modes. Despite the appearance of some of

the figures, this is in fact so for all the m 6= 0 eigenfunctions illustrated, even for m = 3,

1, and 4. Thus in this example the primary bifurcation is to a 3-armed (m = 3) spiral,

while the bifurcation to a target pattern (m = 0) occurs only much later. This behavior

is very different from what happens with Neumann boundary conditions (and positive

definite D) for which the first instability is always m = 0.
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Fig. 6. Solutions to (16) when m = 0, . . . , 5 given by intersections of the
zeros of the real (solid curves) and imaginary parts (dashed curves) of (16).
Open circles indicate intersection points and are labelled by mode number.

Solutions of the PDE (11) for these parameter values using the PDE toolbox confirm

the eigenvalues and mode numbers obtained with greater accuracy from (16) and shown

in Figure 6. Repeated refinements of the mesh were used to check convergence of the

PDE calculation. Table 1 lists the resulting values of λ, ω and the associated values of m.

Figures 7–12 show the corresponding eigenfunctions in the form of both contour plots

and three-dimensional plots. The experiment by Hartmann et al. [17] on the NO + CO

reaction on a small circular Pt(100) catalyst shows a spiral whose Karhunen-Loève

decomposition reveals the presence of m = 1, 2, 3 modes with structure remarkably like

that shown in these plots. Such states are also found in the Barkley model of excitable

media [17]. Note that despite its appearance as a rotating “pulse,” the m = 1 mode is part

of the family of spirals. Moreover, as argued below, we believe that for infinite domains

the eigenfunctions illustrated here correspond to the core of a spiral wave, and note that

the spiral geometry observed in simulations and experiments is far more evident to the

eye outside the core than it is within it.

Table 1. Numerical data for the first six eigenmodes obtained from the PDE.

Real Part σ Imaginary Part ω Mode Number m

0.080 0.961 3
0.179 0.953 1
0.234 0.957 4
0.396 0.941 2
0.415 0.951 5
0.445 0.937 0
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Fig. 7. Contours and three-dimensional plot of numerically computed eigenfunctions for (16) at
first eigenvalue, for which m = 3.

Since ω 6= 0 the roots k2 of (13) are necessarily complex and the eigenfunctions take

the form of wall modes. Note that the requirement ω 6= 0 is not necessary: It is possible

for k2 to be complex even when ω = 0 since the quadratic equation for k2 may not

have real roots. However, the point is that for Robin boundary conditions with β1 6= β2

this is inevitable, and in this sense model-independent. When β1 = β2 ≡ β (this case

includes both Neumann and Dirichlet boundary conditions), the solution takes the form

of a single Bessel function with k2 real. There is a countable number of solutions with

k2 > 0 (body modes) and (if β 6= 0, ∞) at most one solution with k2 < 0 (a wall mode),

cf. Friedlander and Siegmann [10].

4. Relation to Observed Spirals

Center manifold reduction can now be used to establish the presence of nonlinear spirals

(rotating waves) and target patterns (standing waves), as in the familiar analysis of the

Hopf bifurcation with O(2) symmetry, Golubitsky et al. [13]. As we have seen, when q
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Fig. 8. Contours and three-dimensional plot of numerically computed eigenfunctions for (16) at
second eigenvalue, for which m = 1.
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Fig. 9. Contours and three-dimensional plot of numerically computed eigenfunctions for (16) at
third eigenvalue, for which m = 4.

is neither real nor purely imaginary, the spirals consist of waves that travel outwards and

at the same time rotate azimuthally. The targets are an equal-amplitude superposition of

clockwise and counterclockwise rotating m-armed spirals and so have m-fold reflection

symmetry; as a result they do not rotate, although the waves do continue to propagate

radially outwards.

Solutions to nonlinear equations, obtained via bifurcation analysis, resemble appro-

priate linear eigenfunctions. This is because local bifurcation theorems guarantee only

solutions with sufficiently small amplitude. However, when the linear eigenfunction

involves a complex Bessel function, the amplitude of the eigenfunction increases expo-

nentially from the center to the boundary, forcing the domain of validity of the (weakly)

nonlinear theory to be much smaller than might otherwise be expected. This increase of

amplitude also leads to interpretational difficulties in physical space, since exponentially

growing spiral states do not resemble the spirals of approximately uniform amplitude

that are observed in chemical or fluid systems.

Nevertheless, there may be a simple and completely natural relation between the

exponentially growing states predicted by a local bifurcation analysis, and the finite-
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Fig. 10. Contours and three-dimensional plot of numerically computed eigenfunctions for (16) at
fourth eigenvalue, for which m = 2.
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Fig. 11. Contours and three-dimensional plot of numerically computed eigenfunctions for (16) at
fifth eigenvalue, for which m = 5.

amplitude spiral states observed in experiments. At the moment this relation is specu-

lative, but there is substantial supporting evidence. This presumed relationship follows

from distinctions between convective and absolute instabilities on the unbounded plane,

as we now explain.

4.1. Convective and Absolute Instabilities

Both target and spiral patterns have a prefered direction of propagation, i.e., the waves

travel either outward or inward. This preference for one direction is a consequence of the

circular geometry (it is not present when the problem is posed on a line) and is important

because it introduces the distinction between convective and absolute instability into

the problem. These concepts have been developed to describe the evolution of localized

perturbations in unbounded domains. In a convective instability the perturbation grows

only in a reference frame moving with the group velocity; at any given location the

disturbance eventually decays. In contrast when the instability is absolute the perturbation

grows at all locations.
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Fig. 12. Contours of numerically computed eigenfunctions for (16) at sixth eigenvalue, for which
m = 0.
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The consequences of these ideas are most easily described for systems defined on an

interval 0 < x < L , but with a preferred direction of propagation introduced by adding an

advection term as in Tobias et al. [34]. In the following we suppose that the group velocity

is to the right and discuss first the unbounded system on a line. In such a system, let σc be

the value of the bifurcation parameter σ at which the trivial state first becomes unstable.

Near σc the resulting instability is convective because its growth rate is necessarily small

compared to the (finite) advection rate. Also, let σa > σc be the value of σ at which the

instability of the trivial state in the unbounded system first becomes absolute—that is,

the point at which instabilities begin to grow at every location; see Bers [3], Huerre and

Monkewitz [18]. Of course, this distinction is meaningful only when considering the

initial value problem for localized disturbances. For our purposes the important point

about absolute instability is that its onset is associated with the presence of a double root

of the (complex) dispersion relation for infinitesimal waves in the complex wavenumber

plane, subject to a certain “pinching” condition, Bers [3], Huerre and Monkewitz [18].

The double root condition, together with the dispersion relation, suffices to determine σa

and the associated complex wavenumber ka and real frequency ωa . In general Im ka 6= 0.

Consequently at σ = σa a wave propagating away from x = 0 amplifies spatially with

an exponential growth rate Im ka . In a finite domain, the convective instability manifests

itself as a transient growth of a perturbation that ultimately decays unless σ exceeds

a higher threshold σ f at which an unstable eigenmode first appears. The important

point is that in large domains, σ f = σa + O(L−2) and ω f = ωa + O(L−2), and that

the eigenfunction inherits the exponential growth from the unbounded system, Tobias

et al. [34].

Numerical calculations of target patterns on a disk resulting from Hopf bifurcation,

Tobias and Knobloch [33], suggest that these ideas carry over to target patterns, and

more generally to spirals as well. This is plausible since in local patches both spirals and

target patterns are very close to traveling waves whose cross-section in the direction of

propagation is close to the one-dimensional case, with a slow variation in the transverse

direction related to the curvature of the wavefront. The relation between the classical

linear stability calculation and the onset of absolute instability makes it clear why in

general the linear eigenfunctions in large domains grow exponentially with r , and there-

fore why eigenfunctions of this type are the proper eigenfunctions to use even on an

unbounded domain. Moreover, the observation that σ f → σa as R → ∞, where σ f is

the Hopf bifurcation point determined in Section 3, implies that in an unbounded system

such exponentially growing “eigenfunctions” are present from the onset at σ = σa .

4.2. Nonlinear Theory

So far this is all linear theory. In the nonlinear regime Tobias et al. [34] distinguish

three regimes. In the first, the weakly nonlinear theory alluded to above applies; for the

problem on the interval 0 ≤ x ≤ L Tobias et al. [34] find that this happens only within an

O(L−5) neighborhood of σ f . Thus only very close to the primary absolute instability will

the solutions resemble the linear eigenfunctions globally. For somewhat larger values

of the bifurcation parameter (σ − σ f = O(L−2)) the growing wave develops into a

(usually) stationary front at some x = xfront < L . This front is a fully nonlinear state

of the system and connects O(1) amplitudes at xfront < x < L to exponentially small
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amplitudes near x = 0. When the front is stationary and no phase slips occur at the

front, the frequency ω f is conserved across the front, and thus selects both the amplitude

and the (real) wavenumber of the (saturated) waves in the postfront region (x > xfront).

Thus in this regime the frequency ω f selected near x = 0 by linear theory determines all

the properties of the outward-moving fully nonlinear waves in x > xfront. With further

increase in σ the location of the front moves towards x = 0 until, when σ − σ f = O(1),

the linear regime near x = 0 is eliminated. At this point the boundary at x = 0 no

longer selects the frequency ω f ; instead the selected frequency ω must be found as a

solution to a nonlinear eigenvalue problem. Tobias et al. [34] find that in this regime

the dependence of ω on the parameter σ becomes more noticeable, but that it continues

to be essentially independent of the boundary conditions. Thus the wavenumber and

amplitude of the wave in the postfront regime continue to be selected in the core, with

only a thin boundary layer present near x = L , in which the solution adjusts to the

imposed boundary conditions.

This picture is well established for unidirectional waves on a line. Recent simula-

tions by Tobias and Knobloch [33] indicate that analogous regimes are present for target

patterns in the complex Ginzburg-Landau and FitzHugh-Nagumo equations. Almost im-

mediately above threshold the nonlinear solution begins to depart from the eigenfunction.

This occurs first near the boundary where the amplitude of the wall mode is largest, and

leads to the creation of a front separating the core region from an essentially constant

amplitude but fully nonlinear wave outside of the core. With increasing σ the core of

the target narrows as the front moves gradually inwards; when σ is large enough the

selected frequency starts to differ from that predicted by the linear theory. At this point

the structure of even the core begins to depart from the form of the linear eigenfunc-

tion. At the same time the amplitude of the waves outside the core region continues to

increase and so does the selected wavenumber—that is, the wavelength of the pattern

decreases, Tobias and Knobloch [33]. Of course it may happen that the selected waves in

the postfront region are themselves unstable (convectively or absolutely), as discussed

by Aranson et al. [1] and Tobias and Knobloch [33] (see also Bär and Or-Guil [28]),

but the basic picture, of a nonlinear front separating a core region from fully nonlinear

(outward) traveling waves outside the core, remains. As before, we expect solutions of

this type to be essentially independent of the (outer) boundary conditions. The boundary

conditions may therefore be homotopically continued to Neumann or Dirichlet boundary

conditions and very similar solutions will be found—at least for large enough σ . That

is, nonlinear solutions of the observed form should be present even in systems in which

there may be no primary Hopf bifurcation to a wall mode.

These suggestions are fully consistent with the work of Hartmann et al. [17] who com-

pute nonlinear spiral solutions to the Barkley model of excitable media with Neumann

boundary conditions on a circle of radius R and corroborated experimentally. Decreas-

ing R leads to an increase in frequency prior to the disappearance of stable spirals at a

saddle-node bifurcation, i.e., extinction. Thus no Hopf bifurcation to stable spirals occurs

in this model. The observed increase in the spiral frequency as R decreases is attributed

to the resulting compression of the core; in the calculations of Tobias et al. [34] a similar

compression occurs with increasing µ and is also associated with an increased frequency,

as calculated from the nonlinear eigenvalue problem. Other models of excitable media

exhibit similar behavior, Zykov and Müller [39].
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The view of spirals that emerges suggests that in large domains the region in parameter

space where linear or weakly nonlinear theory provides a global description of target

or spiral patterns is very small—in fact, so small as to be practically undetectable. In a

somewhat larger parameter range (though still small) the eigenfunctions (wall modes) of

the linear theory describe only the inner part of the core, while the visible part of these

patterns, separated from the core by a front, is fully nonlinear and hence inaccessible to

local bifurcation theory. For general values of the bifurcation parameter, σ −σ f ≫ R−2,

no part of these patterns resembles the solutions generated by linear theory. In no case,

however, is the core of these patterns a singularity—indeed solutions of elliptic PDE in

a disk are everywhere regular, Courant and Hilbert [5]. All singular eigenfunctions must

be discarded and play no role in the core structure, Dellnitz et al. [7].

The resulting picture of a spiral suggests a reinterpretation of the spiral boundary

condition introduced by Dellnitz et al. [7] as an effective boundary condition that may

be applied at the location of the front separating the core from the visible spiral in

order to study the core region of the spiral. In this view the condition is not a boundary

condition but a matching or transition condition between the core and the fully nonlinear

regime. This boundary condition forces the presence of a spiral. However, more generally,

nonlinear spiral solutions to reaction-diffusion systems may be constructed by matching

a solution valid near r = 0 to one valid as r → ∞, as demonstrated by Hagan [16]

and Scheel [30]. At the requisite matching radius we expect nonzero radial fluxes of the

concentration, suggesting that the Robin boundary conditions employed here may also

be viewed as effective boundary conditions to be applied at the core-spiral boundary

in unbounded domains, with our approach providing a description of the solution in

the core. In fact, Robin boundary conditions may apply even in finite systems in the

presence of chemically active boundaries, Hartmann et al. [17]. In our approach these

boundary conditions provide a convenient, but physically well motivated, procedure for

generating a Hopf bifurcation from the trivial state with a nonzero spatial wavenumber

and exponentially growing eigenfunctions. In fact, solutions of this type may be expected

whenever the linear problem is non-selfadjoint, a situation that we believe to be generic

for reaction-diffusion systems of sufficient complexity.

As pointed out by a referee, this remark can be made more explicit within the complex

Ginzburg-Landau equation for rotating m-armed spirals:

Arr +
1

r
Ar −

m2

r2
A + (1 + iα)A − (1 + iγ )A|A|2 = 0. (17)

In this model the coefficient α involves the wave frequency ω, i.e., dα/dω 6= 0. Kopell

and Howard [21] show rigorously that when γ is small it is possible to choose a nonzero

but small α (by varying ω near zero) such that equation (17) has a spiral-wave solution

(see also Hagan [16] and Scheel [30]). In the core (r ≪ 1) A is small and its radial

growth is governed by the linear equation

Arr +
1

r
Ar −

m2

r2
A + (1 + iα)A = 0, (18)

whose solutions are complex Bessel functions when α 6= 0. Thus the matching procedure

when 0 < γ ≪ 1 selects a nonzero α and hence complex Bessel functions for the core
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solution. Since Robin boundary conditions also select complex Bessel functions, it is

plausible that there is a meaningful connection between the matching condition used

in the above papers and the Robin boundary conditions employed here. Since the latter

approach applies to systems undergoing a Hopf bifurcation to oscillations with a finite

wavenumber (unlike the complex Ginzburg-Landau equation) the approach of this paper

may be viewed as a generalization of existing work on λ − ω systems to such systems

and to systems which are far from variational.

We hope that these conclusions will spur additional efforts to study cores of spirals and

of target patterns, as done by Müller et al. [24]. Such studies should resolve the structure

of the core, which holds the key to the linear stability problem that produces these objects

in the first place. It is of interest to note that Steinbock and Müller [32] found that an

artificial enlargement of the core (by optical means) results in a substantially increased

wavelength of the waves outside the core. We interpret this experiment as lowering the

value of σ and thus taking the system closer to threshold. The experimental observations

are in qualitative agreement with the scenario outlined above. Similar behavior has

also been seen in simulations of the Oregonator model as the propagation boundary is

approached, Jahnke and Winfree [19].

What about spirals on the infinite plane? The limit R → ∞ is mathematically prob-

lematic. Formally, our results suggest that the region in which the weakly nonlinear

theory applies shrinks to zero. The instability is then to a mode that grows exponen-

tially in r . The solution therefore becomes fully nonlinear immediately at onset with no

intermediate weakly nonlinear regime in which the solution resembles the linear eigen-

function over the whole domain. We believe that this observation lies at the root of the

difficulty of identifying bifurcations to spirals or target patterns in unbounded domains.
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