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1 Introduction and summary of results

A remarkable property of the AdS5 × S5 superstring sigma model is its classical integra-

bility [1], see [2] for a review. In fact, this property extends to several other symmetric

space string backgrounds [3, 4]. Recently two interesting deformations of the AdS5 × S5

superstring sigma model1 were proposed which preserve the integrability. The η-model [5]

and λ-model [6], named after the corresponding deformation parameters. The former is

based on the Yang-Baxter deformation of [7–9], it generalises the case of bosonic coset

models [10], and its essential ingredient is an R-matrix which satisfies the modified clas-

sical Yang-Baxter equation (MCYBE). The λ-model was originally proposed by [11] and

1These deformations extend to any Z4-symmetric supercoset sigma model, i.e. symmetric space RR

string background preserving supersymmetry.
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it extends the case of bosonic cosets [12] (see also [13]). The construction is based on a

G/G gauged Wess-Zumino-Witten (WZW) model, and it is more naturally interpreted as

a deformation of the non-abelian T-dual of the original string. The two deformations are

closely related; in fact, in both cases the original symmetry algebra gets q-deformed [14, 15]

(with q real and root of unity respectively), and the two models are related, at least at the

classical level, by the Poisson-Lie T-duality of [16, 17], see [18–20].

The attempt of interpreting these deformations as string theories has raised interesting

questions. In fact, both models possess a local fermionic symmetry believed to be the stan-

dard kappa symmetry — which was expected to guarantee a string theory interpretation.

However, the target space of the η-model derived in [21, 22]2 does not solve the type IIB

supergravity equations [22], but rather a generalisation of them as suggested in [25]. These

generalised equations ensure scale invariance for the sigma model, but are not enough to

have the full Weyl invariance, which is present only when the target space satisfies the

standard equations of supergravity. For the λ-model, on the other hand, it was shown that

the target space does solve the supergravity equations, at least in the case of λ-deformed

AdS2 × S2 × T 6 [26] and AdS3 × S3 × T 4 [27] string sigma models.3

A possible resolution for the puzzle posed by the η-model could have been that, after

all, the possessed local fermionic symmetry was not the standard kappa symmetry of Green-

Schwarz. However this state of affairs was clarified recently in [30] where it was shown that,

contrary to what was commonly believed, kappa symmetry of the type II Green-Schwarz

superstring does not imply the full equations of motion of type II supergravity.4 Rather it

implies a weaker (generalized) version of these equations, whose bosonic subsector coincides

with the equations written down in [25]. These generalized supergravity equations involve

a Killing vector field Ka, and reduce to the standard type II supergravity equations when

this vector field is set to zero. This fact implies that kappa-symmetric backgrounds whose

metric does not allow for isometries must in fact solve the standard type II equations.

The λ-model falls into this class, which is consistent with the fact that the corresponding

target spaces were found to be supergravity backgrounds.5 On the other hand, the η-

model typically leads to a target-space metric which possesses isometries, so that a priori

it is not possible to exclude the possibility that it solves only the generalized supergravity

equations. It should be mentioned that, given a solution of the generalized supergravity

equations and provided that Ka is space-like, it is possible to find a genuine supergravity

solution which is formally T-dual to it [25, 32] (i.e. only at the classical level of the sigma

model, ignoring the fact that the dilaton is linear in the coordinate along which T-duality

is implemented). We will not consider this possibility here.

2See [23] for lower dimensional examples of bosonic truncations and [24] for a review.
3These results differ from the ones proposed in [28]. The metric in target space of the λ-deformed

AdS5 × S5 was obtained in [29].
4Earlier indications of this was seen in the pure spinor string in [31].
5We will actually see that the kappa symmetry transformations of the λ-model take the standard form

only after inserting proper factors of i (see section 2.2). This leads to a target space geometry which is a

solution of type II* rather than type II supergravity. In the case of AdS2 × S2 × T 6 [26] it was shown how

one can get a standard (and real) type IIB background by analytic continuation, or equivalently by picking

a different coordinate patch. The same should be true for the deformation of AdS3 × S3 × T 4 [27], and

probably AdS5 × S5.
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Target space supergeometry. The procedure for the η-deformation can be generalised6

also to the case when theR-matrix satisfies the classical Yang-Baxter equation (CYBE) [33–

35]. Therefore several solutions exist and the question is which choices lead to a string

theory, i.e. a target space that solves the standard type II supergravity equations. Here

we will answer this question and find a simple (necessary and sufficient) condition on R.

We will also determine the form of the target space (super) fields for both the η and the

λ-model in terms of the ingredients that define them (see section 2 for their definition);

we check that the models can be written in Green-Schwarz form and we work out the

superspace torsion. The target space fields can then be read off by comparing to the

expressions in [30, 36]. This gives a simple way of extracting the target space backgrounds,

much simpler than previous methods. The metric and B-field are easily read off directly

from the sigma model Lagrangian, see (2.7). The NSNS three-form and RR fluxes are

found to be given by the expressions7

Habc = 3M[ab,c] − 3i

{
η̂2

−λ2

}
M α̂2

[a(γb)α̂β̂M
β̂2

c] , (1.1)

S α̂1β̂2 = 8i

{
[Adh(1 + 2η̂−2 − 4O−1

+ )]α̂1γ̂1

iλ[Adh(1 + λ(1− λ−4)O−1
+ )]α̂1γ̂1

}
K̂γ̂1β̂2 , (1.2)

where the upper (lower) expression in curly brackets refers to the η (λ) model and η̂ =√
1− cη2. The RR field strengths are encoded in the bispinor defined as [30, 36]

S = −iσ2γaFa −
1

3!
σ1γabcFabc −

1

2 · 5!
iσ2γabcdeFabcde , (1.3)

where for standard supergravity backgrounds F = eφF contains the exponential of the

dilaton. The remaining ingredients in these equations are defined in section 2, in particular

the operators O+, M and the group element h are defined in (2.5), (2.2), (B.2) and (2.12).

From our computation we obtain also the Killing vector of the generalised type II equations

Ka = −
i

16
(γa)α̂β̂(∇α̂1χβ̂1 −∇α̂2χβ̂2) , (1.4)

where χI (I = 1, 2) are the would be dilatino superfields

χ1
α̂ =

i

2

{
η̂

−1

}
γb
α̂β̂

[AdhM ]β̂1b , χ2
α̂ = −

i

2

{
η̂

iλ

}
γa
α̂β̂
M β̂2

a . (1.5)

When Ka vanishes we have a standard supergravity solution and the dilaton is given by8

e−2φ = sdet(O+) . (1.6)

6We will use the names “η-deformation” and “Yang-Baxter deformation” for both the homogeneous

(CYBE) and inhomogeneous (MCYBE) cases, as we can treat them both at the same time.
7Note that here we write the λ-model as a solution of type IIB supergravity, and the corresponding RR

flux is imaginary. The background is real when written as a solution of type IIB*. The reason for this is a

non-standard sign in the kappa symmetry transformations of the lambda model, see sec 2.2.
8For the λ-model this formula was argued in [6]. It is also consistent with the form of the bosonic dilaton

suggested in [37] for the η-model based on bosonic R-matrices.
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For the λ-model Ka automatically vanishes and the target space is always a supergravity

solution, consistently with the observation of [30] and the previous findings [26, 27].

The η-model as a string. For the η-model the situation is more subtle. Let us review

some details at this point and recall that the η-deformation is defined by an antisymmetric

R-matrix on the algebra R : g → g, RT = −R, satisfying the (M)CYBE

[R(x), R(y)]−R([R(x), y] + [x,R(y)]) = c[x, y] , ∀x, y ∈ g ,

{
c = 0 CYBE

c = ±1 MCYBE
. (1.7)

In section 4.1 we prove that the condition Ka = 0 for the η-model is equivalent to the

following algebraic condition on the R-matrix9

STr(Radx) = 0 , ∀x ∈ g (i.e. RB
Af

A
BC = 0) . (1.8)

We will refer to R-matrices satisfying this condition10 as “unimodular”, for reasons that

will be clear in section 5. Therefore the η-model has an interpretation as a string sigma

model precisely for the unimodular R-matrices.

Let us consider the η-deformation based on an R-matrix which is a non-split11 (c =

1 in (1.7)) solution of the MCYBE for the supercoset on AdS5 × S5 with superalgebra

psu(2, 2|4), as in [5]. A standard choice is to take R that multiplies by −i (+i) positive

(negative) roots of the complexified algebra, and annihilates Cartan elements. Choices of

different real forms of the superalgebra correspond to inequivalent R-matrices, but one can

check that none of the examples considered so far [5, 14, 22, 39] are unimodular, which

is consistent with the findings of [22, 39]. We are not aware of a complete classification

of solutions of the MCYBE for psu(2, 2|4), which leaves open the possibility of having

unimodular non-split R-matrices that would lead to genuine string deformations. We will

not analyze this question further here.

As first pointed out in [33], there is a rich set of solutions to the CYBE (c = 0 in (1.7))

which can be used to define an η-deformation of the supercoset. These R-matrices can

be divided into two classes: abelian and non-abelian. Writing the R-matrix as (sums over

repeated indices are understood)

R =
1

2
rijbi ∧ bj , (R(x) = rijbiStr(bjx), x ∈ g), (1.9)

abelian R-matrices are the ones for which [bi, bj ] = 0 ∀i, j while non-abelian ones have

[bi, bj ] 6= 0 for some i, j. The unimodularity condition (1.8) takes the form

rij [bi, bj ] = 0 . (1.10)

9Essentially the same condition was argued to appear from the analysis of vertex operators of the β-

deformed AdS5 × S5 superstring in [38], see equation (87) there. That discussion would correspond to the

truncation of our deformed action at order O(η2). We thank Arkady Tseytlin for pointing this reference

out to us.
10It is easy to see that this condition is compatible with the (M)CYBE.
11For the split case (c = −1) there exist no solution for the compact subalgebra su(4) ⊂ psu(2, 2|4). It

seems then not possible to have a split solution for the full superalgebra.
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This is trivially satisfied by any abelian R-matrix, which is consistent with observations in

the literature, see e.g [37, 40, 41]. This is also in line with the expectation that abelian R-

matrices always have an interpretation in terms of (commuting) TsT-transformations12 [35].

For non-abelian R-matrices the unimodularity condition (1.10) is non-trivial, and it is

interesting to find all the compatible ones. In fact, as explained in section 5 it rules out

most of the R-matrices of the so-called Jordanian type, which is the only class considered

in the literature so far [33, 35, 37, 40, 41].

Here we will focus on the problem of classifying all R-matrices which satisfy the CYBE

on the bosonic subalgebra so(2, 4)⊕ so(6) ⊂ psu(2, 2|4) and are unimodular. The question

is non-trivial only for non-abelian R-matrices, which we classify by the rank. From (1.10),

any unimodular R-matrix of rank two R = a ∧ b must be abelian, i.e. [a, b] = 0, so non-

abelian unimodular R-matrices have at least rank four. In tables 1 and 2 we write down all

non-abelian rank four R-matrices for so(2, 4) (the second table gives the inequvalent ones

from the point of view of the string sigma model), and in table 3 we provide the bosonic

isometries and the number of supersymmetries that they preserve. These R-matrices are

constructed in section 5, where we also show that the only other possibility is rank six.

The extension to so(2, 4) ⊕ so(6) is essentially trivial as it turns out that they must be

abelian.13 in so(6). Therefore there are no new marginal deformations of the dual CFT.14

Notice that R6, R13 and R15 can be embedded in so(2, 3) and can therefore be used to de-

fine deformations of AdS4. To have non-abelian deformations of AdS3, instead, one must

involve also generators from the sphere.

Because abelian R-matrices seem to generate backgrounds which can be equivalently

obtained by doing (commuting) TsT-transformations on the undeformed model, one might

suspect that η-deformed strings always correspond to TsT-transformations. With the ex-

ception of the last three R-matrices our results appear to be consistent with this expecta-

tion, see section 5 for a discussion.

The outline of the rest of the paper is as follows. In section 2 we first review the

definitions of the deformed models, we introduce a notation that highlights their similar-

ities, and prove that the local fermionic symmetries of both deformed models are of the

standard Green-Schwarz form. In section 3 we derive the target space supergeometry for

the λ-model, and by comparing to the results of [30] we extract the corresponding back-

ground fields. Section 4 achieves the same goal for the η-model. Here we also show how the

unimodularity condition for the R-matrix is derived. In section 5 we study this condition

in detail. We discuss its compatibility with Jordanian R-matrices, and derive all rank-four

non-abelian unimodular R-matrices for so(2, 4) which solve the CYBE. In section 6 we

consider the case of backgrounds generated by R-matrices which act only on the bosonic

12TsT stands for T-duality — shift — T-duality [42–44]. Here we use it in the most general possible

sense, e.g. including non-compact and fermionic T-dualities.
13This includes R-matrices mixing generators of AdS and S, e.g. as in the so-called dipole deformations

of [45].
14This statement remains to be true also if we further allow the R-matrix to act non-trivially on super-

charges: after imposing unimodularity, preservation of the so(2, 4) isometry, reality and CYBE, we find

that the only possible R-matrices are abelian and they act just on so(6).
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R1 = p1 ∧ p2 + (p0 + p3) ∧ (J01 − J13)

R2 = p1 ∧ p2 + (p0 + p3) ∧ (p3 + J01 − J13)

R3 = p1 ∧ (J02 − J23) + (p0 + p3) ∧ (p2 + J01 − J13)

R4 = (p1 − J02 + J23) ∧ (k0 + k3 + 2p3 − 2J12) + 2(p0 + p3) ∧ (p2 + J01 − J13)

R5 = p1 ∧ (J02 − J23) + (p0 + p3) ∧ (D + J03)

R6 = p1 ∧ J03 + 2p0 ∧ p3

R7 = J03 ∧ J12 + 2p0 ∧ p3

R8 = p1 ∧ p2 + (p0 + p3) ∧ J12

R9 = p1 ∧ p2 + (p0 + p3) ∧ (p3 + J12)

R10 = p1 ∧ p2 + p3 ∧ (p0 + J12)

R11 = p1 ∧ p2 + p3 ∧ J12

R12 = p1 ∧ p2 + p0 ∧ (p3 + J12)

R13 = p1 ∧ p2 + p0 ∧ J12

R14 = p1 ∧ p2 + J12 ∧ J03

R15 = p1 ∧ p3 + (J01 − J13) ∧ (p0 + p3)

R16 = p1 ∧ p3 + (p2 + J01 − J13) ∧ (p0 + p3)

R17 = p1 ∧ (p3 + J02 − J23) + (p0 + p3) ∧ (p2 + J01 − J13)

Table 1. All non-abelian unimodular rank-four R-matrices (CYBE) of so(2, 4) up to automor-

phisms of the corresponding subalgebras (see section 5).

subalgebra. We work out certain examples generated by the R-matrices previously derived,

and we check in some cases that they are equivalent to sequences of TsT transformations

on the original undeformed model.

2 η and λ-deformed string sigma models

The η and λ deformations are deformations of supercoset sigma models that preserve

the classical integrability of the original models. In the string theory context the most

studied example is the deformation of the AdS5 × S5 string15 described by a PSU(2,2|4)
SO(1,4)×SO(5)

supercoset sigma model [47]. However, there are many other backgrounds where at least

a subsector of the string worldsheet theory is described by a supercoset sigma model, e.g.

AdS4 ×CP
3 [48–50], AdS3 × S3 × T 4 [51], AdS2 × S2 × T 6 [52] and several others [3].

We start by reviewing the definitions of the deformed models. The relevant superalge-

bra conventions are collected in appendix A.

15Another supercoset closely related to this is the pp-wave background of [46].
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R1 = (p1 + a(J01 − J13)) ∧ p2 + (p0 + p3) ∧ (J01 − J13)

R2 = (p1 + a(p3 + J01 − J13) + b(p0 + p3)) ∧ p2 + (p0 + p3) ∧ (p3 + J01 − J13)

R3 = (p1 + a(p2 + J01 − J13)) ∧ (p1 + J02 − J23) + (p0 + p3) ∧ (p2 + J01 − J13)

R4 = ((p1−J02+J23)+2a(p2+J01−J13)+2b(p0+p3)) ∧ (k0+k3+2p3−2J12+c(p0+p3))

+2d(p0 + p3) ∧ (p2 + J01 − J13)

R5 = p1 ∧ (J02 − J23) + a(p0 + p3) ∧ (D + J03)

R6 = p1 ∧ J03 + 2p0 ∧ p3

R7 = J03 ∧ J12 + 2p0 ∧ p3

R8 = p1 ∧ p2 + (p0 + p3) ∧ J12

R9 = p1 ∧ p2 + a (p0 + p3) ∧ (p3 + J12)

R10 = p1 ∧ p2 + a p3 ∧ (p0 + J12)

R11 = p1 ∧ p2 + p3 ∧ J12

R12 = p1 ∧ p2 + a p0 ∧ (p3 + J12)

R13 = p1 ∧ p2 + p0 ∧ J12

R14 = p1 ∧ p2 + J12 ∧ J03

R15 = (p1 + a(p0 + p3)) ∧ p3 + (J01 − J13) ∧ (p0 + p3)

R16 = (p1 + a(p0 + p3)) ∧ p3 + (p2 + J01 − J13) ∧ (p0 + p3)

R17 = (p1 + a(p0 + p3)) ∧ (p1 + p3 + J02 − J23) + (p0 + p3) ∧ (p2 + J01 − J13)

Table 2. All non-abelian unimodular rank four R-matrices (CYBE) of so(2, 4) up to inner auto-

morphisms.

2.1 Lagrangians of the deformed models

The η-model Lagrangian takes the form [5, 33]

L = −
(1 + cη2)2

4(1− cη2)
(γij − εij)Str(g−1∂ig d̂O

−1
− (g−1∂jg)) , (2.1)

where g is a group element of G, i, j are worldsheet indices, γij is the (Weyl-invariant)

worldsheet metric and ε01 = +1. Here η is the deformation parameter, and setting η = 0

yields the Lagrangian of the undeformed supercoset sigma model. The deformation involves

the Lie algebra operators

O+ = 1 + ηRgd̂
T , O− = 1− ηRgd̂ , (2.2)

where Rg = Ad−1
g RAdg, R

T = −R and R satisfies the (M)CYBE (1.7). Our derivation is

general and we will not need to pick a particular solution of (1.7): we only need to assume

the above properties for R, and we will treat the homogeneous (c = 0, CYBE) and the

inhomogeneous (c = 1, MCYBE) cases at the same time. In the Lagrangian the following

– 7 –
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supercharges bosonic isometries

R1 8 p0 + p3, p1, p2, p0 − p3 − 2(J02 − J23), (a = 0)

8 p0 + p3, p1 + a(J01 − J13), p2, (a 6= 0)

R2 8 p0 + p3, p1, p2, p0 − p3 − J01 − J02 + J13 + J23, (a = 0)

8 p0 + p3, p1 + a(J01 − J13), p2, (a 6= 0)

R3 8 p0 + p3, p1, J02 − J23, (a = 0)

8 p0 + p3, p1 + (J02 − J23), J02 − J23 − a(J01 − J13 + p2), (a 6= 0)

R4 0 −J02 + J23 + p1 + 2a(J01 − J13 + p2), p0 + p3, 2J12 − 2p3 − k0 − k3,

R5 8 D + J03, p0 + p3,

R6 0 J03, p1, p2,

R7 0 J03, J12,

R8 0 p0, p3, J12,

R9 0 p0, p3, J12,

R10 0 p0, p3, J12,

R11 0 p0, p3, J12,

R12 0 p0, p3, J12,

R13 0 p0, p3, J12,

R14 0 J03, J12,

R15 8 p0 + p3, p1, p2,

R16 8 p0 + p3, p1, p2,

R17 8 p0 + p3, p1, J02 − J23 − p2 + p3,

Table 3. For each R-matrix of table 2 we indicate the number of unbroken supercharges and we

list the unbroken bosonic isometries.

combinations of projection operators appear

d̂ = P (1) + 2η̂−2P (2) − P (3) , η̂ =
√
1− cη2 .

d̂T = −P (1) + 2η̂−2P (2) + P (3) , where d̂+ d̂T = 4η̂−2P (2) .
(2.3)

The λ-model is defined as a deformation of the G/G gauged WZW model. To get a stan-

dard string sigma model one integrates out the gauge-field which leads to a Lagrangian16

somewhat similar to that of the η-model, namely [6]

L = −
k

2π
(γij − εij)Str(g−1∂ig(1 + B̂0 − 2O−1

− )(g−1∂jg)) . (2.4)

16This is the classical Lagrangian. At the quantum level there is also a Fradkin-Tseytlin term R(2)φ

present, where φ is the dilaton superfield, generated by integrating out the gauge-field, whose form will be

discussed in section 3.
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Here k is the level of the WZW model,17 and the Lie algebra operators O± are now defined

as

O+ = Ad−1
g − ΩT , O− = 1−Ad−1

g Ω . (2.5)

In this case things are written in terms of the combinations of projectors

Ω = P (0)+λ−1P (1)+λ−2P (2)+λP (3) ,

ΩT = P (0)+λP (1)+λ−2P (2)+λ−1P (3) , 1− ΩΩT = 1− ΩTΩ = (1− λ−4)P (2) .
(2.6)

Both the Lagrangian (2.1) of the η and (2.4) of the λ-model can be formally written

in the same way18

L = −
T

2
γijStr(A

(2)
−iA

(2)
−j ) +

T

2
εijStr(A−iB̂A−j) , (2.7)

in terms of the one-forms

A± = O−1
± (g−1dg) , (2.8)

where the string tension T and the operator B̂ (responsible for the B-field) in the two cases

are

η −model : T =

(
1 + cη2

1− cη2

)2

, B̂ =
η̂2

2
(P (1) − P (3) + ηd̂TRgd̂) ,

λ−model : T =
k

π
(λ−4 − 1) , B̂ = (λ−4−1)−1(OT

−B̂0O−+ΩTAdg−Ad−1
g Ω) .

(2.9)

An important role is played by the operator

M = O−1
− O+ (2.10)

which relates A− to A+ as A− = MA+. Using the expressions in (B.2) it is not hard to

show that

MTP (2)M = P (2) , (2.11)

which implies that the operator P (2)MP (2) implements a Lorentz transformation on the

subspace with grading-2 of the superisometry algebra. This implies that there exists an

element h ∈ H = G(0) ⊂ G such that

P (2)MP (2) = Ad−1
h P (2) = P (2)Ad−1

h . (2.12)

The fact that Adh is a Lorentz transformation implies the basic relation between the action

on vectors and spinors

[Adh]
γ̂
α̂γ

a
γ̂δ̂
[Adh]

δ̂
β̂ = [Adh]

a
bγ

b
α̂β̂
. (2.13)

We refer to appendix B for some useful identities satisfied by the operators entering the

deformed models.

17B̂0 = −B̂T
0 is related to the original WZ-term, see section 3.

18We have used (2.3), (2.6), AdT
g = Ad−1

g and RT
g = −Rg.
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2.2 Kappa symmetry transformations in Green-Schwarz form

Both the η and λ model have a local fermionic symmetry which removes 16 of the 32

fermions, and here we show that it takes the form of the standard kappa symmetry of the GS

superstring. The transformations for the local fermionic symmetry take the form [5, 6, 33]

O−1
+ (g−1δκg) = P ij

− {iκ̃
(1)
i , A

(2)
−j}+ ζsP ij

+ {iκ̃
(3)
i , A

(2)
+j} , (2.14)

where we denote the parameter by κ̃, which is related to the kappa symmetry parameter κ

of the GS string as explained below. The above transformations are accompanied by the

variation of the worldsheet metric

δκγ
ij =

ζ2

2

(
Str(W [(P+iκ̃

(1))i, (P+A
(1)
+ )

j
]) + Str(W [(P−iκ̃

(3))i, (P−A
(3)
− )

j
])
)
, (2.15)

where we have defined

P ij
± =

1

2
(γij±εij) , ζ =

{
η̂

λ
, s =

{
0 η −model

1 λ−model
. (2.16)

Using the fact that A
(2)
− is related to A

(2)
+ by a gauge transformation, i.e.

A
(2)
− = P (2)MA

(2)
+ = Ad−1

h A
(2)
+ , (2.17)

we can write the kappa transformations as19

iδκE
(2) = 0 , iδκE

(1) = P ij
− {iκ

(1)
i , E

(2)
j } , iδκE

(3) = P ij
+ {iκ

(3)
i , E

(2)
j }

δκγ
ij =

1

2
Str(W [(P+iκ

(1))i, (P+E
(1))

j
]) +

1

2
Str(W [(P−iκ

(3))i, (P−E
(3))

j
]) ,

(2.18)

where κ(1) = ζAdhκ̃
(1) and κ(3) = (−i)sζκ̃(3). This shows that the kappa symmetry

variations have the standard GS form, and at the same time it allows us to identify the

supervielbeins with projections of A± as20

E(2) ≡ EaPa = A
(2)
+ , E(1) ≡ Eα̂1Q1

α̂ = ζAdhA
(1)
+ , E(3) ≡ Eα̂2Q2

α̂ = isζA
(3)
− . (2.19)

In terms of these the Lagrangian (2.7) takes the standard form

L = −
T

2
γijStr(E

(2)
i E

(2)
j ) +

T

2
εijBij , (2.20)

where the B-field can be read off from (2.9).

19In writing the transformations in this form we used (B.4).
20The explicit i in E(3) and κ(3) in the case of the λ-model is needed to put the transformations in the

standard type IIB form. The reason for having i can be traced to the relative sign between P (1) and P (3)

in (2.6) compared to (2.3). Alternatively, insisting on manifest reality of the model, the kappa symmetry

transformations and superspace constraints become those of type IIB* rather than type IIB. This is rather

natural since the λ-model is a deformation of the non-abelian T-dual of the AdS5×S5 string, which involves

also a T-duality in the time direction.
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Since the action and kappa symmetry transformations take the standard GS form,

it follows from the analysis of [30] that the target superspace of these models solves the

generalized type II supergravity equations derived there. If the Killing vectorKa appearing

in these equations vanishes, they reduce to the standard supergravity equations. In the

next sections we will derive the form of the target space supergeometry for the η and λ-

deformed strings. Having identified the supervielbeins of the background superspace we

can find the supergeometry by calculating the torsion21

T a = dEa + Eb ∧ Ωb
a , T α̂I = dEα̂I −

1

4
(γabE

I)α̂ ∧ Ωab (I = 1, 2) , (2.21)

and reading off the background superfields by comparing to the general expressions derived

in [30]. These are valid for a generalized type II supergravity background and reduce to

those of a standard supergravity background (see e.g. [36]) only when Ka = 0. We will

see that the λ-model background is a solution to standard (type II*) supergravity. For the

η-model background we will derive the condition on the R-matrix of the η-model for it to

give rise to a standard type II background.

3 Target superspace for the λ-model

In this section we present the derivation for the λ-model. We refer to appendix B.1 for

more details. The supervielbeins are defined in terms of projections of A± by (2.19). To

calculate the torsion we therefore need to calculate the exterior derivative of A±. Using

A+ = O−1
+ (g−1dg) where O± are defined in (2.5) we find

dA+ = O−1
+ (dO+ ∧A+) +O−1

+ (g−1dg ∧ g−1dg)

= −O−1
+ {g−1dg,Ad−1

g A+}+
1

2
O−1

+ {g−1dg, g−1dg}

= −
1

2
O−1

+ {Ad−1
g A+,Ad

−1
g A+}+

1

2
O−1

+ {ΩTA+,Ω
TA+}

= −
1

2
{A+, A+} −

1

2
O−1

+ (ΩT {A+, A+} − {ΩTA+,Ω
TA+}) , (3.1)

where we used the fact that g−1dg = O+A+ = (Ad−1
g − ΩT )A+ to write everything in

terms of A+. An almost identical calculation gives

dA− =
1

2
{A−, A−}+

1

2
O−1

− Ad−1
g (Ω{A−, A−} − {ΩA−,ΩA−}) . (3.2)

In the above equations it is useful to expand out the expressions inside parenthesis,

see (B.5), (B.6). Projecting equation (B.5) with P (2) we find

dE(2) =
1

2
{E(1), E(1)}+

1

2
{E(3), E(3)} − {A

(0)
+ , E(2)} − iλ{E(3), P (3)ME(2)}

− iλP (2)MT {E(2), E(3)} −
1

2
λ2{P (3)ME(2), P (3)ME(2)} −

1

2
P (2)MT {E(2), E(2)}

− λ2P (2)MT {E(2), P (3)ME(2)} . (3.3)

21Our conventions are the same as those of [30]. In particular d acts from the right and components of

superforms are defined as ωn = 1
n!
EAn ∧ · · · ∧ EA1ωA1···An .
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where the result has been rewritten in terms of the supervielbeins (2.19), and we have

used (B.4) and (2.12). Using the explicit form of the commutators in (A.1) and (A.2)

we find that the component T a of the torsion takes the standard form (here and in the

following we drop the ∧’s for readability)

T a = dEa + EbΩb
a = −

i

2
E1γaE1 −

i

2
E2γaE2 , (3.4)

if we identify the spin connection as22

Ωab = −(A+)ab − 2λ(E2γ[a)α̂M
α̂2

b] −
3i

2
λ2EcM α̂2

[a(γb)α̂β̂M
β̂2

c] +
1

2
Ec(Mab,c − 2Mc[a,b]) .

(3.5)

To derive the other components of the torsion we first need to compute the exterior

derivative of the fermionic supervielbeins. Using (B.6) and (2.19) we find

dE(3) =
i

2
λP (3)M{E(3), E(3)} − {A

(0)
+ , E(3)}+ {P (0)ME(2), E(3)}

− iλ
[
1 + λ(1− λ−4)P (3)(OT

+)
−1
]
Ad−1

h

(
{E(2), E(1)} − {E(2),AdhP

(1)ME(2)}
)

+
i

2
λ(1− λ−4)P (3)(OT

+)
−1Ad−1

h {E(2), E(2)} . (3.6)

Since we have already identified the form of the spin connection (3.5) from the previous

computation, we can now find the corresponding component of the torsion (2.21) and

compare it to the standard form given in [30], i.e.

T α̂2 = Eα̂2E2χ2 −
1

2
E2γaE2(γaχ

2)α̂ +
1

8
Ea(E2γbc)α̂Habc −

1

8
Ea(E1γaS

12)α̂ +
1

2
EbEaψα̂2

ab ,

(3.7)

where H is the NSNS three-form, S the RR bispinor, χI
α̂ the dilatino and ψα̂I

ab the gravitino

field strength superfields. We find that T α̂2 takes the above form if we identify

Habc = 3M[ab,c] + 3iλ2M α̂2
[a(γb)α̂β̂M

β̂2
c] , (3.8)

S α̂1β̂2 = −8λ
[
Adh(1 + λ(1− λ−4)O−1

+ )
]α̂1

γ̂1K̂
γ̂1β̂2 , (3.9)

χ2
α̂ =

1

2
λγa

α̂β̂
M β̂2

a , (3.10)

ψα̂2
ab =

i

4
λ(1− λ−4)[(OT

+)
−1Ad−1

h ]α̂2cdK̂ab
cd −

1

4
[AdhM ]β̂1[a(γb])β̂γ̂S

γ̂1α̂2 . (3.11)

As already remarked, the RR bispinor superfield is imaginary if we interpret the λ-model

target space as a solution of type II supergravity, as here, rather than type II* supergrav-

ity.23 This determines the bosonic target space fields, with the exception of the dilaton

which we will determine shortly. First, let us calculate also the remaining components of

the femionic superfields, which we will extract from the corresponding component of the

22Here we rewrote A
(0)
± = 1

2
Aab

± Jab and used the relation between components of M and MT in (A.11).
23Let us recall that at least in some cases it is possible to define a real type II background, after analytic

continuation or proper choice of coordinate patch [26, 27].

– 12 –



J
H
E
P
1
0
(
2
0
1
6
)
0
4
5

torsion, T α̂1. From (B.5) and using (2.19) we find

dE(1) = −{AdhA
(0)
+ + dhh−1, E(1)}+

1

2
λ(1− λ−4)P (1)AdhO

−1
+ Ad−1

h {E(1), E(1)}

− iλAdh{E
(2), E(3)}−λ2Adh{E

(2), P (3)ME(2)}−iλ2(1−λ−4)P (1)AdhO
−1
+ {E(2), E(3)}

−
1

2
λ(1− λ−4)P (1)AdhO

−1
+

(
{E(2), E(2)}+ 2λ2{E(2), P (3)ME(2)}

)
. (3.12)

Using this expression we find24

T α̂1 = Eα̂1E1χ1 −
1

2
E1γaE1(γaχ

1)α̂ −
1

8
Ea(E1γbc)α̂Habc −

1

8
Ea(E2γaS

21)α̂ +
1

2
EbEaψα̂1

ab ,

(3.13)

is again of the standard form given in [30], where S β̂2α̂1 = −S α̂1β̂2 and

χ1
α̂=−

i

2
γb
α̂β̂

[AdhM ]β̂1b , ψα̂1
ab =−

1

2
λ(1−λ−4)[AdhO

−1
+ ]α̂1cdK̂ab

cd−
i

4
λ(S12γ[a)

α̂
β̂M

β̂2
b] .

(3.14)

We complete the set of background superfields for the λ-model by noting that the B-field

can be written in the two equivalent forms

B = (λ−4 − 1)−1
[
B0 + Str(g−1dg ∧A−)

]
, dB0 =

1

3
Str(g−1dg ∧ g−1dg ∧ g−1dg) ,

= (λ−4 − 1)−1
[
B0 − Str(g−1dg ∧ ΩTA+)

]
,

(3.15)

and that the dilaton is given by

e−2φ = sdet(O+) = sdet(Adg − Ω) . (3.16)

This result for the dilaton arises from integrating out the gauge-fields in the deformed

gauged WZW model [6]. To verify that the λ-model gives rise to a standard supergravity

background25 it is enough to verify that the dilatino’s found in (3.10) and (3.14) are indeed

the spinor derivatives of φ

∇α̂2φ =
i

2
λK̂β̂1γ̂2STr(Q1

β̂
M [Q2

α̂, Q
2
γ̂ ]) = χ2

α̂ ,

∇α̂1φ =
1

2
(1− λ−4)[Ad−1

h ]β̂ α̂STr(P
aO−1

− [Q1
β̂
, Pa]) = χ1

α̂ .

(3.17)

24To calculate this component of the torsion we must first find the Lorentz-transformed spin connection

AdhA
(0)
+ + dhh−1 appearing in the first term, see equation (B.9) and the corresponding derivation.

25As pointed out in [30] this was clear from the fact that the metric of the λ-model does not admit any

isometries, so that the Killing vector Ka of the generalized supergravity equations vanishes.
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4 Target superspace for the η-model

The calculations for the η-model proceed along the same lines as those for the λ-model

with only minor differences. We begin by calculating the derivative of A+

dA+ = O−1
+ (dO+ ∧A+) +O−1

+ (g−1dg ∧ g−1dg)

= ηO−1
+ Rg{g

−1dg, d̂TA+} − ηO−1
+ {g−1dg,Rgd̂

TA+}+
1

2
O−1

+ {g−1dg, g−1dg}

=
1

2
O−1

+ {A+, A+}+ ηO−1
+ Rg{A+, d̂

TA+}+ η2O−1
+ Rg{Rgd̂

TA+, d̂
TA+}

−
1

2
η2O−1

+ {Rgd̂
TA+, Rgd̂

TA+}

=
1

2
O−1

+ {A+, A+} −
1

2
cη2O−1

+ {d̂TA+, d̂
TA+}+ ηO−1

+ Rg{A+, d̂
TA+} , (4.1)

where we used the fact that g−1dg = O+A+ and in the last step we used the fact that R

(as well as Rg) satisfies the (M)CYBE equation, so that

{Rgd̂
TA+, Rgd̂

TA+} − 2Rg{Rgd̂
TA+, d̂

TA+} − c{d̂TA+, d̂
TA+} = 0 . (4.2)

The result for dA− is simply obtained by changing the sign of η and replacing d̂T → d̂ in

the above expression

dA− =
1

2
O−1

− {A−, A−} −
1

2
cη2O−1

− {d̂A−, d̂A−} − ηO−1
− Rg{A−, d̂A−} . (4.3)

After rewriting dA+ as in (B.13) and projecting with P (2) we find

dE(2) = {A
(0)
+ , E(2)}+

1

2
{E(1), E(1)}+

1

2
{E(3), E(3)} − 2η̂{E(3), P (3)O−1

− E(2)}

+ 4η̂−1P (2)O−1
+ {E(2), E(3)} − 8P (2)O−1

+ {E(2), P (3)O−1
− E(2)}

+ 2η̂2{P (3)O−1
− E(2), P (3)O−1

− E(2)}+ 2ηη̂−2P (2)O−1
+ Rg{E

(2), E(2)} , (4.4)

where we have used (2.19) to write the result in terms of the supervielbeins, together

with (B.4) and (2.12). We check again that the bosonic torsion T a takes the standard

form (3.4), where we can now identify the spin connection for the η-model background as

Ωab = (A+)ab + 2iη̂(γ[aE
2)α̂M

α̂2
b] +

3i

2
η̂2EcM α̂2

[a(γb)α̂β̂M
β̂2

c] −
1

2
Ec(2Mc[a,b] −Mab,c) .

(4.5)

As before, we continue by computing the remaining components of the torsion. First,

from (B.14) we get

dE(3) = {A
(0)
+ , E(3)}+ η̂P (3)O−1

− {E(3), E(3)}+ 2{P (0)O−1
− E(2), E(3)}

+ P (3)(4O−1
− − 1− 2η̂−2)Ad−1

h {E(2), E(1)} − 2ηη̂−1P (3)O−1
− RgAd

−1
h {E(2), E(2)}

+ 2η̂P (3)(4O−1
− − 1− 2η̂−2){Ad−1

h E(2), P 1O−1
− E(2)} , (4.6)

– 14 –



J
H
E
P
1
0
(
2
0
1
6
)
0
4
5

which we use to check that also T α̂2 is of the standard form (3.7). To do this we make use

of the spin connection (4.5) and we identify the following superfields for the η-model

Habc = 3M[ab,c] − 3iη̂2M α̂2
[a(γb)α̂β̂M

β̂2
c] , (4.7)

S α̂1β̂2 = 8i[Adh(1 + 2η̂−2 − 4O−1
+ )]α̂1γ̂1K̂

γ̂1β̂2 , (4.8)

χ2
α̂ = −

i

2
η̂γa

α̂β̂
M β̂2

a , (4.9)

ψα̂2
ab = −2ηη̂−1[O−1

− RgAd
−1
h ]α̂2cdK̂ab

cd +
1

4
η̂[AdhM ]β̂1[a(γb]S

12)β̂
α̂ . (4.10)

To identify the last component of the spinor superfields we must compute torsion T α̂1.

Starting from (B.13) we find

dE(1) = {AdhA
(0)
+ − dhh−1, E(1)}+ η̂P (1)AdhO

−1
+ Ad−1

h {E(1), E(1)}

+ P (1)Adh(4O
−1
+ − 1− 2η̂−2){E(2), E(3)}+ 2ηη̂−1P (1)AdhO

−1
+ Rg{E

(2), E(2)}

− 2η̂P (1)Adh(4O
−1
+ − 1− 2η̂−2){E(2), P (3)O−1

− E(2)} . (4.11)

Using this expression we can check26 that T α̂1 is standard, see (3.13), where S β̂2α̂1 =

−S α̂1β̂2 and

χ1
α̂ =

i

2
η̂γb

α̂β̂
[AdhM ]β̂1b , ψα̂1

ab = 2ηη̂−1[AdhO
−1
+ Rg]

α̂1
cdK̂ab

cd −
1

4
η̂(S12γ[a)

α̂
β̂M

β̂2
b] .

(4.12)

Let us also note that in the case of the η-model the B-field can be written in the two ways

B =
η̂2

4
Str(g−1dg ∧ d̂TA+) = −

η̂2

4
Str(g−1dg ∧ d̂A−) , (4.13)

which are equivalent thanks to the properties of O± under transposition.

4.1 Dilaton and supergravity condition

Unlike in the case of the λ-model, the η-model does not come with a natural candidate

dilaton. Indeed, in general the target space geometry of the η-model is a solution of the

generalized type II supergravity equations of [25, 30] rather than the standard ones, and a

dilaton does not exist. One of our goals is to determine precisely when a dilaton exists for

the η-model. To do this, let us define a would-be dilaton in the same way as the dilaton is

defined in the λ-model

e−2φ = sdet(O+) = sdet(1 + ηRgd̂
T ) . (4.14)

For this to be the actual dilaton of the η-model its spinor derivatives must coincide with

the dilatinos in (4.9) and (4.12). In (B.18) we write down the result for dφ. In particular

26As in the previous section, we need to first find an expression for AdhA
(0)
+ − dhh−1, see (B.16).
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we find27

∇α̂2φ = −2η̂−1STr(P aO−1
+ [Q2

α̂, Pa])−
η

2
η̂−1K̂ABSTr(TARg[TB, Q

2
α̂])

= χ2
α̂ −

η

2
η̂−1K̂ABSTr([TA, RTB]gQ

2
α̂g

−1) , (4.15)

∇α̂1φ = −η̂[Ad−1
h ]β̂ α̂(K̂

γ̂1δ̂2STr(Q2
δ̂
O−1

+ [Q1
β̂
, Q1

γ̂ ])−
η

2
K̂ABSTr(TARg[TB, Q

1
β̂
]))

= χ1
α̂ +

η

2
η̂[Ad−1

h ]β̂ α̂K̂
ABSTr([TA, RTB]gQ

1
β̂
g−1) . (4.16)

Therefore a sufficient condition for the η-model to lead to a standard supergravity back-

ground is that

K̂ABSTr([TA, RTB]gQ
I
α̂g

−1) = 0 , (4.17)

or, since g is an arbitrary group element (modulo gauge-transformations),

STr(Radx) = 0 , ∀x ∈ g (i.e. RB
Af

A
BC = 0, or RBCfABC = 0) . (4.18)

To see that this condition is also necessary we calculate the Killing vector superfield Ka

appearing in the generalized supergravity equations of [30], which in general is given by

Ka = −
i

16
(γa)α̂β̂(∇α̂1χβ̂1 −∇α̂2χβ̂2) , (4.19)

and whose result is collected in (B.19). The η-model has a standard type II supergravity

solution as target space if Ka = 0. In fact, it must be that it vanishes order by order in

the deformation parameter η. At linear order we find the equation

K̂ABSTr([TA, RTB]gPag
−1) = 0 , (4.20)

which, since g ∈ G is arbitrary implies (4.18). Therefore the condition (4.18) is both

necessary and sufficient, and also the higher order terms in η in (B.19) vanish when this

condition is fulfilled.

5 Non-abelian R-matrices and the unimodularity condition

In this section we study the unimodularity condition (1.8) for the R-matrix. First we

analyse its compatibility with a class of non-abelian R-matrices — the Jordanian ones —

and then we explain how to classify all unimodular R-matrices solving the CYBE on the

bosonic subalgebra of the superisometry algebra.

Following [53] we define an “extended Jordanian” R-matrix for a Lie superalgebra g as

follows: we fix a Cartan element h (deg(h) = 0) and a positive root e as well as a collection

of roots eγ±i
with i ∈ {1, 2, . . . , N} such that deg(e) = deg(eγi) + deg(eγ−i

) (mod 2) and

satisfying

[h, e] = e , [h, eγi ] = (1− tγi)eγi , [h, eγ−i
] = tγieγ−i

, (tγi ∈ C)

[eγ±i
, e] = 0 , [eγk , eγl ] = δk,−le , (k > l ∈ {±1,±2, . . . ,±N}) . (5.1)

27Here we used the fact that O−1
± P (0) = P (0).
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The extended Jordanian R-matrix is then defined as

R = h ∧ e+
N∑

i=1

(−1)deg(eγi ) deg(eγ−i
)eγi ∧ eγ−i

. (5.2)

It is now easy to see that for a bosonic deformation, i.e. deg(e) = 0, we have

rij [bi, bj ] = (N0 −N1 + 1)e , (5.3)

with N = N0 + N1, N0 (N1) being the number of bosonic (fermionic) roots eγi . For this

to vanish we need precisely one more fermionic eγi than bosonic. This is clearly a very

strong restriction on the allowed Jordanian R-matrices. Let us note that this result is

compatible with the findings of [37, 40, 41], where Jordanian R-matrices acting only on

bosonic generators were found to produce backgrounds which do not solve the standard

supergravity equations. We have considered certain examples of bosonic Jordanian R-

matrices (namely R = J01 ∧ (P0 −P1), R = J03 ∧ (J01 − J13) and R = D ∧ pi, i = 0, . . . , 3)

and we have checked that it is not possible to find a positive and a negative fermionic root

satisfying (5.1) without spoiling the reality of the extended R-matrix. If possible, it would

be interesting to find extended Jordanian unimodular R-matrices for psu(2, 2|4), but we

will not analyze this question further here.

From now on we will restrict to the bosonic subalgebra so(2, 4) ⊕ so(6) ⊂ psu(2, 2|4).

Let us recall some known facts about solutions to the CYBE, (1.7) with c = 0, for ordinary

Lie algebras. The first important fact, due to Stolin [54, 55], is that there is a one-to-one

correspondence between constant solutions of the CYBE for a Lie algebra g and quasi-

Frobenius (or symplectic) subalgebras f ⊂ g (see also [56]). Notice that we do not need to

assume anything about the Lie algebra g, in particular it does not need to be simple. A

Lie algebra is quasi-Frobenius if it has a non-degenerate 2-cocycle ω, i.e.

ω(x, y) = −ω(y, x) , ω([x, y], z) + ω([z, x], y) + ω([y, z], x) = 0 , ∀x, y, z ∈ f . (5.4)

It is Frobenius if ω is a coboundary, i.e. ω(x, y) = f([x, y]) for some linear function f . If R

is a solution to the CYBE for g, then there is a subalgebra f on which R is non-degenerate.

This subalgebra is necessarily quasi-Frobenius, and writing R in the form (1.9) the 2-

cocycle is the inverse of the R-matrix, i.e. ω(bi, bj) = (r−1)ij . The converse is also true,

i.e. if f ⊂ g is quasi-Frobenius then the inverse of the 2-cocycle ω gives a solution to the

CYBE, as is easily verified. Therefore, finding solutions to the CYBE for a given g reduces

to finding all quasi-Frobenius subalgebras28 of g. A fact with important consequences for

our analysis is that if g is compact then f must be abelian [58]. This leads to the conclusion

that deformations involving only S5 (i.e. marginal deformations of the dual CFT) must

necessarily have abelian R-matrices.

We now show that the unimodularity condition (1.8) for the R-matrix adds a further

property to the quasi-Frobenius subalgebra f. If we write the structure constants as f ijk
in some basis, the 2-cocycle condition is

(r−1)i[jf
i
kl] = 0 . (5.5)

28This was done for sl(2) and sl(3) in [57].
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f Defining Lie brackets

R

4 —

h3 ⊕R [e1, e2] = e3

r3,−1 ⊕R [e1, e2] = e2, [e1, e3] = −e3

r′3,0 ⊕R [e1, e2] = −e3, [e1, e3] = e2

n4 [e1, e2] = −e4, [e4, e2] = e3

Table 4. The four-dimensional real unimodular quasi-Frobenius Lie algebras. In all cases the

2-cocycle can be taken as ω = e1 ∧ e4 + e2 ∧ e3, where ei denotes the dual basis of f∗.

Contracting this equation with rjk we get (r−1)ilf
i
jkr

jk = −2f iil, which together with the

unimodularity condition for the R-matrix written as (1.10), i.e. f ijkr
jk = 0, implies

f iil = 0 ⇔ tr(adx) = 0 ∀x ∈ f . (5.6)

Therefore f is a unimodular Lie algebra. Clearly the converse is also true and we have

established that solutions of the CYBE for a Lie algebra g which satisfy the condition (1.8)

are in one-to-one correspondence with unimodular quasi-Frobenius subalgebras of g.

For this reason we refer also to the R-matrices which satisfy (1.8) as unimodular.

A quasi-Frobenius Lie algebra must clearly have even dimension, and if the dimension

is two the algebra must be abelian to respect unimodularity. To find a non-abelian R-

matrix we must therefore consider at least the case of rank four. Luckily the real quasi-

Frobenius Lie algebras of dimension four were classified in [59], and the five unimodular

ones (Corollary 2.5 in [59]) are listed in table 4. The task of finding all R-matrices of rank

four which solve the CYBE and lead to a deformation of the AdS5×S
5 string with a proper

supergravity background is therefore reduced to finding all inequivalent embeddings of these

subalgebras in so(2, 4) ⊕ so(6). The most interesting problem is to find the embedding of

the non-abelian algebras29 in so(2, 4). This is still quite challenging, but it becomes simpler

by the following observation. A unimodular quasi-Frobenius Lie algebra is solvable [58],

and solvable subalgebras of so(2, 4) must be embeddable in one of the maximal solvable

subalgebras of so(2, 4), see [60] for a proof of this. Besides the Cartan subalgebra which

is not relevant for our purposes, Patera, Winternitz and Zassenhaus in [61] showed that

there are two maximal solvable subalgebras of so(2, 4), s1 and s2 of dimension 9 and 8

respectively. It is most convenient to write them using the conformal form of the so(2, 4)

algebra, with dilatation generator D, translations and special conformal generators pi, ki
(i = 0, . . . 3) and Lorentz transformations and rotations Jij . They are related to the form

of so(2, 4) in (A.1) with K̂ij
kl = −2δk[iδ

l
j] by

pi = Pi + Ji4 , ki = −Pi + Ji4 , D = P4 , (5.7)

29The extension to so(2, 4)⊕ so(6) is essentially trivial and amounts to adding in commuting generators

from so(6) in such a way that the commutation relations of the algebra are preserved.
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and the non-vanishing commutators are

[D, pi] = pi , [D, ki] = −ki , [pi, kj ] = −2ηijD + 2Jij , (5.8)

[Jij , pk] = 2ηk[ipj] , [Jij , kk] = 2ηk[ikj] , [Jij , Jkl] = ηikJjl − ηjkJil − ηilJjk + ηjlJik .

The metric on the Lie algebra is given by tr(DD) = 1, tr(pikj) = −2ηij , tr(JijJkl) =

−2ηi[kηl]j . The two non-abelian maximal solvable subalgebras of so(2, 4) then take the

form

s1 = span(pi, J01 − J13, J02 − J23, J03, J12, D) ,

s2 = span(p0 + p3, p1, p2, J01 − J13, J02 − J23, J12, J03 −D, k0 + k3 + 2p3) , (5.9)

up to automorphisms. Our task is reduced to finding all embeddings of the non-abelian

algebras in table 4 in s1 and s2. To simplify this problem further we will single out the

element e3 in this table30 and use automorphisms generated by elements of s1 (s2) to

simplify it as much as possible. Using this freedom we can bring e3 to one of the following

forms

s1 : (1) e3 = p1 , (2) e3 = J02 − J23 , (3) e3 = p1 + J02 − J23 , (4) e3 = p0 ,

(5) e3 = p3 , (6) e3 = p0 + p3 , (7) e3 = p0−p3+J01−J13 , (5.10)

s2 : (1) e3 = p1 , (2) e3 = p0 + p3 , (3) e3 = ap1+bp2+J01−J13 . (5.11)

The rest is a straightforward if slightly tedious calculation. The results are summarized

in tables 5–8. Note that in writing these embeddings we have used automorphisms of the

four-dimensional subalgebras which are not always inner automorphisms of so(2, 4). This

must be accounted for when constructing the list of inequivalent R-matrices. In table 1

in the introduction we write the corresponding R-matrices, R = e1 ∧ e4 + e2 ∧ e3 up to

automorphisms. In table 2 instead we list the inequivalent, modulo inner automorphisms

of so(2, 4), R-matrices. This is the result which is interesting from the string sigma model

perspective, since inner automorphisms correspond to field redefinitions in the sigma model,

i.e. coordinate transformations in target space. In table 3 we write down the bosonic

isometries and the number of supercharges that each R-matrix preserves. Given a generator

t of the superalgebra g, the condition that it is preserved by the R-matrix is given by

[t, R(x)] = R([t, x]) , ∀x ∈ g . (5.12)

Most of these R-matrices all have a form which suggests that they should correspond

to non-commuting TsT-transformations,31 in the sense that they involve sequences of T-

dualities along non-commuting directions. All but the last three R-matrices in table 1 have

the form

R = a ∧ b+ c ∧ d , (5.13)

30The reason for picking e3 is that it always arises as a commutator of two other elements. Since the last

three generators in s1 or s2 are never generated in commutators, they do not appear in e3.
31Here we use TsT in a generalized sense, where we can involve also non-compact directions.

– 19 –



J
H
E
P
1
0
(
2
0
1
6
)
0
4
5

where [a, b] = [c, d] = 0 and c, d generate isometries of the corresponding background.

It is natural to conjecture that such R-matrices correspond to two successive TsT-

transformations, the first using isometries a, b and the second using isometries c, d. Note

that unlike in standard applications of TsT-tranformations, e.g. [62], the pairs of isometries

a, b and c, d do not commute with each other. This means that after the first TsT is imple-

mented, it is necessary to make a change of coordinates in order to realize the isometries

of the second TsT transformation as shift isometries. We will confirm this in section 6,

when we will check in some examples that the deformed backgrounds are indeed equiva-

lent to such sequences of TsT-transformations. These considerations suggest a very simple

picture for how TsT-transformations are interpreted at the level of the R-matrix: the TsT-

transformation involving isometries a, b should be simply implemented by adding a term

a∧ b to the R-matrix.32 Notice that the number of free parameters entering the definitions

of the R-matrices (plus the overall deformation parameter) does not need to be equal to

the number of TsT-transformations implemented. In fact, the number of parameters could

be reduced in some cases, if they can be reabsorbed by means of field redefinitions. In

other cases one might have more parameters than expected, which suggests the possibility

of applying TsT-transformations on linear combinations of the isometric coordinates.

The structure of the last three R-matrices in table 1 is different, and one observes

that now a, c generate isometries. However, one can check explicitly that the background

corresponding to R15, for example, is self-dual (up to field redefinitions) under a TsT-

transformation involving a, c.33 This example is particularly instructive because it can be

embedded in so(2, 3): in this algebra, the deformed background does not preserve other

bosonic isometries than a, c, which suggests that backgrounds corresponding to the algebra

n4 are not of TsT-type. Note that n4 is the only algebra considered which is not the direct

sum of a three-dimensional algebra and a commuting generator. One possibility is that

non-abelian T-duality of the corresponding subalgebra should instead play a role in the

interpretation of these backgrounds. A hint towards this direction comes from the results

of [63], where it was shown that a conformal anomaly is encountered when implementing

non-abelian T-duality on a subalgebra, unless all generators have vanishing trace.34 In the

case of the adjoint representation this condition is precisely that of unimodularity of the

corresponding subalgebra.

Let us now consider the case of higher ranks, which can only be six or eight. We

have not done a systematic study for the case of rank six R-matrices. One would first

need to identify all 6-dimensional subalgebras of s1 and s2, and check which of them are

unimodular and quasi-Frobenius. We have found that the subalgebra of s1 generated by

{pi, J03, J12} has both properties. It is straightforward to find the 2-form ω that solves the

cocycle condition (5.4), and invert it to find the corresponding R-matrix. For particular

choices of the free parameters this can be written e.g. as R = p0 ∧ p1 + p2 ∧ p3 + J01 ∧ J23.

32It is easy to check that this is compatible with the CYBE, since a, b are isometries and satisfy (5.12).
33Note that this is consistent with our above proposal on how to interpret the action of TsT at the level

of the R-matrix; in fact, in this case the addition of the term a ∧ c to R15 can be removed by an inner

automorphism of so(2, 4). Here a, c can be chosen to be p1, p0 + p3.
34We thank Arkady Tseytlin for pointing this reference out to us.
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h3 ⊕R e1 e2 e3 e4

1. p1 J01 − J13 p0 + p3 p2

2. p1 p3 + J01 − J13 p0 + p3 p2

3. p1 p2 + J01 − J13 p0 + p3 p1 + J02 − J23

4. 1
2p1 −

1
2(J02 − J23) p2 + J01 − J13 p0 + p3 k0 + k3 + 2p3 − 2J12

Table 5. Embeddings of h3 ⊕R in so(2, 4) up to automorphism.

r3,−1 ⊕R e1 e2 e3 e4

1. −D − J03 J02 − J23 p1 p0 + p3

2. J03 p0 − p3 p0 + p3 p1

3. J03 p0 − p3 p0 + p3 J12

(4.) D + 2J03 p1 p0 + p3 −

Table 6. Embeddings of r3,−1 ⊕R in so(2, 4) up to automorphism. The last case is an embedding

of r3,−1 which does not extend to an embedding of r3,−1⊕R. It is the only case where this happens

and included only since it is relevant for constructing all non-abelian R-matrices of so(2, 4)⊕ so(6).

r′3,0 ⊕R e1 e2 e3 e4

1. J12 p2 p1 p0 + p3

2. p3 + J12 p2 p1 p0 + p3

3. p0 + J12 p2 p1 p3

4. J12 p2 p1 p3

5. p3 + J12 p2 p1 p0

6. J12 p2 p1 p0

7. J12 p2 p1 J03

Table 7. Embeddings of r′
3,0 ⊕R in so(2, 4) up to automorphism.

n4 e1 e2 e3 e4

1. p3 J01 − J13 p0 + p3 p1

2. p3 p2 + J01 − J13 p0 + p3 p1

3. p1 + p3 + J02 − J23 p2 + J01 − J13 p0 + p3 p1

Table 8. Embeddings of n4 in so(2, 4) up to automorphism.
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We have also checked that there is no 8-dimensional subalgebra which is at the same

time unimodular and quasi-Frobenius. Therefore there is no rank eight R-matrix which

produces a background that solves the supergravity equations of motion. It is in fact

easy to check that s2 (which is 8-dimensional) is quasi-Frobenius but not unimodular.

To identify all 8-dimensional subalgebras of s1 (which is 9-dimensional), we first define

e =
∑9

j=1 λjej to be the generator which we want to remove, where ej are the generators

of s1. Then for a generic element X ∈ s1 we define its component perpendicular to e as

X⊥ = X − P (X), where P projects35 along e. Then the condition to have a subalgebra

is P [X⊥, Y ⊥] = 0, ∀X,Y ∈ s1. These equations give two possible solutions, depending on

some unconstrained parameters

(a) e = λ7J12 + λ8J03 + λ9D ,

(b) e = λ1(p0 − p3) + λ8(J03 −D) .
(5.14)

In the case (a) we find36 that the subalgebra is unimodular if λ7 = 0 and λ9 = 2λ8.

However, for this choice it is not quasi-Frobenius — the cocycle condition gives a 2-form

of rank six. In the case (b) the subalgebra is not unimodular for any choice of λ1, λ8.

6 Some examples of supergravity backgrounds

In this section we give a brief discussion on the η-model backgrounds generated by solutions

of the CYBE (c = 0), when we restrict R to act only on the bosonic subalgebra. In most

cases a convenient parameterisation of the group element g = ga · gs ∈ SO(2, 4)× SO(6) is

ga = exp
(
xipi

)
· exp (log z D) , (6.1)

where pi, D are the generators defined in (5.7). Here we will be interested only on defor-

mations of AdS, so we will not need to specify the parameterisation that we use for gs on

the sphere. In this coordinate system the undeformed metric takes the familiar form

ds2η=0 =
ηijdx

i dxj + dz2

z2
+ ds2s . (6.2)

Because of our restriction on R, it is enough to look at the action of the operators O± on

the bosonic subalgebra. They take a block form

(
1 (O±)

bc
a

0 (O±)
b
a

)
, (6.3)

35We define P (X) = e STr(Xe∗), where e∗ is a dual to e, STr(ee∗) = 1. We can take it as

e∗ =
∑9

j=1

λj

||λ||2
ej , where ||λ||2 =

∑9
j=1 λ

2
j and ej are the duals of the generators in the basis such that

STr(eie
j) = δ

j
i .

36In both cases (a) and (b) one needs to choose carefully a basis for the 8-dimensional subalgebra, in such

a way that the generators are linearly independent and non-degenerate for generic choices of the remaining

λj . A way to do it is to pick an orthogonal basis, and normalise the vectors such that they can be degenerate

only if λj = 0 ∀j.
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since37 O±P
(0) = P (0). All the information about background fields of the deformed model

can be extracted by studying just the block (O+)
b
a — or in other words P (2)O+P

(2). Notice

that the results for (O−)
b
a are simply obtained by changing the sign of the deformation

parameter η. The dilaton of the deformed model is easily obtained by computing the

determinant of (O+)
b
a

eφ = (detO+)
−1/2 . (6.4)

The rest of the background fields are written in terms of (O−1
+ )b

a
— the inverse of the

block (O+)
b
a. The vielbein components for the deformed model are

Ea = (O−1
+ )a

b
eb , (6.5)

where ea is the bosonic vielbein of the undeformed background, related to the Maurer-

Cartan form as

g−1dg = eaPa +
1

2
ωabJab . (6.6)

The spacetime metric of the deformed background is then straightforwardly obtained, ds2 =

ηabE
aEb. The B-field can be extracted immediately from the action of the bosonic σ-model,

and it reads as

B =
1

2
dXn ∧ dXmBmn =

1

2
(O−1

− )ab e
a ∧ eb , (6.7)

where it is assumed that indices are raised and lowered with ηab. To get the Ramond-

Ramond fields we first need to consider the local Lorentz transformation given by M

in (2.10) and write its action on spinors

(Adh)
β̂
α̂ = exp

[
−
1

4
(logM)abΓ

ab

]
β̂
α̂ , (6.8)

where here we have introduced a basis for 32 × 32 Gamma-matrices.38 The RR fields are

obtained by solving the equation (note that (1.2) simplifies considerably for R-matrices of

the bosonic subalgebra)

(
ΓaFa +

1

3!
ΓabcFabc +

1

2 · 5!
ΓabcdeFabcde

)
Π = e−φ Adh(−4Γ01234)Π (6.9)

where Π = 1
2(1−Γ11) is a projector and (−4Γ01234)Π encodes the 5-form flux of the unde-

formed model. The various components of F ’s are found by multiplying the above equation

by the relevant Gamma-matrix Γa1...a2m+1 and then taking the trace. This computation39

yields the F ’s expressed with tangent indices, which are translated into form language by

F (2m+1) = 1
(2m+1)!E

a2m+1 ∧ . . . ∧ Ea1Fa1...a2m+1 .

37We recall that P (0) and P (2) are projectors on the subspaces spanned by the generators Jab and Pa

respectively. A useful matrix realisation of the algebra generators can be found in [22]. Here we identify

Pa = Pa, and Jab = −Jab, where Pa, Jab are the generators used in [22].
38For a convenient basis see [22].
39For F (5) it is enough to look at half of the components, e.g. F0bcde, and construct the corresponding

form f (5). Then F (5) = (1 + ∗)f (5), such that F (5) = ∗F (5).
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In the rest of this section we present some backgrounds solving the standard super-

gravity equations which we have derived by using the above procedure. We work out one

example for each of the 4-dimensional non-abelian subalgebras in table 4.

In section 5 we have argued that the R-matrices related to the subalgebras h3 ⊕ R,

r′3,0 ⊕ R, r3,−1 ⊕ R should produce backgrounds which can be obtained by sequences of

TsT-transformations starting from AdS5 × S5. We check this explicitly for the back-

grounds that we have derived, where we follow the conventions of [32] for the T-duality

rules [64–66]. Because the isometries of the first TsT do not commute with those of the

second one, we will see that before doing the last step it is necessary to implement a

coordinate transformation, which realizes the second pair of isometries as shifts of the

corresponding coordinates. Let us mention that since we have chosen to have just one

overall deformation parameter η (i.e. we fix some free parameters in the definitions of the

possible R-matrices), the shifts of the two TsT-transformations are related to each other.

This does not need to be true for generic cases.

6.1 h3 ⊕R

Let us choose the R-matrix (this corresponds to R1 in table 1 with x1 ↔ x3)

R = (J03 + J13) ∧ (p0 + p1) + p2 ∧ p3 , (6.10)

which preserves 4 bosonic isometries

p2 , p3 , p0 + p1 , p0 − p1 − 2(J02 + J12) , (6.11)

and 8 supercharges. Clearly, it is convenient to introduce lightcone coordinates x± = x0 ±

x1, since a shift of x+ will correspond to an isometry. The spacetime metric that we obtain is

ds2 = z−2

(
1 +

4η2

z4

)−1 (
4η2z−4x−dx−(2dx2 − x−dx−) + dx2

2 + dx3
2
)

+
−dx−dx+ + dz2

z2
+ ds2s.

(6.12)

The dilaton depends only on the z-coordinate, while the B-field also on x−

eφ =

(
1 +

4η2

z4

)−1/2

, B =
2η(dx2 − x−dx−) ∧ dx3

(4η2 + z4)
. (6.13)

The RR-fluxes turn out to be quite simple

F (5) = (1+∗)
2dx− ∧ dx+ ∧ dx2 ∧ dx3 ∧ dz

z(z4 + 4η2)
, F (3) =

4η

z5
(2x−dx2−dx

+)∧dx−∧dz. (6.14)

In order to show that this background can be obtained by a sequence of TsT-

transformations, we start from the deformed background and show that we can reach the

undeformed AdS5 × S5 by TsT-transformations. We will write T (xi) to indicate that we

apply T-duality along the isometric coordinate xi, and denote by x̃i the dual coordinate.

In this case we need to do the sequence

T (x2), x3 → x3 − 2ηx̃2, T (x̃2), T (ψ), w+ → w+ − 2ηψ̃, T (ψ̃), (6.15)
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where we need to redefine the coordinates in the 013 space

x+ = 2(ψ2w− + w+), x− = 2w−, x3 = −2ψw−, (6.16)

before applying the last TsT-transformation. Obviously, starting fromAdS5×S
5 and apply-

ing these TsT-transformations backwards, we find the deformed background presented here.

6.2 r′
3,0

⊕R

In this case we can choose an R-matrix which involves generators along spacelike directions

(R11 in table 1)

R = J12 ∧ p3 + p2 ∧ p1 . (6.17)

It preserves 3 bosonic isometries

J12, p0, p3, (6.18)

and no supercharges. It is more convenient to use the parameterisation

ga = exp(ξJ12) · exp(rp1 + x0p0 + x3p3) · exp(log z D), (6.19)

since ξ will be isometric. In the undeformed case

ds2η=0 =
−(dx0)2 + r2dξ2 + dr2 + dx3

2 + dz2

z2
+ ds2s, (6.20)

so that (r, ξ) are a radial and an angular coordinate in the 1, 2 plane. Turning on the

deformation parameter we find

ds2 = z−6

(
1+

4η2
(
r2+1

)

z4

)−1 [
dr2

(
4η2r2+z4

)
+r2z4dξ2−8η2r drdx3+dx3

2
(
4η2+z4

)]

+
dz2 − (dx0)2

z2
+ ds2s (6.21)

The dilaton and the B-field now depend on r and z

eφ =

(
1 +

4η2
(
r2 + 1

)

z4

)−1/2

, B =
2η r dξ ∧ (dr + rdx3)

z4 + 4η2 (r2 + 1)
. (6.22)

For the RR-fluxes we find

F (5) = (1 + ∗)
4r dx0 ∧ dr ∧ dξ ∧ dx3 ∧ dz

z (z4 + 4η2 (r2 + 1))
, F (3) =

8η

z5
(dx3 − rdr) ∧ dx0 ∧ dz. (6.23)

The sequence of TsT-transformations

T (x3), ξ → ξ + 2ηx̃3, T (x̃3), T (x1), x2 → x2 − 2ηx̃1, T (x̃1), (6.24)

(where r =
√
x21 + x22, ξ = arctan(x1/x2)) yields undeformed AdS5 × S5.

– 25 –



J
H
E
P
1
0
(
2
0
1
6
)
0
4
5

6.3 r3,−1 ⊕R

The R-matrix (R6 in table 1 with x1 → x2, x3 → x1)

R = J01 ∧ p2 + 2p0 ∧ p1 , (6.25)

preserves 3 bosonic isometries

J01, p2, p3 , (6.26)

and no supercharges. As before, it is more convenient to parameterise the group element

in a different way

ga = exp(tJ01) · exp(ρp1 + x2p2 + x3p3) · exp(log z D), (6.27)

so that t is an isometry. In the undeformed case we have the spacetime metric

ds2η=0 =
−ρ2dt2 + dρ2 + dx2

2 + dx3
2 + dz2

z2
+ ds2s, (6.28)

while the defomation gives

ds2=z−6

(
1−

4η2
(
ρ2+4

)

z4

)−1(
−ρ2z4dt2−16η2ρdρdx2+dx2

2
(
z4−16η2

)
+dρ2

(
z4−4η2ρ2

))

+
dx3

2

z2
+
dz2

z2
+ ds2s . (6.29)

The dilaton and the B-field depend on ρ and z

eφ =

(
1−

4η2(4 + ρ2)

z4

)−1/2

, B =
2η ρ dt ∧ (2dρ− ρdx2)

z4 − 4η2 (4 + ρ2)
, (6.30)

and the RR-fluxes are

F (5) = −(1 + ∗)
4ρ dt ∧ dρ ∧ dx2 ∧ dx3 ∧ dz

z (z4 − 4η2 (4 + ρ2))
, F (3) =

8η(2dx2 + ρdρ) ∧ dx3 ∧ dz

z5
. (6.31)

We can get back the undeformed AdS5 × S5 background by applying the sequence of

TsT-transformations

T (x2), t→ t+ 2ηx̃2, T (x̃2), T (x1), x0 → x0 − 4ηx̃1, T (x̃1), (6.32)

where x1 = ρ cosh t, x0 = ρ sinh t.

6.4 n4

Let us consider the R-matrix (R15 in table 1 with x1 ↔ x3)

R = p1 ∧ p3 + (p0 + p1) ∧ (J03 + J13) (6.33)

which preserves the 3 bosonic isometries

p0 + p1 , p2 , p3 , (6.34)
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and 8 supercharges. The metric is given by

ds2 = z−6

(
1−

4η2ξ−
z4

)−1[
z4dx3

2−η2(dx+)2−
1

4
dξ−

(
η2ξ2−dξ−+2dx+

(
z4−2η2ξ−

))]

+
dx2

2 + dz2

z2
+ ds2s , (6.35)

where we preferred to redefine ξ− = 2x− − 1. The dilaton and the B-field depend on ξ−
and z

eφ =

(
1−

4η2ξ−
z4

)−1/2

, B =
η(ξ−dξ− + 2dx+) ∧ dx3

2 (z4 − 4η2ξ−)
. (6.36)

The RR-fluxes are

F (5) = (1+∗)
dξ− ∧ dx+ ∧ dx2 ∧ dx3 ∧ dz

z(z4 − 4η2ξ−)
, F (3) =

2η

z5
(
ξ−dξ− − 2dx+

)
∧dx2∧dz. (6.37)

We have checked that this background is self-dual (after field redefinitions) under a TsT-

transformation involving p0 + p1 and p3. If we view it as a deformation of AdS4 there

are no other bosonic isometries at our disposal, so it appears that this background cannot

be generated by (bosonic) TsT-transformations. As remarked earlier, it would be very

interesting to understand if it can be generated by applying non-abelian T-duality.

7 Conclusions

We have derived the target space geometry of the η and λ-deformed type IIB supercoset

string sigma models. With this result we have checked that the λ-deformation leads to a

(type II*) supergravity background, while in general the η-deformation only to a “gener-

alized” one in the sense of [25, 30]. When this is the case, the sigma model is expected

to be scale invariant but not Weyl invariant, and therefore does not seem to define a con-

sistent string theory. We have identified the (necessary and sufficient) condition for the

η-model to have a standard supergravity background as target space. This is translated

into an algebraic condition on the R-matrix, which we refer to as the unimodularity condi-

tion. It imposes strong restrictions on non-abelian R-matrices, and in fact all non-abelian

R-matrices considered in previous works do not lead to supergravity solutions.

We have also analyzed the problem of finding all unimodularR-matrices which solve the

CYBE for the bosonic subalgebra so(2, 4)⊕ so(6) ⊂ psu(2, 2|4). The complete list of rank

four non-abelian R-matrices for so(2, 4) has been given and we have showed that the only

other non-abelian R-matrices in this case have rank six. We have argued that most of these

examples should correspond to a sequence of non-commuting TsT-transformations and have

verified this explicitly in some cases. It should be possible to understand these deformations

in terms of twisted boundary conditions for the string just as in the standard TsT case [44].

There are many similarities between the backgrounds we construct and that of Hashimoto-

Itzhaki/Maldacena-Russo [67, 68] and the dual field theories are expected to be certain

non-commutative deformations of N = 4 super Yang-Mills, see [69] and in particular [70].

Many interesting open questions remain. It would be important to find all possible

unimodular R-matrices of psu(2, 2|4) to have a complete list of Yang-Baxter deformations
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of AdS5 × S5 with a string theory interpretation. A question is whether any of them are

of the Jordanian type. It is particularly interesting to investigate whether it is possible to

have unimodular R-matrices that solve the MCYBE rather than the CYBE, to solve one of

the puzzles of [22]. One could also try to give an interpretation to backgrounds generated

by non-unimodular R-matrices; in many cases one can associate to them a formally T-

dual model which does describe a string sigma model, so it is natural to wonder what

these backgrounds correspond to. See [41] for some investigations along these lines. It

would be also interesting to clarify if these deformed models have a connection to non-

abelian T-duality, in view of the similarities between our unimodularity condition and the

tracelessness condition of [63].

Our results are also useful to make further progress in the case of the λ-model. In

fact, we have written the NSNS and RR background fields in terms of the Lie algebra

operators which are used to define the deformation procedure, and after picking a certain

parameterisation for the group element this enables to obtain their explicit form. This

method is more efficient, albeit equivalent, to the ones used so far e.g. in [22, 26, 41]. One

could then check the proposal of [27] for the background of the λ-deformed AdS3×S
3×T 4

string, and finally derive the one for the AdS5 × S5 case. It would be interesting to

understand whether there is room to modify the definition of the λ-model, hence realising

other possible deformations of the string. In fact, in the current status the λ-model is

related through Poisson-Lie T-duality to the η-model based on the MCYBE, but there is

no known counterpart for deformations based on the CYBE.
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A Z4-graded superisometry algebras

In this appendix we review some facts about the relevant superalgebras and explain our

notation and conventions. In [4] it was shown that for all cases of interest here40 the

superisometry algebra — which admits a Z4-grading that extends the Z2-grading of the

bosonic subalgebra — can be written in the same form. The bosonic subalgebra is of the

standard symmetric space form

[Jab, Pc] = 2ηc[aPb] , [Pa, Pb] =
1

2
K̂ab

cdJcd ,

[Jab, Jcd] = ηacJbd − ηbcJad − ηadJbc + ηbdJac . (A.1)

Here a, b, c = 0, . . . , 9 and Jab generate Lorentz-transformations and rotations while Pa

generate translations. Note that since the space is typically a product of factors Jab is

40We restrict our attention to models with only RR flux since these have certain simplifying features like

Z4-symmetry.
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block-diagonal with components mixing different factors absent and this should be taken

into account in interpreting the last commutator above. In the case of RR backgrounds,

i.e. no NSNS three-form flux, the commutators involving the supercharges take the form

(here and in the rest of the paper we specialize to the type IIB case, but the type IIA case

works in the same way)

[Pa, Q
I
α̂] = −i(QJ K̂JIγa)α̂ , [Jab, Q

I
α̂] = −

1

2
(QIγab)α̂ , (I, J = 1, 2)

{Q1
α̂, Q

1
β̂
} = {Q2

α̂, Q
2
β̂
} = iγa

α̂β̂
Pa , {Q1

α̂, Q
2
β̂
} = (γaK̂12γb)α̂β̂ Jab . (A.2)

Here α̂ = 1, . . . , N where 2N is the number of supersymmetries preserved by the back-

ground. For AdS5 × S5 (psu(2, 2|4)) N = 16 and γa
α̂β̂

are the standard 16 × 16 symmet-

ric Weyl blocks or ‘chiral gamma-matrices’ (see for example the appendix of [36]). For

AdS3 × S3 × T 4 (psu(1, 1|2)2) N = 8 and for AdS2 × S2 × T 6 (psu(1, 1|2)) N = 4 and the

gamma-matrices γa
α̂β̂

involve an extra projector to make them 8× 8 and 4× 4 respectively.

The Z4 automorphism acts as

Jab → Jab , Pa → −Pa , Q1 → iQ1 , Q2 → −iQ2 . (A.3)

We introduce projectors that split the generators TA = {Pa, Jab, Q
I
α̂} according to their

Z4-grading as follows

P (0)(TA) = Jab , P (1)(TA) = Q1
α̂ , P (2)(TA) = Pa , P (3)(TA) = Q2

α̂ . (A.4)

Finally K̂AB appearing on the right-hand-side in (A.1) and (A.2) is the inverse of the Lie

algebra metric defined by the supertrace41

Str(TATB) = KAB , TA = {Pa, Jab, Q
I
α̂} , (A.5)

e.g.
1

2
K̂ab

efKef,cd = 2ηa[cηd]b . (A.6)

It can be expressed in terms of the geometry and fluxes of the corresponding symmetric

space supergravity background as

K̂ab = ηab , K̂ab
cd = −Rab

cd , K̂α̂Iβ̂J =
i

8
S α̂Iβ̂J , (A.7)

where Rab
cd and SIJ are the Riemann curvature and RR field strength bispinor respec-

tively.42 Let us also note the relation

K̂ab
cd(K12γcd)α̂β̂ = 8(γ[aK̂

12γb])α̂β̂ . (A.8)

41Note that our definition of K differs by a factor of i compared to the definition used in [4].
42The curvature of AdS is Rab

cd = 2δc[aδ
d
b] while that of the sphere is Rab

cd = −2δc[aδ
d
b] in our conventions.

The RR flux takes the form

AdSn × S
n × T

10−2n : Sα̂Iβ̂J = −4i(σ2)IJ (Pγ
01234)α̂β̂

,

where the projector P, with QI = QIP, is given by 1 for n = 5, 1
2
(1+γ6789) for n = 3 and 1

2
(1+γ6789) 1

2
(1+

γ4568) for n = 2.
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Finally for operators acting on the Lie algebra (i.e. endomorphisms) M : g → g we

define its components in the following way

M(TC) = TDM
D
C . (A.9)

The transpose operator is defined with respect to the supertrace by

Str(TAM(TB)) = Str(MT (TA)TB) , (A.10)

or

MAB = (−1)AB(MT )BA MAB = KACM
C
B (A.11)

e.g.

(MT )aβ̂1 = Kβ̂1γ̂2M
γ̂2

a , (MT )a,bc =
1

2
Kbc,deM

de
a . (A.12)

The supertrace of the Lie algebra operator M is given by

Str(M) = (−1)AMA
A = K̂ABStr(TAMTB) . (A.13)

When we need to raise indices with K̂AB we use the convention

MA = MBK̂
BA . (A.14)

To conclude, when writing generic commutation relations we write

[TA, TB] = fCABTC . (A.15)

B Useful results for the deformed models

In this appendix we collect some useful identities and expressions to obtain the results

presented in the main text. In the two deformed models, we can relate OT
± and O± by

λ−model : OT
− = Ad−1

g O+, η −model : OT
−d̂

T = d̂TO+ . (B.1)

Using the definitions of O±, we can express M defined in (2.10) in terms of O± and

projectors only

λ−model : M = −ΩT + (OT
+)

−1(1− ΩΩT ) = −ΩT + (1− λ−4)(OT
+)

−1P (2) ,

η −model : M = O−1
− (O− + 2ηRgd̂P

(2)) = 1− 2P (2) + 2O−1
− P (2) ,

(B.2)

which is useful to prove

λ−model : Ad−1
h P (2) = O+(1 + Ω(OT

+)
−1)P (2) = P (2)(1 + (OT

+)
−1Ω)O+ ,

η −model : Ad−1
h P (2) = O+(2P

(2) − 1)O−1
− P (2) .

(B.3)

Note that using the expression for M we can express A− in terms of A+ as

A− =MA+ =

{
A+ + (M − 1)A

(2)
+

−ΩTA+ + (M + λ−2)A
(2)
+

. (B.4)

The rest of this appendix is devoted to the two deformed models separately.
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B.1 λ-model

The expressions for dA± in (3.1), (3.2) can be rewritten as

dA+ =−
1

2
{A+, A+}−

1

2
(1−λ−4)O−1

+ ({A
(2)
+ , A

(2)
+ }−λ2{A

(1)
+ , A

(1)
+ }+2λ{A

(2)
+ , A

(3)
+ }) , (B.5)

dA− =
1

2
{A−, A−}+

1

2
(1−λ−4)(OT

+)
−1({A

(2)
− , A

(2)
− }−λ2{A

(3)
− , A

(3)
− }+2λ{A

(2)
− , A

(1)
− }) , (B.6)

if we use

ΩT {X,X} − {ΩTX,ΩTX} = (1− λ−4)({X(2), X(2)} − λ2{X(1), X(1)}+ 2λ{X(2), X(3)}),

(B.7)

for X ∈ g, and the same for Ω but with X(1) and X(3) interchanged.

To calculate the component T α̂1 of the torsion, we first need to compute the Lorentz-

transformed spin-connection AdhA
(0)
+ +dhh−1. We do this by taking the exterior derivative

of both sides of the relation E(2) = AdhA
(2)
− , from which we find the equation

0 = {AdhA
(0)
+ + dhh−1 −A

(0)
+ , E(2)}+ λ(1− λ−4)P (2)Adh(O

T
+)

−1Ad−1
h {E(2), E(1)}

+ {E(1),AdhP
(1)ME(2)} − iλ{E(3), P (3)ME(2)} − iλP (2)MT {E(2), E(3)}

−{AdhP
(0)ME(2), E(2)}−

1

2
Adh{P

(1)ME(2), P (1)ME(2)}−
1

2
λ2{P (3)ME(2), P (3)ME(2)}

−
1

2
(1− λ−4)P (2)Adh(O

T
+)

−1Ad−1
h ({E(2), E(2)}+ 2λ{E(2),AdhP

(1)ME(2)})

−
1

2
P (2)MT {E(2), E(2)} − λ2P (2)MT {E(2), P (3)ME(2)} , (B.8)

where we used (3.3) and (B.6). This equation determines AdhA
(0)
+ + dhh−1 completely:

this is obvious for the terms involving fermionic vielbeins, while for the terms involving Ea

it follows from symmetry in the same way that the condition Tab
c = 0 determines the spin

connection Ωab
c. Using the algebra (A.1), (A.2) as well as (B.3) the result is

[dhh−1 +AdhA+]ab = −Ωab +
1

2
EcHabc + 2i(E1γ[a)α̂(AdhM)α̂1b] . (B.9)

Here we have used the fact, which will be proven below, that the expression that we find

Habc = 3[AdhM ][ab,c] + 3iM α̂1
[a[Adh]b|d|γ

d
α̂β̂
M β̂1

c] , (B.10)

is equivalent to the one in (3.8). In fact, if we calculate H = dB using the first definition
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for B in (3.15) we find

H = dB =
1

3
(1− λ−4)−1

(
Str(ΩA− ∧ ΩA− ∧ ΩA−)− Str(A− ∧A− ∧A−)

)

−
1

2
(1− λ−4)−1Str(A+ ∧ (Ω{A−, A−} − {ΩA−,ΩA−}))

= −Str((A
(0)
+ +A

(0)
− ) ∧A

(2)
− ∧A

(2)
− ) + λ2Str(A

(2)
+ ∧A

(3)
− ∧A

(3)
− )

−
1

2
Str(A

(2)
− ∧ {A

(1)
− , A

(1)
− + 2λA

(1)
+ })

= Str(E(2) ∧ E(1) ∧ E(1))−Str(E(2) ∧ E(3) ∧ E(3))−Str(P (0)AdhME(2) ∧ E(2) ∧ E(2))

− Str(E(2) ∧ P (1)AdhME(2) ∧ P (1)AdhME(2))

= −
i

2
EaE1γaE

1 +
i

2
EaE2γaE

2 +
1

3!
EcEbEaHabc , (B.11)

with Habc given by (B.10). On the other hand, if we start from B given in the second

line of (3.15), we find a result which is mapped to the previous one by the replacements

A− ↔ A+, Ω ↔ ΩT and A(3) ↔ A(1). This leads to the same form of H except now

with Habc given by (3.8), which proves the equivalence of the two expressions. Let us also

remark that this computation shows that the NSNS three-form superfield H = dB satisfies

the correct superspace constraints.

In order to check that the dilatinos in (3.10), (3.14) are in fact the spinor derivatives

of the dilaton φ, we start from (3.16) and compute

dφ = −
1

2
STr(O−1

− Ad−1
g dAdg) = −

1

2
K̂ABSTr(TAO

−1
− [g−1dg, TB])

= −
1

2
K̂ABSTr(TAO

−1
− [O−A−, TB])

= −
1

2
K̂ABSTr(TAO

−1
− [A−, TB]) +

1

2
K̂ABSTr(TAO

−1
− Ad−1

g [ΩA−,AdgTB])

= −
1

2
K̂ABSTr(TAO

−1
− [A−, TB]) +

1

2
K̂ABSTr(TAAdgO

−1
− Ad−1

g [ΩA−, TB])

= −
1

2
K̂ABSTr(TAO

−1
− [A−, TB]) +

1

2
K̂ABSTr(TAAdg(O

T
+)

−1[ΩA−, TB])

= −
1

2
K̂ABSTr(TAO

−1
− [A−, TB]) +

1

2
K̂ABSTr(TAΩO

−1
− Ad−1

g [ΩA−, TB])

= −
1

2
K̂ABSTr(TAO

−1
− [A−, TB]) +

1

2
K̂ABSTr(TAΩO

−1
− ΩT [ΩA−, TB])

+
1

2
(1− λ−4)λ2K̂ABSTr(TAΩO

−1
− P (2)[ΩA−, TB]) , (B.12)

where we used (A.13) and in the last step we inserted 1 = 1 − ΩΩT + ΩΩT =

(1− λ−4)P (2) +ΩΩT . It is easy to see that the A
(0)
− -terms cancel, as they must since they

transform as a connection.
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B.2 η-model

The expressions for dA± in (4.1), (4.3) can be rewritten as

dA+ =
1

2
{A+, A+} −

1

2
cη2{d̂TA+, d̂

TA+}+ (O−1
+ − 1)

(
4{A

(2)
+ , A

(3)
+ }+ η̂2{A

(1)
+ , A

(1)
+ }
)

+ ηO−1
+ Rg{A

(2)
+ , d̂TA

(2)
+ } , (B.13)

dA− =
1

2
{A−, A−} −

1

2
cη2{d̂A−, d̂A−}+ (O−1

− − 1)
(
4{A

(2)
− , A

(1)
− }+ η̂2{A

(3)
− , A

(3)
− }
)

− ηO−1
− Rg{A

(2)
− , d̂A

(2)
− } , (B.14)

where we have rewritten e.g. the last term in the expression for dA+ as

ηO−1
+ Rg{A

(2)
+ , d̂TA

(2)
+ }

+ (1−O−1
+ )

(
1

2
{A+, A+}−

1

2
cη2{d̂TA+, d̂

TA+}−4{A
(2)
+ , A

(3)
+ }−η̂2{A

(1)
+ , A

(1)
+ }

)
.
(B.15)

As in the case of the λ-model, to calculate the component T α̂1 of the torsion we must

first find the Lorentz-transformed spin connection AdhA
(0)
+ − dhh−1 (note the difference

in sign between the two models). We use the same method explained in the previous

subsection and we find

[AdhA
(0)
+ − dhh−1]ab = Ωab −

1

2
EcHabc + 2iη̂(γ[aE

1)α̂[AdhM ]α̂1b] , (B.16)

where we write the components of Habc as

Habc = 3[AdhM ][ab,c] − 3iη̂2[Adh][a|d|M
α̂1

bγ
d
α̂β̂
M β̂1

c] . (B.17)

This expression is equivalent to the one in (4.7), which is easy to verify by a calculation

similar to the one performed for the λ-model: the B-field written as in the first way of (4.13)

leads to Habc of the form (4.7), while the second way leads to the form in (B.17). The

same calculation also shows that the remaining components of the superform H satisfy the

standard supergravity constraints.

If we take (4.14) as the definition of the dilaton in the case of the η-model we find

dφ = −
1

2
ηK̂ABSTr(TAd̂

TO−1
+ Rg[g

−1dg, TB]) +
1

2
ηK̂ABSTr(TARgd̂

TO−1
+ [g−1dg, TB])

= −
1

2
ηK̂ABSTr(TAd̂

TO−1
+ Rg[A+, TB])−

1

2
K̂ABSTr(TAO

−1
+ [A+, TB])

−
1

2
ηK̂ABSTr(TAO

−1
+ [Rgd̂

TA+, TB])−
1

2
η2K̂ABSTr(TAd̂

TO−1
+ Rg[Rgd̂

TA+, TB])

= −
1

2
K̂ABSTr(TAO

−1
+ [A+, TB]) +

1

2
cη2K̂ABSTr(TAd̂

TO−1
+ [d̂TA+, TB])

−
1

2
ηK̂ABSTr(TAd̂

TO−1
+ Rg[A+, TB])−

1

2
ηK̂ABSTr(TAO

−1
+ Rg[d̂

TA+, TB])

+
1

2
ηK̂ABSTr(TARg[d̂

TA+, TB]) , (B.18)
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where we used the (M)CYBE (1.7) in the last step. It is again easy to verify that the

A(0)-terms cancel, as they must.

Using (4.16) and (4.15) and (B.16), the explicit result for the vector Ka in (4.19) is

Ka =
i

32
η(γa)α̂β̂K̂ABSTr

×
(
[TA, RTB]Adg

(
[(1− ηRg)Ad

−1
h Q1

α̂,Ad
−1
h Q1

β̂
] + η̂−2[(1 + ηRg)Q

2
α̂, Q

2
β̂
]
))

+ fermions

= −
η

2
[η̂−2 +Adh]

a
bK̂

ABSTr([TA, RTB]gPbg
−1)

−
η2

32

(
η̂−2(γaγc)α̂β̂ [Rg]

β̂2
α̂2 − [Adh]

a
b(γ

bγc)α̂β̂[Rg]
β̂1

α̂1

)
K̂ABSTr([TA, RTB]gPcg

−1)

−
iη2

32

(
[Adh]

a
b(γ

bγcK12γd)α̂β̂[Rg]
β̂2

α̂1

− η̂−2(γaγcK21γd)α̂β̂ [Rg]
β̂1

α̂2

)
K̂ABSTr([TA, RTB]gJcdg

−1)

+ fermions . (B.19)
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