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Target signal extraction has a great potential for applications. To solve the problem of error extraction of target signals in the
current constrained independent component analysis (cICA) method, an enhanced independent component analysis with
reference (EICA-R) method is proposed. -e new algorithm establishes a unified cost function, which combines the negative
entropy contrast function and the distance metric function. -e EICA-R method transforms the constrained optimization
problem into unconstrained optimization problem to overcome the problem of threshold setting of distance metric function in
constrained optimization problem.-e theoretical analysis and simulation experiment show that the proposed EICA-R algorithm
overcomes the problem of the error extraction of the existing algorithm and improves the reliability of the target signal extraction.

1. Introduction

Target signal extraction is used to extract unknown source
signals from multiple linear mixed signals, which has found
a wide range of applications. Especially in the case of the
complex electromagnetic environment, a substantial num-
ber of electromagnetic signals are interwoven together to
interfere with each other [1]. When target signals are mixed
with interference signals, multiple mixed signals are gen-
erated. -ese mixed signals that overlap and interconnect in
the time domain and frequency domain lead to the com-
munication failure. How to extract the target signal effec-
tively from the mixed signals has become one of the hotspots
and key points in the field of signal processing [2].

A current trend in target signal separation is the in-
dependent component analysis (ICA) approach, the core idea
of which is to minimize the statistical relationship between all
the signal sources [3, 4]. ICA can effectively separate all the
signals, including target signals, interference signals, and
background noise in the non-underdetermined case, which is
widely used in audio signal processing [5], mechanical engi-
neering [6], and biomedical diagnosis [7–9]. A typical ICA
optimization algorithm is the FastICA algorithm [10]. It should

be pointed out that ICA is not suitable for underdetermined
cases. For underdetermined cases, we can adopt sparse analysis
[11–14], deconvolution [15, 16], and othermethods.-is paper
only considers non-underdetermined cases.

Although the ICAmethod can separate themixed signals
to some extent, the signal sorting order separated by ICA is
only related to the non-Gaussian of the source signal [2], so
we cannot directly decide which one is the target signal, the
background signal or the interference signal [4], while we are
only interested in the target signal among the multiple
separated signals.

In many practical applications, some characteristics of
the target signal, such as the carrier frequency, modulation
mode, and other prior information are known, which can be
used for target signal extraction. If there is a frequency
aliasing between the signals, the signal cannot be separated
by the traditional filtering method. In this case, the con-
strained ICA (cICA) algorithm [17–19], incorporating prior
information, can be used to extract the target signal [20, 21].
-e cICA is also called ICA with reference (ICA-R) [22].

However, in the process of optimization for the cICA
algorithm, we need to set threshold parameters to distinguish
target signals from other signals, which increases computation
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complexity and storage space and converges slowly. In some
cases, the cICA algorithm cannot be converged [22–25].

Recently, Shi et al. proposed a new model of ICA with
reference signal (ICA-R), where an adaptive weighted
summation method is introduced to solve the multiobjective
optimization problem with a new fixed-point learning al-
gorithm [26, 27]. -is method solves the threshold setting
problem of cICA and effectively overcomes the problem of
false extraction but faces the problem of determining the
weight parameter.

Compared with the cICA algorithm or ICA-R, the
proposed enhanced ICA with reference (EICA-R) directly
contains the prior information into the ICA framework. By
combining with the negative entropy contrast function and
target signal distance metric function, the EICA-R estab-
lishes a unified cost function so that the constrained opti-
mization problem is transformed into an unconstrained
optimization to overcome the problem of the threshold
setting problem of distance metric function for cICA.

In the enhanced ICA with reference (EICA-R) proposed
in this paper, a priori information is directly contained in the
ICA framework combined with the negative entropy con-
trast function and target signal distance metric function.

-e EICA-R puts forward four kinds of cost function to
convert the constrained optimization problem into un-
constrained optimization problem. By deductive analysis of
the similarity of the four cost functions, EICA-R establishes a
unified optimization model, in which the model weight
parameter is determined to meet four kinds of cost function
at the same time. It not only overcomes the difficulty of
setting the threshold for distance measurement function but
also solves the difficulty of setting weight parameter.

In practice, the reference signal can be obtained in
advance. Under the counter condition, the interference
signal is not completely consistent with the target signal in
frequency and may only overlap partially. Even if it is
completely in the same frequency, the modulation mode of
target signal and interference signal will be different.
Moreover, interference signals are usually strong noises or
direct background music and other unrelated signals, which
are significantly different from target signals. In addition, the
transmission time and mode of target signals have certain
rules, while interference signals generally lack such rules. In
general, continuous interference is adopted, or the same
frequency interference is sent after the detection of target
signals, which has obvious lag in time. We can predict in
advance the precise frequency, modulation mode, and even
the law of signal transmission of the target transmitter,
which can be used as the basis for designing reference
signals. Accordingly, interference signal does not have these
characteristics.

Of course, the reference signal we designed is only an
approximate version of the “expected” reference signal, but
this does not affect the validity of the results. Because the
reference signal is not required to be infinitely close to the
actual target signal, only the distance measurement function
with the target signal is the minimum. Since the reference
signal is designed based on some features of the target signal,
it is obvious that its distance measurement function with the

target signal is smaller than that with other interference
signals.

-e research in this paper focuses on target signal ex-
traction mainly targeted at non-underdetermined system. In
practice, some hybrid systems are underdetermined. In
terms of the underdetermined system, scholars such as Woo
et al. have conducted some fruitful researches [28–30]. It is
one of our next research priorities that standing on the
shoulders of giants and carrying out the rapid extraction of
targets under indeterminate circumstances.

-e rest of this paper is organized as follows. In Section
2, we summarize the mixed signal separation model and
analyze the cICA algorithm. In Section 3, we propose the
EICA-R algorithm, establishing and solving and the cost
function of unconstrained optimization. In Section 4, we
carry out the experiment and show a series of numerical
results of the EICA-R algorithm on the monosyllabic fre-
quency modulation signal to verify the extraction effect.
Section 5 is the conclusion.

2. Mixed Signal Separation and cICA

2.1. Mixed Signal Separation Model. -e M-dim ensional
observation signals are produced by mixing the N-di-
mensional sources. It may be assumed that the mixture of
signals is a linear mixture. Suppose the unknown source

sources are s � [s1, s2, . . . , sN]
T; the observed signals are

x � [x1, x2, . . . , xM]
T; and the mixed matrix A is theM ×N

mixing matrix. -us, the signal mixing model can be ob-
tained as shown in the following equation:

x � As. (1)

-e signal separation model can simply be described as
follows: for the observed signal x � [x1, x2, ..., xM]

T, we can
solve aM ×N dimension separation matrix W by means of
the optimization method to get the separated signal after
separation:

y �Wx. (2)

In order to reduce the computation in the iteration
process, we need to remove the correlation between the
observed signals by whitening the data with V before the
iteration. -e observation signal after albinism 􏽥x � Vx. So
the separation model is changed into

y �W􏽥x. (3)

where y are the estimated signals for the N-dimensional
sources s. It is impossible to determine which signal is the
target signal y∗ from y.

2.2. Constrained ICA and ICA with Reference. It is assumed
that the target signal is y∗ and the corresponding separation
vector is w∗, so that the target signal y∗ is

y∗ � w
∗T􏽥x. (4)

Based on the prior information of the target signal, the
reference signal r is designed. In order to characterize the
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proximity between each separation signal y and reference
signal r, the distance metric function ε(y, r) between the
separation signal and the reference signal is defined as
follows:

ε(y, r) � E (y − r)2􏽮 􏽯. (5)

As a result, the distance between the target signal y∗ and
the reference signal r is always minimal for any separation
signal:

ε y∗, r( 􏼁< ε yelse, r( 􏼁. (6)

where yelse is any source signal outside the target signal.
For equation (6), in order to fully separate the different

homologous signals, it is necessary to fully excavate their
statistical independence. -e FastICA algorithm based on
the maximum negative entropy can separate the in-
dependent sources with a search direction of the maximum
negative entropy. In the process of separation, when the
non-Gauss measure reaches the maximum, the separation of
the independent components has been completed.

It is very difficult to calculate the negative entropy, so the
nonquadratic function is often used to approximate the
negative entropy [10]:

J(y) ≈ E G(y)􏼈 􏼉 − E G(υ){ }􏼈 􏼉2. (7)

where υ is a random variable with the standard Gauss
distribution and G(y) can be shown as follows:

G(y) �
1

a
log cosh(ay). (8)

Accordingly, g(y) � G′(y) � tanh(ay). As a result, the
ICA algorithm can be expressed as

max J(y),

s.t. y � w
T􏽥x,

􏽥x � Vx.

(9)

To extract the target signal y∗ from the separation
signals, we only need to get the smallest ε(y∗, r) through
iteration of ε(y, r). From equation (6), the distance metric
function between the target signal and the reference signal is
always less than any other road vector.-erefore, there must
be a suitable threshold parameter ξ to satisfy

ε y∗, r( 􏼁≤ ξ,
ε yelse, r( 􏼁> ξ.􏼨 (10)

-e cICA algorithmmakes use of maximization negative
entropy method to solve the target signal y∗ and the sep-
aration vector w∗ with the negative entropy function as the
cost function and the distance metric function as the con-
strained condition:

〈y∗,w∗〉 � max J(y),

s.t. y � w
T􏽥x,

ε(y, r)≤ ξ.
(11)

It is difficult to set the threshold parameter ξ in equation
(11) for the existing cICA algorithm.When it is set too small,

no separation vector conforms to the conditions; when it is
too large, multiple separation vectors conform to the con-
ditions. We abandon the method of setting threshold pa-
rameters and solve the problem directly from min ε(y, r).

To solve the problem of setting threshold parameters ξ,
some improved ICA-R algorithms are formulated
[22, 26, 27]. -is method solves the threshold setting
problem of cICA and effectively overcomes the problem of
false extraction but faces the problem of the weight pa-
rameter. For instance, Li used two cost functions at the same
time to make two optimization operations, in which a rough
pretreatment was carried out first, and then a fine post-
processing was carried out [22]. What this paper considers is
to combine two kinds of functions into a cost function,
which can be optimized once. In this way, four kinds of cost
functions are produced, among which the problem of pa-
rameter setting is involved. By combining the four kinds, the
problem of parameter setting is effectively solved.

3. Enhanced ICA with Reference

3.1. EICA-RCost Function. With the combination of (9) and
(10), the target signal y∗ needs to meet two optimization
problems at the same time:

max J(y),

min ε(y, r).
􏼨 (12)

In order to describe the two optimization problems in a
unified way, the maximization and minimization can be
transformed into each other. max J(y) can be converted to
min1/(J(y) + 1) or min − J(y); similarly, min ε(y, r) can be
converted to max1/(ε(y, r) + 1) or max − ε(y, r). So we can
describe the problem of target signal y∗ extraction in two
directions and get four EICA-R solutions.

Direction 1: combining the distance metric function and
the negative entropy contrast function, we reduce the
constrained conditions and establish two forms of cost
functions F(w), according to the different transformation
forms of max J(y):

F1(w) �
ε(y, r)

(J(y) + 1)
, (13)

F2(w) � με(y, r) − λJ(y), (14)

where μ and λ are the positive scaling factors. -e corre-
sponding EICA-R schemes are shown as follows:

w
∗
� min F1(w), (15)

w
∗
� min F2(w),

s.t. λ, μ> 0.
(16)

Since the selection of μ and λ has a great impact on As,
F2(w) in equation (14) is related to the selection of ap-
propriate parameters μ and λ, and the optimization result of
equation (16) depends on μ and λ. -is problem does not
exist in equation (15), whose optimization result is reliable.
-erefore, μ and λ need to be set appropriately so that the
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final optimization result of equation (16) is consistent with
equation (15).

Direction 2: combining the distance metric function and
the negative entropy contrast function, we reduce the
constrained conditions and establish two forms of cost
functions F(w), according to the different transformation
forms of min ε(y, r):

F3(w) �
J(y)

(ε(y, r) + 1)
, (17)

F4(w) � λJ(y) − με(y, r), (18)
where μ and λ are also arbitrary positive scaling factors. -e
cost function in equation (17) and the cost function in
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Figure 1: Waveform diagram of source signals.
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Figure 2: Spectra of source signals. (a) s1. (b) s2. (c) s3. (d) n.
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equation (13) are reciprocal relations, while the cost function
in equation (18) is positive and negative with the cost function
in equation (14). -en, the corresponding EICA-R scheme is
shown in the following expressions:

w
∗
� max F3(w), (19)

w
∗
� max F4(w),

s.t. λ, μ> 0. (20)
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Figure 3: Waveform diagram of mixed signals.
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Figure 4: Spectra of mixed signals. (a) x1. (b) x2. (c) x3. (d) x4.
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-e scheme of (19) and (20) is corresponding to the
scheme of (15) and (16). It also faces the problem of division
operation or scaling factor setting iteration. Similarly, μ and λ
need to be set appropriately so that the final optimization
result of equation (20) is consistent with that of equation (19).

According to the comprehensive analysis of equations
(12)–(20), the optimization results of equations (15) and (19)
are definite and reliable.-e four equations combine the two
cost functions according to four different combinations, so it
is reasonable to produce four optimization algorithms.
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Figure 5: -e extraction effect 1 of the cICA method.
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Figure 9: -e extraction effect of the EICA-R method.
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Now, we will try to find out the common features of
equations (15), (16), (19), and (20).

Theorem 1. :e gradient of the cost function for the four
EICA-R schemes F1(w), F2(w), F3(w), and F4(w) can be
expressed in a similar form.

Proof. the gradient of the cost function for F1(w) and F2(w)
is shown as follows:

∇F1(w) �
1

(J(y) + 1)2
(J(y) + 1)

zε(y, r)

zw
− ε(y, r)

zJ(y)

zw
􏼠 􏼡,

∇F2(w) � μ
zε(y, r)

zw
− λ

zJ(y)

zw
.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(21)

-ey can be uniformly expressed as

∇F(w) � α
zε(y, r)

zw
− β

zJ(y)

zw
, α> 0, β> 0. (22)

-e gradient of the cost function for F3(w) and F4(w) is
shown as follows:

∇F3(w) �
1

(ε(y, r) + 1)2
(ε(y, r) + 1)

zJ(y)

zw
− J(y)

zε(y, r)

zw
􏼠 􏼡,

∇F4(w) � − μ
zε(y, r)

zw
+ λ

zJ(y)

zw
.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(23)

-ey can be uniformly expressed as

∇F(w) � α
zε(y, r)

zw
− β

zJ(y)

zw
, α< 0, β< 0. (24)

So they can be expressed in a similar form:

∇F(w) � α
zε(y, r)

zw
− β

zJ(y)

zw
, αβ> 0. (25)

It can be obtained by using-eorem 1 that we can take a
particular F(w) � ε(y, r)/(J(y) + 1) as the cost function
that is more certain.-erefore, the new description of EICA-
R is shown in the following equation:

w
∗
� minF(w), (26)

where F(w) � ε(y, r)/(J(y) + 1), ε(y, r), and J(y) are the
distance metric functions and negative entropy contrast
functions, respectively. □

3.2. Optimal Solution for Cost Functions. -e gradient of
F(w) in equation (26) is expressed as follows:

∇F(w) � α
zε(y, r)

zw
− β

zJ(y)

zw
, (27)

where α � 1/(J(y) + 1) and β � ε(y, r)/(J(y) + 1)2. Define
ρ � E G(y)􏼈 􏼉 − E G(υ){ } and g as the derivative of G. Since

y � wT􏽥x, we get

zJ(y)

zw
� 2ρE 􏽥xg w

T􏽥x􏼐 􏼑􏽮 􏽯. (28)

For ε(y, r) � E (y − r)2􏽮 􏽯, we get
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Figure 10: Spectra of the EICA-R method. (a) r1. (b) r2. (c) r3. (d) y1. (e) y2. (f ) y3.

Mathematical Problems in Engineering 9



zε(y, r)

zw
� 2E (y − r)􏼈 􏼉􏽥x. (29)

From equations (27)–(29), we can obtain

∇F(w) � 2αE (y − r)􏼈 􏼉􏽥x − 2βρE 􏽥xg wT􏽥x􏼐 􏼑􏽮 􏽯. (30)

-us, the gradient-based learning algorithm is shown in
the following equation:

w⟵w − 2αE (y − r)􏼈 􏼉􏽥x + 2βρE 􏽥xg wT􏽥x􏼐 􏼑􏽮 􏽯, (31)

where g(wT􏽥x) � tanh(awT􏽥x). -e corresponding iterative
algorithm process is shown in Algorithm 1.

4. Simulation Experiment and
Performance Analysis

4.1. Experimental Signal. In the experiment, 10 groups of
analog signals with different systems were selected. A total of
1000 experiments were conducted. One group of signals, in
which the frequency of each signal was close to each other, is
shown as follows: the source signals s1 and s2 are the single
tone FM-modulated signals, while the source signal s3 is the
carrier signal. For instance, a set of experimental signals is as
follows:

s1 � sin 2πF1Tsk + 6 cos 2πf1Tsk( 􏼁( 􏼁,
s2 � cos 2πF2Tsk + 24 cos 2πf2Tsk( 􏼁( 􏼁,
s3 � cos 2πF3Tsk + 2( 􏼁.

(32)

For the convenience of displaying signals, we take the
frequency as F1 � 510Hz, F2 � 440Hz, F3 � 380Hz,
f1 � 100Hz, and f2 � 150Hz. -ese signals overlap each
other in the frequency domain and cannot be separated and
extracted by filtering. In addition, a random white Gaussian
noise signal is produced as s4. As a result, the 4 source signals
and corresponding spectra are shown in Figures 1 and 2.

AnM ×N (M � N � 4) mixed matrix A4×4 is generated
randomly to mix the source signals, and then the mixed
signals and corresponding spectra are shown in Figures 3
and 4.

For the target signal we need, this prior information is
desirable. For example, in the case of 4× 4 mixture, we need
to analyze the number of the target signals. Take commu-
nication signals as an example, one of which is our normal
communication signals and the other is antijamming signals
and unintentional jamming signals. -en, only our normal
communication signals are our target signals. -e prior
information of transmitter signal of our communication
object can be known, which is sufficient to extract the target
signal we need.

-e reference signals should carry the prior information
of the expected source signals with non-Gauss characteristic.
-ere are many kinds of reference signal design, and the
most typical method is the pulse method. We select the pulse
signals with the same frequency as the source signals as the
reference signals.

4.2. Experimental Result. In practice, for example, only one
of the 4 signals need to be extracted, which means that only
one signal is needed to extract the source signal.

In the simulation experiment, in order to compare the
performance with cICA, we designed the reference signal for
each signal and extracted each signal.

Table 1: -e average SNR (dB) of the 1000 experiments.

-e separate signal FastICA cICA EICA-R

y1 39.2 29.9 34.0
y2 38.4 28.2 34.5
y3 38.9 27.1 37.3

Input: -e observation signal x, the number of signal sourcesN, the reference signal r, the difference terminates η(η≪ 1) of distance
metric errors.
Output: -e target signal y∗, separation vector w∗.
Step 1: Preprocessing: whiten the observational signal 􏽥x � Vx, in which V is obtained by using equation (3).
Step 2: Initialize:
Step 2.1: Determines the initial separation vector w(0) with a unit norm.
Step 2.2: Determines the initial estimation signal y(0)⟵ (w(0))T􏽥x and the initial distance metric error ε(y(0), r)⟵ (y(0) − r)2

Step 2.3: Determine the initial parameters: ρ(0) � E G(y(0))􏼈 􏼉 − E G(υ){ }, α(0) � 1/ J(y(0)) + 1, β(0) � ε(y(0), r)/(J(y(0)) + 1)2, k⟵ 1.
Step 3: Iterations:
Step 3.1: According to equation (31), update w, get w(k). w(k)⟵w(k− 1) − 2α(k− 1)(y(k− 1) − r)􏽥x + 2β(k− 1)ρ(k− 1)g(y(k− 1))􏽥x.
Step 3.2: Normalize w(k): w(k)⟵w(k)/‖w(k)‖.
Step 3.3: Update y and distance metric error: y(k)⟵ (w(k))T􏽥x, ε(y(k), r)⟵ (y(k) − r)2.
Step 3.4: Update the parameters ρ, α, and β. ρ(k) � E G(y(k))􏼈 􏼉 − E G(υ){ }, α(k) � 1/(J(y(k)) + 1), β(k) � ε(y(k), r)/(J(y(k)) + 1)2.
Step 3.6: Update the difference ς between the distance metric errors for the iterative ς(k)⟵ ε(y(k), r) − ε(y(k− 1), r).
Step 3.7: Compare ς with η, if ς(k) ≤ η, then stop iterating; otherwise, k⟵ k + 1, go to step 3.1 to continue the iteration.
Step 4: Output results: w∗ � w(k), y∗ � y(k).

ALGORITHM 1: Iterative implementation process for w∗ and y∗.

Table 2: -e average run time(s) of the 1000 experiments.

-e separate signal FastICA cICA EICA-R

y1

0.328
0.176 0.152

y2 0.165 0.146
y3 0.181 0.163
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In order to compare the separation effect conveniently,
we carry out the separation experiment by means of the
EICA-R method proposed in this paper and the cICA
method.

Firstly, we use the method of cICA to carry out simu-
lation experiments [27]. In general, in cICA we do not know
the correct threshold parameter ξ. In order to ensure that the
solution of the required independent components is in the
feasible region of the inequality, the initial value of ξ(0) is
given to a larger value so that the feasible region is large
enough. For the normalized signal yelse and r,
ξ < ε(yelse, r)< 1. If the initial value ξ(0) is set as 1, all
independent components in the possible region can be
obtained; that is, all target signals can be extracted si-
multaneously. In this case, the range of ξ needs to be
narrowed repeatedly until no signal is extracted when ξ(k).
Taking ξ(k− 1) as the threshold ξ, then 1000 experiments
were repeated.

According to the experiment using the cICA method,
different reference signals appear many times and the
same target signal is extracted. For 1000 experiments with
the cICA method, about 1/10 was erroneously extracted.
Some results of these experiments are shown in
Figures 5–8.

-e key to the cICA algorithm is the setting of the
threshold ξ that cannot guarantee the accuracy of the ex-
traction signal. If the threshold is too large, there are lots of
source signal vectors w∗ satisfying the inequality, then the
output of the system cannot be just interested; on the
contrary, if the threshold is too small, there is no separate
vector algorithm satisfying the inequality.

-en, we make use of the EICA-R method proposed to
carry out the experiment.-e result of 1000 times shows that
no extraction error occurred, as shown in Figures 9 and 10.

-e experimental results of Figures 5–10 indicate that the
EICA-R method in this paper overcomes the above prob-
lems with a good extraction effect for different target signals.
-e separated target signal corresponds to the reference
signal one by one without error extraction phenomenon.

4.3. Performance Analysis. On this basis, we continue to
study and compare the separation and extraction perfor-
mance. First, we study the SNR of the extracted target signal,
and the SNR of each target signal extracted is as follows:

SNRj � 10 log10
􏽐3000
k�1 y

2
j(k)

􏽐3000
k�1 yj(k) − si(k)􏽨 􏽩2, (33)

where si is the i-th source signal and yj is a separate signal
corresponding to the target signal. For the EICA-R
method, yi are in one-to-one correspondence with source
signals si; for the cICA method, when eliminating the
extraction results error, yi are all in one-to-one corre-
spondence with the source signals si. For the FastICA
method, since the corresponding relationship is random,
we take the form of highest SNR for each yj. -e average
SNR of the 1000 independent experiments is shown as
shown in Table 1.

Table 1 shows that the antinoise performance of the
EICA-R method proposed in this paper is less than that of
the FastICA method, but it is superior to the cICA method.
-is is because the EICA-R method and the cICAmethod all
join the constraint conditions and the cumulative errors in
the iterative process are also increased accordingly. -e
EICA-R method overcomes the error extraction of the cICA
method, so the mean SNR of the EICA-R method is greater
than that of the cICA method.

-e corresponding run time is shown in Table 2.
Table 2 shows that the separation time of the EICA-R

signal is less than that of cICA, and the time of separating all
three signals is longer than that of FastICA, but the time of
separating the single signal by EICA-R is less than half of that
of FastICA. For the single target signal, the EICA-R sepa-
ration efficiency is the highest. -at is determined by the
computational complexity of the respective algorithms.
Tables 1 and 2 also show that this algorithm improves the
separation signal quality and separation efficiency while
overcoming the error extraction of the target signal. -is
simple example would be suffice to show that FastICA can
only separate multiple sources but cannot tell which is the
target signal; the cICA algorithm can extract the target
signal, but there is a problem of false extraction, which is not
reliable in practical application. -e algorithm in this paper
can not only separate the source signal but also effectively
extract the target signal and overcome the problem of false
extraction.

5. Conclusion

Extracting the target signal accurately from the mixed signal
is one of the difficulties in the field of signal processing.
Based on the existing cICA algorithms, we propose an
enhanced independent component analysis with reference
(ICA-R) to overcome the shortcomings of random and false
extraction of separate signal sequence in the existing hybrid
signal separation algorithm. By combining the negative
entropy contrast function and the distance metric function
of the target signal, we establish a unified cost function,
which transforms the constrained optimization problem
into an unconstrained optimization problem. -e EICA-R
algorithm proposed in this paper not only overcomes the
threshold setting problem of distance measurement function
but also solves the problem of weight parameter setting.
-eoretical analysis and simulation results show that the
proposed ICA-R algorithm outperforms the existing algo-
rithms in extracting the target signal.
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