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Abstract

Malaria causes about half a million deaths annually, with Plasmodium falciparum being

responsible for 90% of all the cases. Recent reports on artemisinin resistance in Southeast

Asia warrant urgent discovery of novel drugs for the treatment of malaria. However, most

bioactive compounds fail to progress to treatments due to safety concerns. Drug reposition-

ing offers an alternative strategy where drugs that have already been approved as safe for

other diseases could be used to treat malaria. This study screened approved drugs for anti-

malarial activity using an in silico chemogenomics approach prior to in vitro verification. All

the P. falciparum proteins sequences available in NCBI RefSeq were mined and used to

perform a similarity search against DrugBank, TTD and STITCH databases to identify simi-

lar putative drug targets. Druggability indices of the potential P. falciparum drug targets were

obtained from TDR targets database. Functional amino acid residues of the drug targets

were determined using ConSurf server which was used to fine tune the similarity search.

This study predicted 133 approved drugs that could target 34 P. falciparum proteins. A litera-

ture search done at PubMed and Google Scholar showed 105 out of the 133 drugs to have

been previously tested against malaria, with most showing activity. For further validation,

drug susceptibility assays using SYBR Green I method were done on a representative

group of 10 predicted drugs, eight of which did show activity against P. falciparum 3D7

clone. Seven had IC50 values ranging from 1 μM to 50 μM. This study also suggests drug-

target association and hence possible mechanisms of action of drugs that did show anti-

plasmodial activity. The study results validate the use of proteome-wide target similarity

approach in identifying approved drugs with activity against P. falciparum and could be

adapted for other pathogens.
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Introduction

Malaria is an infectious disease with high morbidity and mortality. Approximately 3.3 billion

people are at risk of getting malaria [1]. In 2015 alone, there were an estimated 212 million

new cases of malaria worldwide with about 429,000 deaths reported [2]. Out of the total

reported malaria cases and deaths, 90% of them occur in Africa, followed by the South-East

Asia [1]. This disease burden is aggravated further by rapid development of resistance to anti-

malarial drugs. Reports of resistance to artemisinin-based combination therapy (ACT), the

recommended first-line treatment for Plasmodium falciparummalaria [3–4] in Southeast Asia

[5] warrants urgent discovery of new antimalarial drugs.

There are several drug discovery methods that have been used in malaria research [6]. Most

approaches involve the use of either target-based or whole cell-based high throughput screens

[7–11]. In target-based approaches, extracted proteins that are crucial for the parasite survival

are assayed against huge compound libraries, a strategy that was used in the discovery of inhib-

itors of P. falciparum dihydroorotate dehydrogenase [12]. On the other hand, the whole cell-

based approach involves exposing the P. falciparum parasite to test compounds to determine

their inhibitory activities. Some antimalarial drugs have been modified from already existing

drugs, these include synthetic ozonides which are based on artemisinins [13]. Modifications of

drug compounds during drug development is done to either optimize their therapeutic activi-

ties, counteract the effect of resistance to the scaffold drug or mitigate the drug’s side effects.

Many effective antimalarial drugs have been derived from traditionally used herbal medicines

[6], this includes quinine which is extracted from the Cinchona trees and artemisinins are got

from the Chinese herb Artemisia annua [14].

Use of Computer Aided Drug Discovery and Development (CADDD) to complement tra-

ditional approaches has greatly reduced cost, time and risks in chemotherapy research [15].

CADDD has successfully been used in the discovery of several drugs that have either been

approved or are in clinical trials [16]. In silico tools that have been used in drug discovery and

development can be broadly classified into bio-chemical databases, chemoinformatics and

tools used in structure-based and ligand-based drug design [17].

The effectiveness of an antimalarial drug is dependent on its ability to target a protein or a

biological pathway that is essential for the survival of the parasite in the blood stages. The shift

of intervention strategies towards pre-elimination in some parts of the world has motivated

targeting of other stages of the parasite [9,18–21]. The completion and annotation of the P. fal-

ciparum genome [22,23] revealed metabolic pathways that are essential in various stages of the

parasite. For instance, heme biosynthesis is essential for P. falciparum in mosquito stage but

not in asexual blood stages [24]. Drugs targeting this pathway are unlikely to provide successful

antimalarial treatment but may be useful as transmission blockers. Similarly, type II fatty acid

biosynthesis is essential for sporozoite development in the mosquito but not in the erythrocytic

stages [25]. Tricarboxylic acid (TCA) cycle is nonessential in asexual parasites but has been

shown to be indispensable in transmission stages of P. falciparum [26]. Pathways that are cru-

cial in all stages of parasite development include phospholipid biosynthesis [27], coenzyme

folate biosynthesis [28], glycolysis [29] and pentose phosphate pathway [30]. Several enzymes

and other proteins classes involved in these pathways have been investigated as potential drug

targets, with proteases [31–36] and kinases [37–42] being some of the most studied.

Development of new drugs to the point of their introduction into the market is expensive

and time-consuming, costing about $100–800 million over a period of 12–15 years [43]. More-

over, most drugs that show activity against malaria fail to get approved due to safety concerns.

Consequently, some drug discovery strategies have focused on drug repositioning which

entails using already existing drugs for indications different from those they were approved for
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in order to circumvent approval challenges [44]. This approach has been widely explored in

malaria chemotherapy research [45–50].

Through a target-similarity approach, this study sought to predict approved drugs that have

undiscovered activity against P. falciparum and hence could be repositioned as antimalarials.

This is based on the principle that a drug would have a similar effect on a protein that is similar

to its putative target. Two previous studies have used a similar approach in repositioning of

approved drugs against P. falciparum apicoplast [51] and Schistosoma mansoni [52]. In this

study, each P. falciparum protein sequence in NCBI RefSeq database was used to search for

similar to putative drug targets. Functional regions of the successful drugs targets were deter-

mined and used to fine tune the similarity search. This study identified approved drugs that

have antimalarial activity and possible P. falciparum proteins they could be targeting.

Material andmethods

Mining of P. falciparum proteome

A list of all proteins expressed in all stages of P. falciparum was obtained from NCBI Reference

Sequence (RefSeq) database release 75 [53]. RefSeq database was preferred over GenBank

because of the non-redundant nature of its sequences and the fact that it provides the best

available sequence in GenBank (reference sequence) for a each protein. The search at NCBI

was made by use of key words “Plasmodium falciparum” and selecting “Protein” database

before initiating the search. To further filter the results, “Plasmodium falciparum” was selected

in the organisms section and RefSeq as the source database. All the protein sequences were

downloaded in a single multi-FASTA file. For easy manipulation, the downloaded sequences

were converted into a CSV spreadsheet using R statistical programming software [54].

Identification of putative drug targets using drug databases

Using each P. falciparum protein sequence as a query, a search was done for similar putative drug

targets on three publicly available databases; DrugBank [55], Therapeutic Target Database (TTD)

[56] and STITCH 4.0 [57]. These databases have information on drugs, their putative targets and

other drug-related information. Homologous proteins with output expectation values (E values)

lower than 1e-20 [52] were considered for further analysis while the rest were excluded. Here, the

E value describes the number of times one can expect to see a match by chance, thus the lower

the E value the better. The putative drug targets that met the similarity threshold were retrieved

with approved drugs that target them and keyed into a spreadsheet alongside their homologous

P. falciparum proteins. For the STITCH database, drugs and other biomolecules that interact

with the P. falciparum proteins are already predetermined. Therefore, a search was made in the

STITCH database for each of the P. falciparum proteins, drugs that are predicted to interact with

the proteins with a confidence score of at least 0.7 were considered for further analysis.

Determination of druggability index

The druggability indices for all the predicted P. falciparum target proteins was obtained from

TDR Targets Database v5 [58,59]. Druggability index (D index) describes how druggable a

protein is, that is how likely the protein is modulated with a small molecule drug [60]. Drugg-

ability indices range from 0 (least druggable) to 1.0 (most druggable). These scores reflect a

number of factors such as how similar the protein is to a library of targets at ChEMBL database

[61], whether the protein has physiochemical features of known drug targets and empirically

determined interactions with drug like compounds. This step was important in resolving via-

ble P. falciparum drug targets. If a drug is predicted to target a protein with low druggability

Target-similarity in repositioning approved drugs for use against malaria

PLOSONE | https://doi.org/10.1371/journal.pone.0186364 October 31, 2017 3 / 24

https://doi.org/10.1371/journal.pone.0186364


but still exhibits high antimalarial activity then that could imply the drug inhibits another pro-

tein with high druggability.

Determination and comparison of functional amino acid residues

All the P. falciparum protein targets that met the inclusion criteria from the drug database

search were then analyzed to determine if they share functional amino acid residues with their

homologous putative drug targets. Amino acids residues that are conserved by evolution in a

protein are believed to perform important structural and/or functional roles in the protein.

The previous similarity search in drug databases weighted all amino acids equally while this

step only checked for similarity in conserved amino acid residues. This is important in fine

tuning the search because two proteins would be more likely to share ligands if they shared

functional and structural regions. Before determining the functional residues, a protein-pro-

tein pairwise alignment using BLAST [62] was done at NCBI with the drug target as the query

sequence and its corresponding P. falciparum homolog as the subject. Only proteins pairs that

had more than 80% query coverage were considered for ConSurf server analysis. This step

ensured that only proteins that are likely to share a significant number of residues proceeded

to analysis using the ConSurf server.

The ConSurf server [63] determines functional amino acid residues by estimating the

degree of conservation of amino acids across 150 close sequence homologues obtained from

UniProt database [64]. Evolutionary conservation of amino acid positions is estimated based

on the phylogenetic relationship between the homologous sequences which is determined by

neighbor joining approach with maximum likelihood distance. Conservation scores are calcu-

lated using the Bayesian method. The spatial orientation of the amino acids in the 3-D struc-

tures of the proteins are also considered in the ConSurf algorithms hence the requirement to

have the protein sequence inputs in a PDB format. The 3-D structures were either obtained

from Protein Data Bank in Europe [65] or modelled using SWISS-MODEL server [66] if they

were not available in the PDB database. The Consurf server result outputs included multiple

sequence alignment (MSA) with the amino acid residues color coded according to their con-

servation scores. The MSA was snipped using Windows1 “snipping tool” and overlaid over

the BLAST protein-protein pairwise alignment results as shown in Fig 1. This aided in visual

comparison and determination of conserved amino acid residues that are shared with the cor-

responding homologous P. falciparum protein. Amino acid residues with conservation scores

of at least six and are shared between the two proteins were counted and the percentage com-

puted. These percentages were categorized according to a criteria adapted from a previous

study [52]; high similarity (more than 80%), moderate similarity (50–79%) and low similarity

(less than 50%). This was done for 26 protein pairs. Protein pairs with low similarity were

excluded from further analysis.

Drug lead list

All approved drugs whose protein targets are similar to P. falciparum proteins were keyed

alongside their respective proteins in a spreadsheet. Drugs that are applied topically, nutraceu-

ticals and protein based drugs (e.g. insulin) were excluded from the drug lead list because they

are less likely to be used as antimalarial drugs considering their physicochemical properties.

Duplicate drug entries were also eliminated. A literature search was carried out at PubMed

and Google Scholar to identify which drugs in the lead list had undergone in vitro testing for

antimalarial activity. The literature search was done by searching the name of the drug with

either “malaria”, “malaria in vitro testing” or “plasmodium falciparum”. Drugs that had been

tested but their IC50 not documented were considered as not tested.
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In vitro drug susceptibility assays

A representative group of 10 drugs from those predicted to have activity were selected for in

vitro testing of antiplasmodial activity. Selection of the drugs was based on their approved uses;

two antileukemic drugs (cladribine and clofarabine), three anticancer drugs (oxaliplatin, dasati-

nib and irinotecan), an antibiotic (levofloxacin), one antidipsotropic (daidzin), an antiasmatic

(zafirlukast), an immunosuppressive (tacrolimus) and one used to treat erectile dysfunction

(tadafil). Seven of the drugs tested had no documentation of prior in vitro testing and three did.

Details of their uses, putative drug targets, predicted P. falciparum drug targets (with druggabil-

ity indices) and percentage of shared conserved regions between the two proteins are shown in

Table 1. Chloroquine, dihydroartemisinin and mefloquine were tested (as reference standards)

alongside the candidate drugs. All candidate drugs were bought from Sigma-Aldrich, while ref-

erence drugs were provided byWorld Wide Antimalarial Resistance Network (WWARN) Ref-

erence Standards Programme. The P. falciparum 3D7 parasites were obtained from Kenya

Medical Research Institute-Walter Reed Project (KEMRI-WRP), Kisumu.

The drugs were assayed using a non-radioisotopic assay technique described by Smilkstein

and co-workers [8] with modifications [67, 68]. Reference clone chloroquine-sensitive (3D7)

were cultured as described by Johnson and colleagues [67]. Drugs and compounds were dis-

solved in 99.5% dimethylsulfoxide (DMSO) (Sigma-Aldrich) and diluted in complete Roswell

Park Memorial Institute 1640 series of Cell Culture Medium (RPMI 1640) prepared as

described by Akala et al. [69]. The basic culture medium was prepared from 10.4 g RPMI 1640

powder (Invitrogen, Inc.) augmented with 2 g glucose (Sigma Inc.) and 5.95 g of HEPES

(Sigma Inc.) dissolved to homogeneity in one litre of de-ionized water and sterilized with a

0.2 μM filter. Complete RPMI 1640 media (used for all parasite cultures and drug dilutions)

consisted of basic RPMI 1640 media with 10% (vol/vol), human ABO pooled plasma, 3.2%

(vol/vol) sodium bicarbonate (Thermo Fisher Scientific Inc.) and 4.0 μg/ml hypoxanthine

(Sigma Inc.). Complete RPMI 1640 media was stored at 4˚C and used within two weeks. Con-

currently, two-fold serial dilutions of chloroquine (0.977 to 2,000 ng/ml), mefloquine (0.244 to

500 ng/ml), dihydroartemisinin (0.098 to 200 ng/ml) and drug candidates (24.414 to 50,000

Fig 1. Comparison of conserved amino acid residues. (A) ConSurf server MSA results (color coded
according to conservation scores) of the drug target, the human tubulin beta-1 (NCBI accession number
NP_110400.1) is overlaid above its BLAST pair-wise alignment with its P. falciparum homolog (NCBI
accession number XP_001347369.1). The percent of the shared conserved residues was then determined;
(B) 3D molecular structure of the human tubulin beta-1 chain with residues color coded according to their
conservations scores, this was part of the ConSurf server results.

https://doi.org/10.1371/journal.pone.0186364.g001
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ng/ml) were prepared on a 96-well plate, such that the amount of DMSO was equal to or less

than 0.0875%. The 12 doses for each drug were added to wells in a row across the 96-well drug

plate. In vitro drug testing was initiated when the culture-adapted P. falciparum at 5% hemato-

crit with greater than 3% parasitemia were adjusted to 2% hematocrit and 0.5% parasitemia,

then added on to the plate containing a dose range of drugs and incubated in gas mixture com-

prising 5% CO2, 5% O2, and 90% N2 at 37˚C. Each drug was tested in three biological repli-

cates. The assay was terminated after 72 hours with SYBR Green dye added in lysis buffer and

kept in the dark for 24 hours as described by Cheruiyot et al. [68]. The fluorescence intensity

was measured from the bottom of the plate with a GENios Plus plate reader, with excitation

wavelengths of 485 nm, emission wavelengths of 535 nm, gain set at 60 and number of flashes

set at 10. Parasite growth inhibition was quantified using GraphPad Prism software version

5.02 from GraphPad Software Inc. CA, USA as described by Johnson et al. [67] and presented

as mean ± standard deviation.

Results

A summary of results for each step in the study is shown in Fig 2 with more details in consecu-

tive sections.

P. falciparum proteome

A total of 5,338 protein sequences were obtained from NCBI RefSeq database [53]. This num-

ber represents all the P. falciparum protein sequences in RefSeq release 75.

Table 1. Approved uses, putative targets, predicted P. falciparum targets, druggability indices and percentage of shared conserved residues of
candidate drugs tested for in vitro antiplasmodial activity.

Drug Indication
(approved use)

Putative target (UNIPROT ID) P. falciparum target
(NCBI acc. No.)

% of shared
conserved residues

Druggability
index

Cladribine Hairy cell leukemia Adenosine deaminase (P00813) Adenosine deaminase
(XP_001347573.1)

55% 1

Daidzin Anti-dipsotropic ATP-binding cassette sub-family G
member 2 (Q9UNQ0)

ABC transporter (XP_001348418.1) 51% 0.5

Zafirlukast Asthma ATP-binding cassette sub-family G
member 2 (Q9UNQ0)

ABC transporter (XP_001348418.1) 51% 0.5

Levofloxacin Antibacterial DNA topoisomerase 2-alpha
(P11388)

DNA topoisomerase II
(XP_001348490.1)

61% 0.8

Dasatinib Anticancer ATP-binding cassette sub-family G
member 2 (Q9UNQ0)

ABC transporter (XP_001348418.1) 51% 0.5

Clofarabine Antileukemia ATP-binding cassette sub-family G
member 2 (Q9UNQ0)

ABC transporter (XP_001348418.1) 51% 0.5

Tacrolimus Organ transplant NA* FK506-binding protein (FKBP)-type
peptidyl-propyl isomerase
(XP_001350859.1)

NA* 0.6

Irinotecan Colorectal cancer ATP-binding cassette sub-family G
member 2 (Q9UNQ0)

ABC transporter (XP_001348418.1) 51% 0.5

Oxaliplatin Colorectal cancer ATP-binding cassette sub-family G
member 2 (Q9UNQ0)

ABC transporter (XP_001348418.1) 51% 0.5

Tadafil Erectile
dysfunction

CGMP-specific 3’,5’-cyclic
phosphodiesterase (O76074)

3’,5’-cyclic nucleotide
phosphodiesterase
(XP_001349954.1)

> 5% -

*Predicted P. falciparum protein targets obtained from STITCH database (e.g. FK506-binding protein) did not have corresponding putative targets for

comparison hence were not analyzed by the ConSurf server

https://doi.org/10.1371/journal.pone.0186364.t001
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Identification of putative drug targets using drug databases

Each of the 5,338 protein sequences was used to search DrugBank, TTD and STITCH 4.0 data-

bases. Using an E value cutoff of 1e-20 for DrugBank and TTD, 54 approved drug targets were

identified to be similar to 34 P. falciparum possible targets. The 54 drug targets were associated

with 229 approved drugs, the full list is shown in S1 Table. Using a minimum confidence score

0.7 for STITCH 4.0, 10 drugs were predicted to interact with 5 P. falciparum proteins. It is

worth noting that some query results were similar in many of the searches while drugs that

had multiple targets appeared more than once in the results.

Druggability index

Druggability indices of 34 predicted P. falciparum drug targets obtained from TDR database

are shown in Table 2. The least druggable drug target in the study had a druggability index of

0.3 while five had an index of 1. Eight proteins did not have their druggability indices in TDR

database.

Determination and comparison of functional regions

A protein-protein pairwise alignment performed between the P. falciparum proteins and their

corresponding homologous drug targets revealed 26 out of 54 protein pairs had at least 80%

Fig 2. Steps in the chemogenomics repositioning workflow and their corresponding results. The yellow boxes represent P. falciparum sequences,
drug targets are shown in blue boxes and drugs in green. Excluded drugs and proteins target have red box outlines.

https://doi.org/10.1371/journal.pone.0186364.g002
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query coverage. The 26 were selected for ConSurf server analysis while the rest were excluded.

Comparison of the functional amino acids residues revealed eight protein pairs had high simi-

larity (more than 80%), 11 had a moderate similarity (50–79%) and three low similarity (less

than 50%). Those with low similarity were excluded from further analysis.

Drug lead list

The successful 23 putative target proteins were associated with 144 drugs in DrugBank and

TTD databases while 5 P. falciparum proteins were predicted to interact with 10 drugs in the

STITCH database. This made a total of 154 drugs that were predicted to have antimalarial

activity in this study. Out of the 154 drugs, 21 drugs are either applied topically, duplicates,

protein based or pure elements, these were eliminated from the drug lead list. A literature

Table 2. Druggability indices of predicted P. falciparum drug targets.

P. Falciparum protein name NCBI accession number Druggability index

INOSINE-5’-MONOPHOSPHATE DEHYDROGENASE XP_001352079.1 1

TUBULIN BETA CHAIN XP_001347369.1 1

ADENOSINE DEAMINASE XP_001347573.1 1

ADP/ATP TRANSPORTERON ADENYLATE TRANSLOCASE XP_001347650.1 1

RIBONUCLEOTIDE REDUCTASE SMALL SUBUNIT XP_001348226.1 1

MO15-RELATED PROTEIN KINASE XP_001347426.1 0.9

DNA TOPOISOMERASE II XP_001348490.1 0.8

HISTONE DEACETYLASE XP_001352127.1 0.8

RIBONUCLEOTIDE REDUCTASE SMALL SUBUNIT XP_001347439.2 0.8

HISTONE DEACETYLASE XP_001347363.1 0.7

CGMP-DEPENDENT PROTEIN KINASE XP_001348520.1 0.7

M1-FAMILY ALANYL AMINOPEPTIDASE XP_001349846.1 0.6

FKBP TYPE PEPTIDYL-PROPYL ISOMERASE XP_001350859.1 0.6

SERINE/THREONINE PROTEIN PHOSPHATASE XP_001348315.1 0.6

PREPROCATHEPSIN C PRECURSOR XP_001350862.2 0.6

ACETYL-COA ACETYLTRANSFERASE XP_001348658.1 0.6

CYCLIC NUCLEOTIDE PHOSPHODIESTERASE XP_001348846.2 0.5

ABC TRANSPORTER XP_001348418.1 0.5

CALCIUM/CALMODULIN-DEPENDENT PROTEIN KINASE XP_001348401.2 0.5

GUANYLYL CYCLASE XP_001348065.1 0.5

TRANSPORTER XP_001349605.2 0.5

STROMAL-PROCESSING PEPTIDASE XP_001348556.2 0.5

ACYL COA:DIACYLGLYCEROL ACYLTRANSFERASE XP_001351293.1 0.4

GUANYLYL CYCLASE BETA XP_001350316.2 0.4

CYSTEINE PROTEINASE FALCIPAIN-1 XP_001348727.1 0.3

FLAVODOXIN-LIKE PROTEIN XP_002808949.1 0.3

CENTRIN-3 XP_001347555.2 Not available

CGMP-SPECIFIC PHOSPHODIESTERASE XP_001350504.2 Not available

DELTA-AMINOLEVULINIC ACID DEHYDRATASE XP_001348555.1 Not available

ORNITHINE AMINOTRANSFERASE XP_966078.1 Not available

RNA BINDING PROTEIN XP_001347313.1 Not available

3’,5’-CYCLIC NUCLEOTIDE PHOSPHODIESTERASE XP_001349954.1 Not available

HEAT SHOCK PROTEIN 110 XP_001349002.1 Not available

FERROCHELATASE XP_001350360.2 Not available

https://doi.org/10.1371/journal.pone.0186364.t002
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search revealed 105 drugs out of the remaining 133 to have been previously tested for antima-

larial activity. The IC50 of some of the tested drugs are shown in Table 3 while those that had

not been tested previously are summarized in Table 4.

In vitro drug susceptibility assays

In vitro drug susceptibility tests carried out on ten drugs showed eight with activity within the

concentration ranges used. Their mean IC50 are shown in Table 5 while the three biological

replicate readings are displayed in S3 Table.

Discussion

This study was based on the principle that if a P. falciparum protein is similar to a confirmed

drug target, by inference the drug in question would have a similar effect on the P. falciparum

protein. Using the full proteome of P. falciparum to do a target-similarity search in drug data-

bases, the study predicted 133 approved drugs could target 34 P. falciparum proteins. A litera-

ture search showed 105 of the 133 drugs to have been previously tested against P. falciparum,

showing a strong research interest in repositioning approved drugs. Most of the drugs that

were previously tested did show activity, validating the use of this approach in drug reposition-

ing. In vitro drug susceptibility tests were done on 10 drugs that were predicted to have anti-

plasmodial activity. Seven drugs out of the 10 tested did show significant activity with IC50

ranging from 1 μM to 50 μM, these include levofloxacin, dasatinib, clofarabine, tacrolimus, iri-

notecan, oxaliplatin and tadafil. The drugs that did show activity should be considered for fur-

ther evaluation and development. The drug-target associations predicted in this study could

also explain possible mechanisms of action of drugs that were active, this information could be

used to develop more potent antimalarial drugs.

Target-similarity search

This study was based on the assumption that two proteins that similar are by inference likely

to share ligands. However, it is important to note that a drug could target a protein/pathway

other than the one it is predicted to inhibit. These “off targets” are not uncommon since many

drugs have been documented to have multiple targets. In addition, high sequence similarity

between two proteins does not necessarily mean they would have similar biological roles.

Homologs could have different biological functions but still meet the similarity thresholds

used in this study. Nevertheless, the similarity of prospective protein targets to known drug

targets has been used as the basis for past repositioning attempts [51,52,86]. This could also

explain why most of the drugs predicted to have antimalarial activity in this study are already

tested (Table 3).

The whole proteome of P. falciparum was used to perform the similarity search, therefore

drugs that could target all stages of the parasite’s life cycle were considered in this study. Most

drug development efforts focus on erythrocytic stages because they cause symptoms of the dis-

ease and are easier to manipulate in the laboratory. In fact, current antimalarial drugs were dis-

covered on the basis of their activity against the red blood cell stage parasite. Developing drugs

targeting the exo-erythrocytic and sporogonic cycles are increasingly drawing interest [9,18–

20] because all stages of the parasite need to be targeted if malaria is to be eliminated [21]. The

effect of the current antimalarials on all the life cycle stages of Plasmodium has also been stud-

ied [87].

The sequence similarity search in both TTD and DrugBank databases found duplication of

some results with several P. falciparum proteins picking similar targets. For instance, many of

the drug target searches yielded same kinases with low E values. It is interesting to note that
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Table 3. IC50 values of some previously tested approved drugs that were predicted to have antiplasmodial activity.

Predicted P. falciparum target, its druggability index and %
of shared conserved residues

Drug Indication Antimalarial activity
(IC50*)

References

Predicted P. falciparum target: ABC transporter
(XP_001348418.1)
Putative target: ABC sub-family G member 2 (Q9UNQ0)
Druggability index: 0.5
% of shared conserved residues: 51%

Dactinomycin Antibiotic 0.0009 μM [48]

Cisplatin Anticancer 0.021 μM [70]

Cyclosporine Immuno-suppressant 0.032 μM [71]

Docetaxel Anticancer 0.01 μM [72]

Doxorubicin Antibiotic 0.21 μM [48]

Ivermectin Antiparasitic 9.1 μM [73]

Lamivudine Antiretroviral > 50 μM [74]

Saquinavir Antiretroviral 5 μM [74]

Vincristine Anticancer 0.0021 μM [75]

Predicted P. falciparum target: DNA Topoisomerase II
(XP_001348490.1)
Putative target:
DNA topoisomerase 2-alpha (P11388)
Druggability index: 0.8
% of shared conserved residues: 61%

Amsacrine Cutaneous T Cell Lymphoma 0.1 to 2.8 μM [76]

Ciprofloxacin Antibiotic 20 μM [77]

Enoxacin Antibiotic 120 μM [75]

Fleroxacin Antibiotic 94 μM [75]

Lovastatin Hypolipidemic >200 μM [78]

Norfloxacin Antibiotic 55 μM [75]

Ofloxacin Antibiotic 180 μM [75]

Sparfloxacin Antibiotic 140 μM [75]

Trovafloxacin Antibiotic 27 μM [79]

Dactinomycin Antibiotic 0.0009 μM [48]

Predicted P. falciparum target: Histone deacetylase
(XP_001347363.1)
Putative target: Histone deacetylase (Q13547)
Druggability index: 0.8
% of shared conserved residues: 99%

Trichostatin A Antifungal, Antibiotic — [80]

Valproic Acid Epilepsy And Seizures
Treatment

210 μM [75]

Vorinostat Cutaneous T Cell Lymphoma 0.12 μM [49]

Predicted P. falciparum target: IMP dehydrogenase
(XP_001352079.1)
Putative target: IMP dehydrogenase 1 (P20839.2)
Druggability index: 1
% of shared conserved residues NA

Azathioprine Immunosuppressant � 1 μM [81]

Predicted P. falciparum target: IMP dehydrogenase
(XP_001352079.1)
Putative target:
IMP dehydrogenase 2 (P12268)
Druggability index: 1
% of shared conserved residues: 79%

Mycophenolic
Acid

Immunosuppressant 5.4 μM [82]

Predicted P. falciparum target: Serine/threonine protein
phosphatase (XP_001348315.1)
Putative target: Serine/threonine-protein phosphatase
PP1-alpha catalytic subunit (P08129)
Druggability index: 0.6
% of shared conserved residues: 99%

Cantharidin Warts 3 μM [83]

Predicted P. falciparum target:
Tubulin beta chain (XP_001347369.1)
Putative target: Tubulin beta-4B chain (P68371)
Druggability index: 1
% of shared conserved residues: 99%

Albendazole Anthelmintic 2 μM [48]

Vinblastine Anticancer 0.0072 μM [75]

Vindesine Anticancer 0.006 μM [75]

Vincristine Anticancer 0.0021 μM [75]

Predicted P. falciparum target: Cyclic nucleotide
phosphodiesterase (XP_001348846.2)
Putative target: cAMP-specific 3’,5’-cyclic phosphodiesterase
4A (P27815)
Druggability index: 0.5

Dipyridamole Anticoagulants 0.03 μM [84]

(Continued)
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kinases are one of the most common classes of proteins investigated as drugs targets in P. fal-

ciparum [37–42]. The similarity in the BLAST output could be attributed to the paralogous

nature of many P. falciparum proteins and their orthology to many putative drug targets.

Among the drug targets that showed up frequently in the output results, Plasmodium merozo-

ite surface protein 1 (PMSP1) was the most common. Being a Plasmodium protein itself, it is

expected to be similar to many paralogous P. falciparum proteins we used as queries. Notwith-

standing, the similarity of PMSP1 protein to several of P. falciparum proteins is worth investi-

gating further. It is also worth noting that PMSP1 antigen is not a target of any approved or

experimental drug, rather it is being investigated for vaccines in clinical trials [88]. Other

examples of protein targets that showed up frequently include troponin C, heat shock protein

40, calmodulin, centromeric protein E and Rho-associated protein kinase 1.

ATP-binding cassette transporters

The P. falciparum ATP-binding cassette (ABC) transporter (NCBI accession number

Q9UNQ0) was predicted in this study to be a potential target to five drugs that were tested in

vitro; dasatinib, clofarabine, irinotecan, daidzin and zafirlukast. The putative target of these

drugs is the human ABC sub-family G member 2 (NCBI accession number Q9UNQ0), also

known as breast cancer resistance protein (BRCP) and multidrug resistant protein 1 (MRP1).

The BRCP is classified among multidrug resistant proteins (MRPs) because of its role in drug

resistance and treatment failures in trypanosomatid, apicomplexan and amitochondriate para-

sites of clinical significance [89,90]. It is believed to cause treatment failures by actively translo-

cating a wide range of structurally and functionally diverse amphipathic compounds across

cellular membranes [91]. The ABC transporters have been implicated with high IC50 values in

response to chloroquine and quinine in P. falciparum field isolates [92]. Members the MRP

family of proteins should also be considered as potential targets for antimalarial drugs because

of the vital role they have been shown to play in blood stage multiplication of the Plasmodium

species [93]. ABC transporters also have been considered as targets for antibacterial vaccines

and chemotherapies because of the part they play in transporting molecules across membranes

[94]. The P. falciparum ABC transporter has moderate druggability (D index of 0.5). It also

shares 51% of conserved amino acid residues and an E value of 2e-61 when aligned with the

Table 3. (Continued)

Predicted P. falciparum target, its druggability index and %
of shared conserved residues

Drug Indication Antimalarial activity
(IC50*)

References

Predicted P. falciparum target:
Adenosine deaminase (XP_001347573.1)
Putative target: Adenosine deaminase (P00813)
Druggability index: 1
% of shared conserved residues: 55%

Dipyridamole Anticoagulants 0.03 μM [84]

Predicted P. falciparum target: Centrin-3 (XP_001347555.2)
Putative target: Calmodulin (P62158)
Druggability index: NA
% of shared conserved residues: 76%

Trifluoperazine Antipsychotic, Antiemetic 0.47 μM [85]

Predicted P. falciparum target: Calcium/calmodulin-
dependent protein kinase (XP_001348401.2)
Putative target: CaM kinase II subunit gamma (Q13555)
Druggability index: 0.5
% of shared conserved residues: 47%

Bosutinib Chronic Myelogenous
Leukemia (CML)

0.22 μM [48]

*All IC50 values are converted to μM

https://doi.org/10.1371/journal.pone.0186364.t003
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human homolog drug target (BRCP) using protein-protein BLAST, suggesting a strong

similarity.

Dasatinib has been approved for treatment of chronic myelogenous leukemia (CML) and is

currently being evaluated for use in treating other cancers [95–97]. It is widely documented

that dasatinib acts by inhibiting a range of tyrosine-protein kinases [98–102], these include

Bcr-Abl, Lck and Src family of tyrosine kinases. Dasatinib also has other targets including the

human MRP 1 [103,104]. Previous in vitro drug susceptibility assays on P. falciparum have

shown dasatinib to have an IC50 of>10 μM [105] compared to 8.599 ± 2.222 μM determined

in this study. Other drugs that were tested that could target the P. falciparum ABC transporter

are antileukemia clofarabine (48.95 ± 2.032μM) and anticancer drug irinotecan (14.35 ±

1.7 μM). Daidzin (an anti-dipsotropic) and zafirlukast (an antiasthmatic) did not show any

activity at the concentration ranges used.

Adenosine deaminase

The target similarity approach used by this study also predicted P. falciparum adenosine deam-

inase, ADA (XP_001347573.1) to be a target of cladribine, dipyridamole, fludarabine and

Table 4. Details of approved drugs predicted to target P. falciparum proteins that have not been tested.

Drug UNIPROT ID of
putative target

NCBI ACCESSION NUMBEROF P.
FALCIPARUM TARGET

CONSURF
RESULTS

DRUGGABILITY OF P.
FALCIPARUM TARGET

Cladribine P00813 XP_001347573.1 55% 1

Fludarabine P00813 XP_001347573.1 55% 1

Epirubicin P11388 XP_001348490.1 61% 0.8

Finafloxacin P11388 XP_001348490.1 61% 0.8

Palbociclib P11802 XP_001347426.1 54% 0.9

Capridine-beta P24941 XP_001347426.1 70% 0.9

Motexafin
gadolinium

P31350 XP_001347439.2 60% 0.8

Aprindine P62158 XP_001347555.2 76% -

Venlafaxine Q9UNQ0 XP_001348418.1 51% 0.5

Oxaliplatin Q9UNQ0 XP_001348418.1 51% 0.5

Zafirlukast Q9UNQ0 XP_001348418.1 51% 0.5

Clofarabine Q9UNQ0 XP_001348418.1 51% 0.5

Sumatriptan Q9UNQ0 XP_001348418.1 51% 0.5

Irinotecan Q9UNQ0 XP_001348418.1 51% 0.5

Buprenorphine Q9UNQ0 XP_001348418.1 51% 0.5

Idelalisib Q9UNQ0 XP_001348418.1 51% 0.5

Cobicistat Q9UNQ0 XP_001348418.1 51% 0.5

Lenvatinib Q9UNQ0 XP_001348418.1 51% 0.5

Daclatasvir Q9UNQ0 XP_001348418.1 51% 0.5

Osimertinib Q9UNQ0 XP_001348418.1 51% 0.5

Pitavastatin Q9UNQ0 XP_001348418.1 51% 0.5

Rilpivirine Q9UNQ0 XP_001348418.1 51% 0.5

Apixaban Q9UNQ0 XP_001348418.1 51% 0.5

Vandetanib Q9UNQ0 XP_001348418.1 51% 0.5

Biricodar dicitrate Q9UNQ0 XP_001348418.1 51% 0.5

Daidzin Q9UNQ0 XP_001348418.1 51% 0.5

Cabazitaxel Q9UNQ0 XP_001348418.1 51% 0.5

Tacrolimus STITCH XP_001350859.1 - 0.6

https://doi.org/10.1371/journal.pone.0186364.t004
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pentostatin. (S1 Table). This protein has an E value of 2e-29 when aligned with its homologous

drug target (P00813.3) and they share 55% of conserved residues. Additionally, the high drugg-

ability of P. falciparum ADA (D index of 1) makes it a strong drug target candidate. P. falcipa-

rum ADA is essential to the survival of the parasite since the parasite is unable to synthesize

purine bases and hence relies on purine salvage and purine recycling to meet its purine needs.

P. falciparum ADA is unique because it catalyzes the deamination of both adenosine and 5‘-

methylthioadenosine while the human form cannot deaminate the latter [106]. Sriram et al.

[107] used a bioinformatics approach to show how quinine and primaquine could bind to the

ADA protein. 5‘-methylthio coformycins have also been shown to inhibit the P. falciparum

ADA without inhibition of its human homolog [106]. Examples of 5‘-methylthio coformycins

that have been tested against 3D7 clone of P. falciparum include 5’-Methylthio-immucillin-H

(MT-ImmH) and immucillin-H (ImmH) which have IC50 values of 63 nM and 50 nM respec-

tively [108]. This is comparable to dipyridamole’s IC50 of 30 nM [84] which is also predicted

by this study to target the P. falciparum ADA. In vitro tests carried out in this study also

showed cladribine to have an IC50 of 96.02 μMwhich is much higher than that of MT-ImmH,

ImmH and dipyridamole. This could probably be attributed cladribine having weaker inhibi-

tion of ADA (assuming it is the only target) or other experimental factors. Nevertheless, an

antimalarial that could effectively block the parasite’s purine salvage pathway would be effi-

cient in inhibiting the parasite’s growth.

DNA topoisomerases

Levofloxacin, like most broad-spectrum fluoroquinolones, acts by inhibiting two type II DNA

topoisomerase enzymes in bacteria; DNA gyrase and topoisomerase IV [109,110]. Levofloxa-

cin was predicted in this study to inhibit the activity of P. falciparum’s DNA topoisomerase II

(XP_001348490.1). The P. falciparum DNA topoisomerase II has an E value of 0.0 when

aligned to two distinct homologous drug targets; DNA topoisomerase 2-alpha (P11388) and

DNA topoisomerase 2-beta (Q02880) suggesting a high similarity. Besides, the P. falciparum

DNA topoisomerase II has a D index of 0.8 and shares 61% functional amino acid residues

with the drug target DNA topoisomerase 2-alpha. DNA topoisomerases enzymes are involved

in overwinding or underwinding of DNA during DNA replication and transcription, hence

Table 5. In vitro activities of drugs tested against P. falciparum 3D7 strain.

Drugs Mean IC50 ± SD (μM)

Tadafil 23.29 ± 2.41
Irinotecan 14.35 ± 1.70
Levofloxacin 40.10 ± 5.28
Oxaliplatin 1.16 ± 0.10
Clofarabine 48.95 ± 2.03
Tacrolimus 4.52 ± 0.08
Cladribine 96.02 ± 16.43
Dasatinib 8.60 ± 2.22
Reference drugs

Chloroquine 0.0116 ± 0.0004
Dihydroartemisinin 0.0026 ± 0.0001
Mefloquine 0.0395 ± 0.0063

The table shows the mean IC50 values and the standard deviation for the drugs in μM as tested in this study.

Each drug was tested in three replicates.

https://doi.org/10.1371/journal.pone.0186364.t005
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are considered essential to the survival of many organisms including P. falciparum. Several

types of DNA topoisomerases have been characterized and are classified into two major classes

depending on how they change the topology of DNA: topoisomerase I and topoisomerase II

[111]. Garcia-Estrada et al. [112] proposed DNA topoisomerases as attractive drug targets

because of structural differences between host and apicomplexan isoforms, differential expres-

sion patterns as well as lack of orthologous topoisomerases in mammals since there are no api-

coplast DNA gyrases in mammals. Levofloxacin showed activity against P. falciparum 3D7

with an IC50 of 14.17 μg/ml in this study. A total of 30 approved drugs were predicted to target

the P. falciparum DNA topoisomerase II (S1 Table). Examples include moxifloxacin, ciproflox-

acin, lucanthone and epirubicin. Camptothecin, a potent DNA topoisomerase I inhibitor has

been shown to inhibit nucleic acid biosynthesis in P. falciparum suggesting that it could also be

targeting the Plasmodium homolog [113]. Nevertheless, camptothecin was predicted in this

study to inhibit the Plasmodium’s ABC transporter (S1 Table) because of its similarity to the

MRP1 [114]. Unfortunately, camptothecin cannot be used as an antimalarial considering its

toxicity.

Histone deacytalase

P. falciparum histone deacytalase, HDAC (XP_001352127.1) shares 99% of functional amino

acid residues with drug target histone deacetylase 2 (Q92769) and 85% with histone deacety-

lase 1 (Q13547). The Plasmodium homologue has an E value 0.0 when aligned with both the

histone deacetylase proteins, suggesting a strong similarity. Therefore, the Plasmodium HDAC

could be targeted by drugs such as vorinostat (recommended treatment for T cell lymphoma),

valproic acid (used for epilepsy treatment) and trichostatin A (an antifungal and antibacterial).

All the three drugs have been shown to target the histone deacetylase 2 (Q92769). Plasmodium

HDAC has high druggability (a D index of 0.8), making it an attractive antimalarial drug tar-

get. A recent study assessed the role of HDAC inhibitors in impeding the growth of P. falcipa-

rum both in vivo and in vitro [115]. Vorinostat has displayed high in vitro antimalarial activity

with an IC50 of 0.12 μM [49] while valproic acid had 209.34 μM [75]. HDAC inhibitors have

also been investigated as drugs for a range of other diseases such as trypanosomiasis, schistoso-

miasis, leishmaniasis, toxoplasmosis, HIV/AIDS and even cancer [116]. Apicidin, a novel fun-

gal metabolite, has been documented as an inhibitor of HDAC in apicomplexan parasites

including malaria [117]. The main challenge about the in vivo use of many HDAC inhibitors is

that their zinc-binding hydroxamate group is broken down resulting in lose activity [115].

Inosine 5’-monophosphate dehydrogenase

Inosine 5’-monophosphate dehydrogenase (IMPDH) plays a key role in catalyzing the first

committed step of guanosine 5’-monophosphate biosynthesis, an essential pathway in P. falcip-

arum. The P. falciparum IMPDH (XP_001352079.1) has high druggability (D index of 0.8), an

E value of 8e-169 when aligned with its putative drug target homologue IMPDH 2 (P12268.2)

with which it also shares 79% of conserved amino acid residues. It also has an E value of 4e-

173 when aligned with another homologous drug target, the IMPDH 1 (P20839.2). Both these

drugs targets are human isoforms. The IMPDH is an attractive target for many therapeutic

interventions since most parasites depend on the salvage pathway due to their inability to syn-

thesize purine nucleotides de novo. Inhibitors of IMPDH, ribavirin and mycophenolic acid

(both target IMPDH 1 and IMPDH 2) have been used as immunosuppressives, antivirals and

anticancer drugs with few side effects to host cells [118–120]. Nevertheless, little has been done

concerning their application in treating microorganisms [121]. This study predicted
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mycophenic acid to inhibit the P. falciparum IMPDH and it has been shown to be active

against P. falciparum with an IC50 of 5.4 μM [82].

FK506-binding protein-12

Tacrolimus (FK506) is used to lower the risk of organ rejection after an allogenic organ trans-

plant. It brings about its immunosuppressive activity by binding to FK506-binding protein-12

(FKBP-12) to form a complex that inhibits calcineurin, consequently preventing both T-lym-

phocyte activation and interleukin-2 transcription [122]. Tacrolimus has been shown by Bell

and colleagues [71] to inhibit the growth of P. falciparum in vitro, with an IC50 of 1.9 μM com-

pared to 4.521 ± 0.083 μM established in this study. The study by Bell et al. could not ascertain

the mechanism of action considering they could not detect FKBPs in P. falciparum extracts at

the time of the study. However, the genome sequence of P. falciparum [22] revealed that it

does have a 35-kDa FKBP (PfFKBP35). Though the function of PfFKBP35 is still unknown,

the presence of tetratricopeptide repeat motifs suggests it may be involved in transporting and

modulating the function of other proteins in the parasite [123]. Bao and colleagues [124]

showed tacrolimus could prevent the development of cerebral malaria in Plasmodium berghei

ANKA-infected mice though it failed to clear the parasites at the concentrations used. This

could mean PfFKBP35 and any other protein tacrolimus targets don’t play a critical role in the

survival of the parasite.

Challenges and limitations

The validation approach used in this study assumes that the drugs that have shown activity

against Plasmodium would be inhibiting the predicted P. falciparum protein targets. This

might not be necessarily true because drugs have been shown to inhibit parasite growth by act-

ing on targets other than the proteins they were expected to considering many drugs interact

with several targets. An example of such a drug is dasatinib which targets several tyrosine-pro-

tein kinases [98–102], platelet-derived growth factor receptor beta [125], dimethylaniline

monooxygenase 3 [126], signal transducer and activator of transcription 5B [127], ABC trans-

porters [103] and a number of cytochrome P450 proteins [128]. Such drugs could bring their

inhibitory activity either through concerted efforts of multiple targets or through a few targets

that are involved in crucial pathways. This was not factored in the validation process. Nonethe-

less, multi-target drugs have been documented to be more effective than single-target ones

[129] and less prone to drug resistance [130]. Furthermore, targeting different proteins/path-

ways is the basis for drug combination therapies [4,131].

Based on the low number of similar drug targets detected during the similarity search, it is

probable that the parameters used in this study to filter results may have been too stringent.

These parameters include an E value of 1e-20 in sequence similarity, a query coverage of 80%

in protein-protein pairwise alignment and a minimum of 50% of shared conserved amino resi-

dues. For instance, bosutinib has been documented to have high antimalarial activity with an

IC50 of 0.22 μM [48]. On the other hand, bosutinib’s predicted P. falciparum target, the cal-

cium/calmodulin-dependent protein kinase (XP_001348401.2) shares 47% of functional

amino acids residues with its homologous putative target, the calcium/calmodulin-dependent

protein kinase type II subunit gamma (Q13555). This is below the threshold of 50% used in

this study hence was eliminated at ConSurf server analysis stage. Out of the 5,338 P. falciparum

protein sequences, only 34 possible drug targets met the inclusion criteria used in the Drug-

Bank and TTD databases search and five in the STITCH database. Nevertheless, this had the

benefit of increasing the likelihood of finding drug targets that were similar to the P. falcipa-

rum proteins hence increase the odds of discovering drugs with antimalarial effects. This also
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reduced the number of protein targets and drugs that would be analyzed in downstream pro-

cesses. However, bosutinib represents many drugs (and their possible targets) that could other-

wise have been identified by this approach but were not due to the rigorous inclusion criteria

used.

Conclusion

With the urgent need to develop new antimalarial drugs to counteract the increasing resistance

to current ones, novel P. falciparum pathways should be targeted in the search for the next gen-

eration of antimalarial drugs. Repositioning of approved drugs offers such a strategy since

most of these drugs have their putative targets documented. This information could be used to

identifying approved drugs with antimalarial activity and reveal possible proteins and path-

ways that could be targeted in the search for new antimalarials. Furthermore, this approach

can also be implemented in the search for drugs that are active against pathogens other than P.

falciparum. The predicted drugs that did show significant in vitro activity against P. falciparum

need be investigated further for antimalarial treatment.
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