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Abstract
HCV is a hepatotropic RNA virus recognized for its frequent virulence and fatality worldwide. Despite many vaccine devel-
opment programs underway, researchers are on a quest for natural bioactive compounds due to their multivalent efficiencies 
against viral infections, considering which the current research aimed to figure out the target-specificity and therapeutic 
potentiality of α, β, and δ subunits of amyrin, as novel bioactive components against the HCV influx mechanism. Initially, 
the novelty of amyrin subunits was conducted from 203 pharmacophores, comparing their in-silico pharmacokinetic and 
pharmacodynamic profiles. Besides, the best active site of CD81 was determined following the quantum tunneling algorithm. 
The molecular dynamic simulation was conducted (100 ns) following the molecular docking steps to reveal the parameters- 
RMSD (Å); Cα; RMSF (Å); MolSA (Å2); Rg (nm); PSA (Å); SASA (Å2), and the MM-GBSA dG binding scores. Besides, 
molecular strings of CD81, along with the co-expressed genes, were classified, as responsible for encoding CD81-mediated 
protein clusters during HCV infection, resulting in the potentiality of amyrins as targeted prophylactics in HCV infection. 
Finally, in vivo profiling of the oxidative stress marker, liver-specific enzymes, and antioxidant markers was conducted in 
the DMN-induced mice model, where β-amyrin scored the most significant values in all aspects.

Keywords CD81 receptor · HCV infection · Target-specificity of amyrins · In-silico pharmacokinetics and 
pharmacodynamics · Co-expressed genes behind HCV invasion · DMN-induced hepatic fibrosis

Introduction

Hepatitis C Virus (HCV) is a small, single-stranded, posi-
tive-sense RNA virus identified in 1989 and belongs to the 
Hepacivirus genus of the Flaviviridae family (Lavanchy 
2011). According to World Health Organization (WHO), 
around 71 million people are infected, and about 400,000 
individuals die due to complications caused by long-term 
HCV infections (Morozov and Lagaye 2018). HCV infects 
the hepatic cells, leading to inflammation (Zaltron et al. 
2012). Among the HCV patients, 25% experience acute 

infection (Grebely et al. 2012), whereas 75% suffer from 
progressive liver failure, cirrhosis, and hepatocellular car-
cinoma (Chen and Morgan 2006). Infection by HCV may 
also lead to extrahepatic diseases like diabetes mellitus, 
Non-Hodgkin's lymphoma, membranoproliferative glomeru-
lonephritis, and lichen planus. It can significantly reduce 
the quality of life of the infected individuals (Millman et al. 
2017). HCV comes in various genotypes, including- 1a, 
1b, 3a, 3b, 4, and 6, with 3a being the most virulent form 
(Kalinina 2015). HCV RNA (9.5 kb) encodes a single open 
reading frame (ORF) (Wu et al. 2015). This ORF translates 
into a polyprotein consisting of 3000 amino acids (Pfaender 
et al. 2014). This polyprotein processes into envelopes (E1 
and E2) and seven nonstructural proteins (Bruening et al. 
2018). The structural HCV proteins are Core, E1, E2, and 
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p7, which divide structural proteins from nonstructural pro-
teins (Morozov and Lagaye 2018). The interaction of HCV 
with hepatocytes leads to viral entry depending on host lipo-
protein components and viral envelope glycoproteins. Here, 
host factors are present at the surface of the hepatocytes. The 
virus enters hepatocytes via interactions between the viral 
envelope proteins- E1 and E2 and four known host recep-
tors (CD81, Claudin-1, SBR-I, and occluding) (Ploss et al. 
2009). After entry, host ribosomes bind to the internal ribo-
somal entry site (IRES) of the HCV genome and translate 
viral polyproteins on the rough endoplasmic reticulum (ER) 
(Moradpour et al. 2007). Host and viral proteases produce 
the polyprotein into two components. One is the structural 
(core and envelope proteins- E1 and E2) and nonstructural 
proteins (p7, NS2–3, NS3, NS4A, NS4B, NS5A, and NS5B) 
(Lindenbach and Rice 2005). Glycoproteins E1 (35 kDa) and 
E2 (70 kDa) are spliced from the precursor in the endo-
plasmic reticulum by the host's cellular signal peptidase. 
The glycoproteins E1 and E2 have ectodomains that are 
highly glycosylated. The E1 has about 4 to 5, and the E2 
has 11 N-glycosylation regions (Morozov and Lagaye 2018). 
E1 and E2 ectodomains contain cysteine residues in their 
structure at positions 8 and 18. It forms intra-molecular and 
inter-molecular disulfide bonds (Chigbu et al. 2019). That 
adheres the envelope proteins (E1, E2) to the host surface 
protein. Hypervariable region 1 HRV1) and hypervariable 
region 2 (HRV2) are two highly transmutable areas found 
in E2 (Prentoe et al. 2016). These areas aid HCV in evading 
the immune system and promoting hepatic cell infection. E2 
contains multiple invariant areas that aid in antibody neu-
tralization and play a vital role in the HCV's lifespan (Lavie 
et al. 2014).

The CD81 receptor protein is the main corridor of E2 
receptor binding and entry (Sharif et al. 2021), belongs to 
the tetraspanin (transmembrane 4) family of proteins, trav-
erses the membrane four times, and has two extracellular 
(EC) loops of 28 and 80 aa, designated as- EC1 and EC2, 
respectively (Levy et al. 1998). It weighs 26 kDa and con-
tains- a large extracellular loop (LEL), a small extracellu-
lar loop (SEL), an intracellular N- and c-terminal domain, 
and four membrane-spanning domains. E2 binds to the 
LEL region of CD81 effectively (Burlone and Budkowska 
2009). The engagement of CD81 activates various biologic 
responses, including cell adhesion, morphology, prolifera-
tion, activation, and differentiation of T, B, and other cell 
types (Levy et al. 1998). HCV interaction with CD81 I 
induces multiple downstream signaling pathways, includ-
ing Rho GTPase family members, Cdc42, and mitogen-acti-
vated protein kinase pathways (Farquhar et al. 2011). EFGR 
is a coenzyme that aids in developing the CD81-CLDN1 
complex and upregulates several downstream molecules 
in preparation for HCV genetic material insertion (Li et al. 
2021). Characterization of CD81 is through four conserved 

cysteine residues, including a ubiquitous CCG motif, and 
two additional cysteines in the LEL, that form critical 
disulfide bonds in LEL. Other regions of CD81, especially- 
the C-terminal region, transmembrane residues, and post-
translational processing, also play crucial roles in the HCV 
influx mechanism through the alternative pathways (Zona 
et al. 2014). The residues of the transmembrane domains and 
cysteine-mediated palmitoylation exhibit moderate inhibi-
tory effects on HCV entry (Fénéan et al. 2014). It indicates 
that the CD81 LEL chain is one of the potent critical deter-
minants of viral entry (Asselah et al. 2009).

Although several vaccine candidates have gone through 
a developmental phase, the genetic variation and high level 
of adaptability of the virus make it challenging to find an 
effective treatment for HCV infection (Ansaldi et al. 2014). 
In pharmaceutical sciences, plant-derived has garnered 
much attention as potential prophylactic-therapeutic agents 
against infectious diseases and immunological disorders 
(Jardim et al. 2018). The World Health Organization (WHO) 
announced a phytochemicals control strategy for HCV infec-
tion (Kumar et al. 2020). Plant-derived phytocompounds 
have a wide range of physiologically active properties, such 
as antiviral, anti-inflammatory, antifungal, and antibacterial 
actions, with the least possible side effects reported. Sev-
eral phytoactive substances naturally resist HCV (Patel et al. 
2021). Amyrin subunits have the properties and potentiality 
to suppress protease inhibitors-resistant HCV infection by 
preoccupying the CD81 receptors (Oh et al. 2021). The can-
nabinoid receptors- CB1, CB2; the production of cytokines; 
the expression of NF-KB, CREB; and cyclooxygenase-2 
have long-lasting antinociceptive and anti-inflammatory 
properties in both the 'α and β-Amyrins.' Amyrin subunits 
are hyperactive in silico pharmacokinetics and pharmacody-
namics properties. As a result, they are promising candidates 
for HCV treatment (Zhang et al. 2022).

Considering the aforementioned factors, the current study 
aimed to analyze the profiles of the CD81 receptor in terms 
of quantum tunnels; molecular-string networks; and super-
active positioning so that the target specificity of different 
amyrin subunits can be determined as novel bioactive com-
pounds following the molecular docking and dynamic simu-
lation approaches. Besides, the in-vivo study was conducted 
comprehensively to validate the findings of the pharmaco-
phores used before undertaking any clinical applications.

Materials and methods

Library construction of the phytochemical 
compounds

A library of 203 phytochemical compounds was con-
structed using the interface of PubChem (https:// pubch 
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em. ncbi. nlm. nih. gov/) and, ChEMBL (https:// www. ebi. 
ac. uk/ chembl/) database. The contemporary established 
literature reviews comprise- comprehensive clinical and 
nonclinical studies. Also, mentions the standard accepted 
drugs globally and functional bioactive agents (i.e., flavo-
noids, isoflavonoids, carotenoids, isoprenoids, phytoster-
ols, limonoids, etc.).

Pharmacokinetic analysis using ADMET and QSAR 
profiling

The compounds' pharmacokinetic properties determine 
the compounds' disposition inside the human body (Duran 
et al. 2020). To understand the absorption, distribution, 
metabolism, and excretion, server tools such as Molin-
spiration (https:// www. molin spira tion. com/ cgi- bin/ prope 
rties) and 'Swiss ADME' (http:// www. swiss adme. ch/ 
index. php) were used as preliminary (Ferdausi et  al. 
2022). Afterward, 'admetSAR 2.0' (http:// lmmd. ecust. 
edu. cn/ admet sar2/) was used for secondary verification 
purposes. Finally, the toxicity profiles of the compounds 
were conducted through 'pkCSM' (http:// biosig. unime lb. 
edu.au/pkcsm/prediction) (Dey et al. 2021). In the case of 
ADMET and QSAR analysis, parameters like- molecular 
weight, number of the hydrogen bond acceptor and donor, 
predicted octanol/water partition coefficient, number of 
rotatable bonds, intestinal absorption, total clearance, 
LD50, blood–brain barrier, hepatotoxicity, AEMS toxicity, 
maximum human tolerant doses, drug-likeness and num-
ber of Lipinski's rule violations, were considered (Nipun 
et al. 2021). The QSAR (quantitative structure–activity 
relationship) analysis of the desired ligands was analyzed 
using the PASS server (http:// www. way2d rug. com/ passo 
nline/) to finally validate the anti-microbial, antiviral, and 
anti-infective characteristics (Arefin et al. 2021).

Selection of the receptor macromolecule

The crystal structure of the human 'Cluster of Differentiation 
81 (CD81)' protein (PDB ID: 1G8Q) as the prime receptor 
for hepatitis C virus (HCV) was selected and downloaded 
from the protein data bank (https:// www. rcsb. org/) in PDB 
format (Arefin et al. 2021), where the X-ray diffraction reso-
lution was 1.60 Å. The FASTA format of the CD81 receptor 
macromolecule was run in the 'SEQATOMs' web interface 
(https:// www. bioin forma tics. nl/ tools/ seqat oms/) to detect 
the missing residues of the crystal structure of the protein 
(Brandt et al. 2008). More importantly, the absent residues 
of the protein's resolved structure's middle, C, and N ter-
minus regions were assessed by the BLAST function of 
SEQATOMs (Brandt et al. 2008).

Optimization of components

Optimization of receptor protein

The crystal structure of the receptor macromolecule- 
CD81 (PDB ID: 1G8Q) was optimized using 'UCSF Chi-
mera version 1.14' (https:// www. cgl. ucsf. edu/ chime ra/ 
downl oad. html) (Arefin et al. 2021). Here, non-interactive 
residues, ions, water molecules, unwanted ligands, and 
side chains except the 'A chain' of CD81 were removed. 
Besides, the missing hydrogen atoms are added (Fig. 1A). 
'Gasteiger method' for energy minimization of the protein, 
and the output file was saved as a 'pdb' format. Finally, the 
quantitative measurement of the minimized energy was 
accomplished through the 'YASARA' (http:// www. yasara. 
org/ minim izati onser ver. htm) (Arefin et al. 2021).

Optimization of ligands

The structures of the test ligands of interest mean- α, 
β, and δ-Amyrin (PubChem CID: 73,170, 73,145, 
12,358,447, respectively) were downloaded as SDF files 
from PubChem, following their ADMET and QSAR pro-
files, where Benzyl salicylate (PubChem CID: 8363) was 
used as the control (Fig. 1B). The accumulative charge of 
the ligands up to zero is removed, the energy minimization 
process regulates as an essential part of optimization, fol-
lowing the Gasteiger method of 'UCSF Chimera version 
1.14' (Yang et al. 2013). After energy minimization, each 
test ligand was kept as a 'mol2 file' (Fig. 1C–E).

Active site prediction of the CD81 receptor protein

Here, point-specific molecular docking is performed. 
The active sites of the receptor were initially identified 
using the 'CASTp Server' (http:// sts. bioe. uic. edu/ castp/) 
(Tian et al. 2018), where only a single region of 95.271 Å 
surface area was spotted. Secondary identification of the 
active sites was accomplished using 'Maestro-Schrödinger' 
(https:// www. schro dinger. com/ produ cts/ desmo nd), where 
four different active sites have resulted. The high-through-
put prediction of the exposed and hidden active sites of 
CD81 using the 'COACH-D' (https:// yangl ab. nankai. edu. 
cn/ COACH-D/) algorithm was conducted finally (Yang 
et al. 2013) to verify the authenticity of those sites iden-
tified by 'Maestro-Desmond.' The 'COACH-D' algorithm 
revealed- the four active sites (Fig. 2A–D) along with the 
nearby amino acid residues, their positional strength, and 
binding energy (Kcal/mol) simultaneously and also in 
comparison to each other (Fig. 2E).
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Fig. 1  Illustration of the optimized CD81 receptor protein along with the most active binding site (A); the control ligand benzyl salicylate (B); 
and the test ligands α, β, and δ subunits of amyrin (C–E)

Predicted 
active sites

Predicted residue 
positions

Predicted 
binding energy 

(Kcal/mol)

Predicted 
positional 
strength

A 40, 43, 44, 77, 78 -0.9 ##

B 10, 13, 14, 17 -2.3 *

C 13, 16, 49 -3.1 **

D 16, 19, 20, 24, 62 -5.2 ***

A B C

D E

Fig. 2  The annotation of the predicted docking poses of the ligands depending on the active site regions of the protein CD81 (A–D), along with 
their predicted energy restoration and the presumptive amino acid residues' involvements (E), through the COACH-D algorithm
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Quantum tunneling on the best active site of CD81

To assess the morphological features of the best active site 
(Fig. 2D) of the CD81 receptor, quantum tunneling param-
eters were analyzed considering- the protein tunnel length 
(Å), curvature (radius), and bottleneck (radius). In that case, 
three different protein tunnels were identified (Fig. 3A–C), 
each containing seven sub-tunnel clusters at various con-
figurations (Fig. 3D–F). In all the parameters, the third 
tunnel (Fig. 3C) is more viable than all the others, along 
with the sub-tunnel clusters it possesses (Fig. 3F). Thus, the 
third tunnel region of the active site of CD81 predicts the 
supramolecular docking point for any ligands. In all aspects 
of quantum tunneling of CD81, 'CAVER 3' (http:// www. 
caver. cz) (35; Kingsley and Lill 2014), and 'Site Map 2.6' 
(Schrödinger, LLC) were used (John et al. 2015).

Point‑specific molecular docking

Individual molecular docking of each of the optimized 
ligands is done, keeping the best active site of the CD81 
receptor into account through Maestro (Schrödinger, LLC) 
(Lyne et al. 2006). At the molecular docking operation, the 
macromolecule and the ligands convert into 'pdbqt file' for-
mat. The RMSD values assessed (Å) and the binding affini-
ties of each ligand–protein complex were conserved in 'CSV' 
format for further studies.

Post molecular docking analysis

The qualitative analysis and initial visualization of the 
ligand–protein complexes were undertaken by 'PyMOL 
version 2.5 (https:// pymol. org/2/) and 'Discovery Studio 
Visualizer version 3.0' (https:// disco ver. 3ds. com/ disco very- 
studio- visua lizer- downl oad). The ligand–protein complex 
files were saved in 'pdb' format each time. As the secondary 
study, a quantitative assessment of the number of hydropho-
bic interactions (non-covalent) and the number of hydro-
gen bond formation between each ligand-receptor complex 
was studied through 'LigPlot + version 2.2' (Dey et al.2021; 
Nipun et al. 2021; Arefin et al. 2021), before subjecting into 
the molecular dynamic simulation (MDS).

Molecular dynamic simulation (100 ns)

At the very beginning, the physical alterations and frequent 
interactions of the ligand-free CD81 receptor with the neigh-
boring water molecules and ions were observed for 10 ns, 
operating the 'CABS-flex 2.0' web-based simulator (http:// 
bioco mp. chem. uw. edu. pl/ CABSfl ex2/) (Kuriata et al. 2018). 
Afterward, the protein–ligand complexes were simulated up 
to 3.1 ns in the 'LARMD' simulation system (http:// chemy 
ang. ccnu. edu. cn/ ccb/ server/ LARMD/ index. php). It helps 
in understanding the Debye–Waller factor for thermosta-
bility (B-factor), residual cross-correlations (RCC), and a 
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Fig. 3  Demonstration of the three major protein tunnels of the CD81 
receptor (A–C) qualitatively resulted from the quantum mechanics of 
tunnel formation using the CAVER 3.0 tool. Besides, seven sub-tun-

nels of each of the three major tunnels were analyzed quantitatively 
depending on their length (D), curvature radius (E), and bottleneck 
radius (F)
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clustering dendrogram from the principal component anal-
ysis (Yang et al. 2020). Then a comprehensive molecular 
dynamic simulation of the ligand–protein complexes was 
conducted by 'Desmond Simulation Package' (Schrödinger, 
LLC, NY, USA) for 100 ns to analyze critical parameters- 
RMSD (Å), Cα, RMSF (Å), MolSA (Å2), Rg (nm), PSA (Å), 
SASA (Å2), and the MM-GBSA dG binding score (Ivanova 
et al. 2018). The grid box dimension was fixed at 'X: Y: Z', 
and Na + were added as the nullifying ion required to get the 
expected results. Here, assessment of the SASA and MolSA 
values, the probe radius was adjusted to 1.4 Å. All the result-
ing data were converted and conserved into 'CSV' format.

CD81‑mediated genetic string networking 
to determine the protein clustering

The CD81 gene-mediated string networks assess the coex-
pressed and overexpressed genes responsible for control-
ling the CD81 protein synthesis in living systems. Firstly, 
the CD81 receptor protein string was extracted from the 
STRING database (https:// string- db. org/). The individual 
nodes and edges of the protein were identified and char-
acterized using Cytoscape 3.8.2 (https:// cytos cape. org/) (Li 
et al. 2017), which operates through the Java Runtime Envi-
ronment (https:// www. oracle. com/ java/ techn ologi es/ downl 
oads/). Secondly, the genes responsible for encoding the 
CD81 receptor and the others significantly interconnected 
with the CD81 protein were screened using GeneMANIA 
(https:// string- db. org/) (Warde et al. 2010). The protein 
clustering was accomplished considering- nodes of string 
formation; neighborhood on the chromosome; gene-fusion; 
phylogenetic co-occurrence; homology; coexpression; 
experimentally determined interactions; database annota-
tion; automated text mining, and the combined scores. The 
clustering of the interactive CD81 nodes was constructed 
with the tools- Morpheus (https:// softw are. broad insti tute. 
org/ morph eus) (Molinari et al. 2021) and Heatmapper web 
interface (http:// www2. heatm apper. ca/ expre ssion/) (Babicki 
et al. 2016). Finally, the CD81 connected-gene clusters 
responsible for entering the viral particles (E2 protein of 
HCV) inside the host were identified by GeneMANIA 
(https:// string- db. org/) (Warde et al. 2010).

DMN‑induced modeling of hepatic fibrosis in mice

In this study, Swiss albino mice were modeled for study-
ing dimethylnitrosamine (DMN)-induced hepatic fibrosis 
study (Thirupathi et al. 2017), grouping them into con-
trol group (CG), negative control group (NCG), treatment 
group-1 (TG-1) and treatment group-2 (TG-2) (Al Azad 
et al. 2020a). In the NCG, DMN was administrated, whereas 
TG-2 was given both the DMN and β-amyrin. In contrast, 
CG and TG-1 were totally free from DMN. Oxidative-stress 

and antioxidant markers were also studied comprehensively 
(Table 7) such as Vit. C (mmol/ml), CAT (µmol/ml), GSH 
(mg/ml), GPX (mg/ml), SOD (U/ml), and MDA (nmol/ml). 
In addition, liver-specific serological parameters mean alka-
line phosphatase, ALP (IU/L), lactate dehydrogenase, LDH 
(IU/L), aspartate aminotransferase, AST (IU/L), alanine 
transaminase, ALT (IU/L) were analyzed (Table 8) (Thiru-
pathi et al. 2017).

Statistical analysis and graphical representation

The resulting data from the molecular dynamic simulation 
(100 ns) and the aforementioned in vivo steps were statisti-
cally analyzed using 'R programming' (version R-4.0.2 for 
Linux) (Akter et al. 2020; Islam et al. 2021; Paul et al. 2022; 
Morshed et al. 2022), and 'GraphPad Prism version 8.0.1' 
software package (for Mac OS) (Azad et al. 2020a, b; Rasha-
duzzaman et al. 2019; Al Azad et al. 2022).

Results

Detection of protein active site

In the CD81 receptor, four active sites have been identified 
(Fig. 2), where the fourth one is predicted to be the most 
active site (Fig. 2D) for molecular docking. According to the 
number of amino acids residues involved in that location and 
the expected restored energy level (Fig. 2E). In contrast, the 
rest of the active sites (Fig. 2A–C) were found to be inferior 
to that of the fourth one in all aspects (Fig. 2E). Finally, the 
quantum tunneling algorithm was applied only on the fourth 
active (Fig. 2D) site in characterizing the location for super 
molecular docking.

Quantum mechanics for protein tunneling

A Quantum tunneling algorithm applies to the best active 
position (Fig. 2D) of the CD81 receptor, from which three 
different protein tunnels were identified (Fig. 3A-C). Inter-
estingly, each of these tunnels contains a cluster of seven 
sub-tunnels (Fig. 3D–F). Each of the significant tunnels, 
along with the sub-tunnel clusters, was distinctive and 
unique to each other, considering the parameters such as 
tunnel length (Å), curvature (radius), and bottleneck radius 
(radius). It's quite transparent that, the number of amino 
acids near the bottleneck point of each of the significant 
tunnels are different from each other, meaning- Thr166, 
Thr167, Asn180, Leu185, Asn184, Cys157, and 163Thr 
were observed in the first considerable tunnel (Fig. 3A). In 
the same way, Cys156, Asp189, Cys190, Ser160, Gly158, 
Thr166, and Asn184 are observed in the second central tun-
nel (Fig. 3B). In contrast to these two tunnels, the length 
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and curvature of the third one are comparatively higher, 
because of the involvement of Lys187, Cys156, Pro176, 
Cys175, Ser179, Gly178, Asn180, and Ser 183 in its periph-
ery (Fig. 3C). The average length of all the sub tunnels of 
tunnel cluster-1 was 1.495986425 Å, while tunnels cluster-2 
and 3 contain 9.098689431 Å and 10.46412388 Å respec-
tively (Fig. 3D). Similarly, the average curvature radiuses 
of the tunnel clusters were 1.008610157, 1.418848638, and 
1.363982938 for cluster-1, 2, and 3 respectively (Fig. 3E). 
In addition, the average bottleneck radius of the three tun-
nel clusters of CD81 was 1.870566512, 1.020206265, and 
0.998577067 respectively (Fig. 3F).

Pharmacokinetic analysis of the ligands

All four ligands (α-amyrin, β-amyrin, and δ-amyrin as test, 
and benzyl salicylate as control) showed significant max-
imum-tolerated doses (MTD), maintaining the range of 
-0.56 to 0.736 log mg/kg/day. The Amyrin subunits have no 
hepatotoxicity or AMES toxicity, while the control ligand 
shows partial hepatotoxicity. There was no violence regard-
ing Lipinski's rules in any of the three test ligands (Table 1). 
The values of Log P of Amyrins were more than 8.0, while 
the control's value of Log P was only 2.74. Except for 
α-amyrin, all three compounds' total clearance (TC) values 
were positive (< 0.7). The blood–brain-barrier values of the 
test ligands were over 0.65, almost double that of the con-
trol. Among the test ligands, α-amyrin resulted in maximum 
intestinal absorption (94.062%). The  LD50 level of α-amyrin 
was the highest (2.48) among all the ligands (Table 1). The 
QSAR profile indicates strong anti-microbial potentialities 
in α-amyrin than in the others, whereas an anti-infective effi-
cacy in benzyl salicylate has promising anti-infectivity. Sur-
prisingly, all the ligands (including control) showed strong 
antiviral effects (Table 2).

Supramolecular docking and post‑docking analysis

The control ligand benzyl salicylate has the lowest bind-
ing affinity (− 6.8 kcal/mol). In contrast, α-amyrin had a 

comparatively higher binding energy (− 7.3 kcal/mol) than 
the control ligand. The highest binding energy within the 
ligand–protein complexes resulted from the β and δ-amyrin 
(− 7.9 kcal/mol). Considering the binding affinities (Kcal/
mol) and the RMSD (Å) values following both the upper and 
lower bound scores, the amyrin subunits were found superior 
to the control ligand (Table 3). The control ligand benzyl 
salicylate forms two hydrogen bonds with 1G8Q macromol-
ecule at Asn184 (3.02 Å) and Thr166 (2.97 Å) amino acids, 
and six hydrophobic bond interactions with amino acid resi-
dues Ile161, Leu185, Lys187, Asp189, Ser160, and Thr 163 
(Table 4). The candidate ligand compound α-amyrin formed 
no hydrogen bond interaction within the ligand-macromol-
ecule complex. However, it exhibits five hydrophobic bond 
associations on Leu41, Lys26, Leu25, Ile24, and Asn42 

Table 1  Pharmacokinetics profiling for the ligand validation using ADMET and QSAR analysis

QSAR quantitative structure–activity relationship, ADMET absorption, distribution, metabolism, excretion, and toxicity, MoW molecular weight, 
g/mol, LogP predicted octanol/water partition coefficient, H-Ac no. of hydrogen bond acceptor, H-Do no. of hydrogen bond donor, NRB no. of 
rotatable bonds, BBB blood brain barrier, NLV no. of Lipinski’s rule violations, DL drug-likeness, IA intestinal absorption, % absorbed, TC total 
clearance, log ml/min/kg, AT AMES toxicity, LD50 oral rat acute toxicity, HT hepatotoxicity, MTD maximum tolerated dose for human, log mg/
kg/day

Ligands CID MoW LogP H-Ac H-Do NRB BBB NLV DL IA TC AT LD50 HT MTD

Benzyl salicylate 8363 228.24 2.75 3 1 4 0.362 0 Yes 93.023 0.61 No 1.94 No 0.736
α-amyrin 73170 426.72 8.025 1 1 0 0.674 1 Yes 94.062 0.12 No 2.47 No − 0.571
β-amyrin 73145 426.72 8.168 1 1 0 0.667 1 Yes 93.733 − 0.044 No 2.48 No − 0.56
δ-amyrin 12358447 426.72 8.313 1 1 0 0.668 1 Yes 93.665 − 0.045 No 2.35 No − 0.575

Table 2  QSAR based bioactivity prediction for ligand validation

Compounds Prediction of activity spectra for substances 
(Pa = 0.3 to 0.7)

Anti-infective Antiviral Anti-
micro-
bial

Benzyl salicylate  × ✓ ✓
α-amyrin  × ✓  × 
β-amyrin  × ✓  × 
δ-amyrin ✓ ✓  × 

Table 3  Binding affinity of the protein–ligand complexes

Receptor Ligands Binding 
affinity 
(Kcal/mol)

RMSD (Å)

Upper bound Lower bound

CD81 Benzyl 
salicylate

− 6.8 20.705 18.911

CD81 Alpha-
amyrin

− 7.3 21.74 19.692

CD81 Beta-amyrin − 7.9 8.228 2.922
CD81 Delta-amyrin − 7.9 8.228 2.922
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residues (Fig. 5A). Similarly, β-amyrin forms one hydrogen 
bond interaction with Glu16 (3.11 Å) on the CD81 recep-
tor (Fig. 5B) and six hydrophobic interactions with Trp36, 
Asp15, Asp33, Phe47, Cys32, Glu31 (Table 4). Lastly, the 
ligand compound δ-amyrin interconnects with Asp23 resi-
due by forming a hydrogen bond length of 2.97 Å (Fig. 5C) 
and six hydrophobic interactions, namely- Lys20, Asn42, 

Ile24, Leu41, Glu40, and Lys26 of 1G8Q macromolecule 
(Table 4).

Molecular dynamic simulation (100 ns)

The RMSD values of the control ligand benzyl salicylate 
in association with protein ranged between 0 Å to 1.759 Å. 

Table 4  Analysis of the hydrogen bonding and noncovalent (hydrophobic) interactions between the ligand atoms of each of the ligands and the 
amino acid residues of CD81 following the supramolecular docking

Macromolecule Ligands Point specific amino acid interactions with the ligand atoms

Hydrogen bond interactions Hydrophobic interactions

CD81 Benzyl salicylate Asp33 (3.18 Å and 3.26 Å), Trp36 
(3.22 Å)

Glu31, Asn29, Asp15, Phe47, Cys32

CD81 α-amyrin None Leu41, Lys26, Leu25, Ile24, Asn42
CD81 Β-amyrin Glu16 (3.11 Å) Trp36, Asp15, Asp33, Phe47, Cys32, Glu31
CD81 δ-amyrin Asp23 (2.97 Å) Lys20, Asn42, Ile24, Leu41, Glu40, and Lys26

B

C

A

Fig. 4  The complex formed between the control ligand benzyl salicy-
late and the CD81 receptor (A), where the qualitative ligand–protein 
interaction is represented (B), along with their quantitative measure-
ments considering the hydrogen bond interactions and non-covalent 

(hydrophobic) interactions (C). Hydrogen bonds are referred to as 
green lines, whereas the red lines represent hydrophobic (noncovalent 
interactions)
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Fig. 5  Representation of the hydrogen bonds and hydrophobic inter-
actions of the ligand atoms with different amino acid residues at the 
point of their supramolecular docking. Though α-amyrin formed no 

hydrogen bonds (A), β-amyrin formed a single hydrogen bond with 
Glu16 (3.11 Å) (B); whereas δ-amyrin formed with Asp23 (2.97 Å) 
(C)



 In Silico Pharmacology            (2023) 11:8 

1 3

    8  Page 10 of 20

0 250 500 750 1000

0.0

0.7

1.4

2.1

Pr
ot

ei
n

R
M

SD
(Å

) α-amyrin

β-amyrin

δ-amyrin

BSC

Static deflection point

MDS@100ns

A

#Frames
0 250 500 750 1000

0

17

34

51

Li
ga

nd
R

M
SD

(Å
) α-amyrin

β-amyrin

δ-amyrin

BSC

MDS@100ns

B

#Frames

0 19 38 57

0.0

1.3

2.6

3.9

C

α-amyrin

β-amyrin

δ-amyrin

BSCOverlapping
thresholds

C
MDS@100ns

#Residues (n=56)
0 19 38 57

0.0

1.3

2.6

3.9

Pr
ot

ei
n

R
M

SF
(Å

) α-amyrin

β-amyrin

δ-amyrin

BSC

MDS@100ns

D

#Residues (n=56)

Fig. 6  Illustration of the results obtained from the molecular dynamic 
simulation (MDS) parameters of all the ligands complexed with the 
CD81 receptor following the 100  ns of runtimes, such as protein 

RMSD (A), ligand RMSD (B), Cα (C), and the protein RMSF (D). 
 BSC (benzyl salicylate)

0 250 500 750 1000

0

100

200

300

400

#Frames

M
ol
SA

(Å
2 )

α-amyrin

β-amyrin

δ-amyrin

BSC

MDS@100ns

A

0 250 500 750 1000

0.0

0.9

1.8

2.7

3.6

4.5

#Frames

Rg
(n
m
)

α-amyrin

β-amyrin

δ-amyrin

BSC

MDS@100ns

B

0 250 500 750 1000

0

25

50

75

100

125

#Frames

PS
A
(Å

)

α-amyrin

β-amyrin

δ-amyrin

BSC

MDS@100ns

C

0 250 500 750 1000

0

230

460

690

#Frames

SA
SA

(Å
2 )

α-amyrin

β-amyrin

δ-amyrin

BSC

MDS@100ns

D

Fig. 7  The values resulting from the MDS parameters- MolSA (A), Rg (B), PSA (C), and SASA (D) at 100 ns are illustrated accordingly



In Silico Pharmacology            (2023) 11:8  

1 3

Page 11 of 20     8 

The lowest value for calculating the RMSD value is set at 
0 Å for all the test ligands. The candidate ligand α-amyrin 
display the highest RMSD value among the four ligands at 
2.053 Å, followed by β-amyrin and δ-amyrin at 1.759 Å 
and 1.748 Å, respectively (Fig. 6A). On the contrary, the 
ligand RMSD profile of α-amyrin was distinctive (0 Å to 
38.037 Å) compared to the other three candidates includ-
ing the control Benzyl salicylate. In contrast, β-amyrin took 
the highest range between (0 Å to 49.768 Å) (Fig. 6B). The 
interactive alpha carbon atoms (Cα) resulted between 0.345 
and 4.02 for the control ligand benzyl salicylate. In contrast, 
α-amyrin scored the lowest number of α-Carbon interac-
tions ranging between 0.331–3.681. In contrast, beta amyrin 
and delta amyrin provided a similar range between 0.345 
and 4.02 (Fig. 6C). The RMSF values ranged from 0.364 to 
4.114 Å for the control ligand, which is the highest among 
all these four ligands. The α-amyrin showed an RMSF fluc-
tuation range from 0.348 Å to 3.705 Å. In contrast, the beta 
amyrin and delta amyrin showed similar values with upper 
and lower bond ranges at 4.114 Å to 0.364 Å and 4.092 to 
0.368 Å, respectively (Fig. 6D).

At a probe radius of 1.4 Å, the MolSA values (which 
is equivalent to the van der Waals surface area of a water 
molecule) of α-amyrin (159.777–169.075 Å2) were the 
lowest in the molecular surface area range (Fig. 7A), as 
compared to the rest of the three candidate ligands includ-
ing the control. The control ligand benzyl salicylate, along 
with β and δ-amyrin, demonstrate the highest value range, 
375.331–390.034 Å2 (Fig. 7A). The control showed a simi-
lar capacity to another candidate, β-amyrin (4.25–4.436 nm) 
(Fig. 7B). The delta amyrin, provides a slight deviation 

from the above value of the other two with a range between 
4.25 nm and 4.371 nm (Fig. 7B). Following other MDS 
parameters, α-amyrin exhibited lowest value range distinct 
from others. In case Rg, which is 2.37–2.814 nm. In contrast, 
in the control ligand benzyl salicylate, the radius of gyration 
(Rg) was 4.209–4.43 nm (Fig. 7C). The α-amyrin-1G8Q 
complex show the highest PSA values (109.106–121.875 Å), 
which is much higher than the values of control benzyl salic-
ylate, candidate β, and δ-amyrin ranging from 33.324 Å to 
41.648 Å (Fig. 7C).

The SASA analysis of the 57 residues of the CD81 mac-
romolecule in association with the four different ligands 
revealed that at water probe radius 1.4 Å, the polar and 
apolar energy were 1914.83 Å2 and 2196.92 Å2 (Table 5), 
respectively for both the β-amyrin and δ-amyrin. However, 
α-amyrin showed the lowest range of fluctuation profile with 
a lower value of 104.599 Å2 and an upper value of 352.148 
Å2 (Fig. 7D). The control ligand benzyl salicylate, along 
with β, and δ-amyrin produced the highest fluctuation range 
(314.694–662.525 Å2) surprisingly (Table 5). Besides, there 
was no fluctuation in the gradient of calculation, and differ-
ent unknown areas were observed in every ligand to solvent 
(water) association (Fig. 7D).

According to the MMGBSA α-dG Binding Score, 
α-amyrin obtained the highest negative values 
− 55.00333347 kcal/mol), as followed by β, and δ-amyrin 
with − 47.37252451 and − 43.88297528 kcal/mol respec-
tively. In contrast, the control scored − 36.28429945 kcal/
mol as the endpoint energy (Table 6).

CD81‑mediated gene strings behind the protein–
protein clustering

The CD81 gene (responsible for encoding CD81 receptor 
protein) strongly interacts with a group of genes of different 
functions (Fig. 8). The overall CD81 gene-string network 
comprises several genes. In contrast, the coexpression of 
CD81 was observed along with the genes- IFITM1, IFITM3, 
CD37, C3, CD9, CD19, CD82, CD63, TSPAN4, ITGA4, 
GFI1, IGSF8, ITGB1, PI4KA, and PTGFRN (Fig. 8A). Par-
ticular genes are responsible for entering foreign particles 
inside the cellular system via coding virus-protein selective 

Table 5  Solvent accessible 
surface area referring the area 
to energy ratio over the entire 
dynamic simulation process 
(100 ns) with polar and apolar 
regions precisely

WPR water probe radius, GIC gradient in calculation, TNR total number of residues

Macromolecule Ligand WPR (Å) GIC TNR Total area/energy

Polar Apolar Unknown

1GBQ Benzyl salicylate 1.400 No 57 1914.83 2196.92 0.00
1GBQ Alpha amyrin 1.400 No 57 1914.83 2196.92 0.00
1GBQ Beta amyrin 1.400 No 57 1914.83 2196.92 0.00
1GBQ Delta amyrin 1.400 No 57 1914.83 2196.92 0.00

Table 6  Binding free energy assessment using MM/GBSA calcula-
tion

Protein Ligands 
(PubChem 
CID)

Ligand name MMGBSA dG bind-
ing Score (kcal/mol)

CD81 8363 Benzyl salicylate − 36.28429945
CD81 73170 Alpha-amyrin − 55.00333347
CD81 73145 Beta-amyrin − 47.37252451
CD81 12358447 Delta-amyrin − 43.88297528
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receptors were found correlated and interconnected with 
the CD81 gene, which includes- IFITM1, OFOTM2, and 
IFITM3 (Fig. 8B). The coded proteins of the interactive 
genes including C81 were identified and clustered. In protein 
clustering, proteins like- CLDN1, CD19, CD4, CR2, and 
IGSF8 were found to be significant for CD81 receptor pro-
tein, according to their genetic expression modules. CD19 
possessed the second-highest clustering capacities next to 
CD81 (Fig. 8C).

In vivo assessments

Considering all the parameters considered for the in vivo 
study, β-amyrin was the most effective targeted compound 
in protecting against HCV viral infection and reducing the 
risks of hepatic fibroblasts. As compared to the control (CG) 
and the negative control (NCG) groups, the treatment group 
1 (TG-1) and 2 (TG-2) got significant results (P < 0.0001), 
where doses effects played a pivotal role in all aspects in 
determining the TNF-α (Fig. 9). The impact of using DMN 
in combination with the β-amyrin results is almost equal to 
the group administrated DMN-free supplements of β-amyrin 
means P < 0.001 in all the cases (Tables 7, and 8). Due to 
having most values in the range of standard pharmacologi-
cal parameters, β-amyrin was found best among the others 
in vivo because α-amyrin fluctuates the basic serological 
parameters comparatively more randomly than β.

Discussion

HCV infection affects roughly 210 million people 
worldwide, with an average prevalence of 3% (Jafri and 
Gordon 2018) of the global population, demonstrating 
the need for effective drugs and therapeutics. How-
ever, multiple vaccine candidates have gone through 
the development process (Ansaldi et al. 2014). Phyto-
compounds generated from plants have physiologically 
active qualities, such as antiviral, anti-inflammatory, 
antifungal, and antibacterial activities, with partial 
adverse effects. HCV resistance has been found in sev-
eral phytocompounds (Patil et al. 2022), among which 
both α and β amyrin can exhibit hyperactivity in silico 
pharmacokinetics. This makes them suitable HCV can-
didate therapeutics (Zhang et al. 2022).

Active‑site identification considering quantum 
tunneling of CD81 protein

The active sites of the CD81 receptor were predicted 
to understand the best active binding sites of the pro-
tein (Fig. 2) following the qualitative and quantitative 

measurements using CASTp and COACH-D algorithms, 
respectively (Nipun et al. 2021). Among the active sites, 
the fourth one was found more viable (Fig. 2D), consid-
ering different predicted amino acid residues, binding 
energy, and binding strength obtained (Fig. 2E).

Quantum tunnel properties like- tunnel length, cur-
vature, and bottleneck radius (Nipun et al. 2021), vali-
date the potential of accommodating the test ligands 
with the best possible binding affinities (Fig. 3). In this 
in-silico study, three significant tunnels are found in the 
study protein receptor CD81, where each of the tun-
nels contains seven sub-tunnel clusters. Each sub-tunnel 
is unique and distinctive, established on the number of 
amino acid residues at their bottleneck point. From this 
qualitative analysis of these tunnels, it is prominent that 
the third major tunnel has a higher length and curvature 
involved with more amino acids than the other two tunnels 
(Fig. 3A–C). The average length of the third tunnel clus-
ter was highly significant (10.46412388 Å) than cluster-1 
and 2 (1.495986425 Å and 9.098689431 Å), respectively 
(Fig. 3D). In contrast, the second tunnel cluster possesses 
the best curvature radius (1.418848638) among all the 
clusters (Fig. 3E). Additionally, the bottleneck radius of 
the first tunnel cluster was the highest (1.870566512) of 
any other clusters identified (Fig. 3F). All the parameters 
above mean- tunnel length, curvature, and bottleneck 
radius are the major factors to validate the predictive super 
docking position of any protein's active site (Kingsley and 
Lill 2014).

Profiling of the in silico pharmacokinetics 
of the ligands

In the ADMET analysis, according to Lipinski's rules, five 
selective parameters were analyzed, which include a molecu-
lar weight of 500; a maximum of five hydrogen bond donors; 
a maximum of 10 hydrogen bond acceptors; a partition coef-
ficient (log P) of 5; and a molar refractivity of 40–130 (Mane 
et al. 2022). The molecular weight for all our ligands was 
less than 500. However, Log P for only the benzyl salicylate 
(control ligand) was less than five, and the rest (test ligands) 
were more than 8. Hydrogen bond donors were 1 for all 
the drugs, and hydrogen bond acceptors were 3 for benzyl 
salicylate and 1 for the other drugs. Overall, there was no 
violence related to Lipinski's rules for any targeted ligands 
(Table 1). A QSAR analysis was conducted to ensure the 
accuracy of the major compounds (Parikesit et al. 2021). 
According to the QSAR profile, α-amyrin was identified as 
an antimicrobial agent, while anti-infective activity was only 
found in benzyl salicylate (Table 1). In addition, antiviral 
potentialities were seen in ale four ligands, which validates 
the selection of the lead ligand compounds for targeting 
CD81 (Table 2).
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Supramolecular docking and post molecular 
docking analysis of the superpositions' of ligands

The supramolecular docking of the control ligand (Fig. 4) 
and the test ligands (Fig. 5) at the most active site of the 
CD81 receptor revealed diversified binding affinities (Kcal/
mol) following their upper-bound and lower-bound RMSD 
(Å) values (Table 3). Depending on the molecular docking 
scores of the parameters (Paul et al. 2022), in the present 
study- β and δ-amyrins showed their significant potential-
ity over the others with − 7.9 kcal/mol energy (Table 3). 
The interactions of different atoms of the ligands with the 
amino acid residues of CD81 were observed following the 
nature of the hydrogen bonds and hydrophobic interactions 
among them [34,36]. The control ligand benzyl salicylate 
formed two hydrogen bonds (Fig. 4B, C), whereas the β 
and δ-amyrins formed a single bond each (Fig. 5B, C). 

Though α-amyrin didn't form any hydrogen bond specifically 
(Fig. 5A), it possessed five different hydrophobic interac-
tions with the neighboring amino acid residues of CD81 
(Table 4). Usually, both hydrogen bond and hydrophobic 
interactions (non-covalent) are needed to profile the thera-
peutic efficiencies of the test ligands, where the increased 
amount of hydrogen bonds stands for the increased targeted-
binding strength of the ligands of interest (Paul et al. 2022). 
Depending on the binding affinity (Kcal/mol), the control 
ligand is inferior to all the ligands with -6.8 kcal/mol energy, 
despite forming a single hydrogen bond (Table 3).

Molecular dynamic simulation (100 ns)

The molecular dynamic simulation (MDS) expresses the 
behavior of proteins in detail when in complex with the tar-
geted ligands for a certain period (ns) (Hollingsworth and 
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Fig. 8  CD81 mediated overall genetic string interactions among the 
coexpressed genes are represented (A) simultaneously with the gene 
clusters responsible for regulating HCV E2 protein entry inside the 
cell upon any compromization (B). In addition, the genetic informa-
tion of the string of CD81 gene in establishing CD81 receptor protein 

clusters with the other protein groups responsible for protecting cells 
from E2 protein attachment was established (C). The gold-colored 
genes (B) are the cluster of protecting cells from the HCV influx 
mechanism
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Dror 2018). It provides a perspicuous idea of the stability 
of the protein–ligand complexes (Jamroz et al. 2013). In 
the current study, the MDS of the ligand-free1 was initially 
conducted for 10 ns on CABS-flex 2.0 to observe natural 
changes in structural orientation and interactions with adja-
cent water molecules and ions (Kurcinski et al. 2015). The 
ligand–protein interactions were observed for 3.1 ns using 
LARMD (Yang et al. 2020]. Finally, 100 ns of the molecular 
dynamic simulation was conducted comprehensively with 
Desmond-Schrodinger to determine the parameters (Yang 
et al. 2020; Ivanova et al. 2018) root mean square devia-
tion (RMSD), root means square fluctuation (RMSF), the 
radius of gyration (Rg), solvent-accessible surface area 
(SASA), polar surface area (PSA), and molecular surface 
area (MolSA), MMGBSA dG scores (Figs. 6 and 7). The 
RMSD values of the candidate ligands were within a justifi-
able range observed (Fig. 6A), where the minimum values 
didn't cross 3 Å. Lower RMSD values indicate more sta-
ble conformation of ligands, intensely observed for β and 

δ-amyrins, ensuring that enzymatic structure is not ham-
pered. In the beginning, RMSD values for all the ligands 
were 0 Å, respectively, and α-amyrin displayed the highest 
RMSD value, 2.053 Å, after 100 ns of MDS. However, β 
and δ-amyrins demonstrated lower RMSD values at 1.759 Å 
each (Fig. 6A). The control ligand Benzyl-salicylate scored 
between 0 Å to 1.759 Å as reported in established litera-
ture as well (Olaby et al. 2013). In the case of the ligand 
RMSD, the same phenomena were found for both the β and 
δ-amyrins, where the α-amyrin fluctuation range was the 
highest, making it a less effective drug candidate (Fig. 6B) 
than others.

The Cα values were significant for the β and δ-amyrins 
0.45 to 3.88 at the end of the 100 ns molecular dynamic 
simulation. In contrast, the values for α-amyrin were scored 
from 0.39 to 3.68, making itself a comparatively less sta-
ble ligand candidate against the CD81 receptor (Fig. 6C). 
In RMSF calculation, high divergence and flexibility dur-
ing a simulation indicate that the protein structure is weak 
and unstable (Ghosh et al. 2021). RMSF profiles of all pro-
tein–ligand complexes from 57 protein residues underwent 
crucial alterations over time. The control ligand exhibits 
RMSF values from 0.364 to 4.114 Å, the highest among 
all the four ligand–protein complexes. The α-amyrin shows 
RMSF fluctuation differences from 0.348 Å to 3.705 Å, 
in contrast to β and δ-amyrin. Here they exhibit similar 

Table 7  Impact of β-amyrin on OSM and antioxidant marker in 
hepatic fibrosis of mice (DMN-induced)

CG control group; NCG negative control group; TG treatment group; 
OSM oxidative stress marker; CAT  catalase; GSH glutathione reduced 
content; GPX glutathione peroxidase; SOD superoxide dismutase; 
MDA malondialdehyde
σ Comparison of NCG with CG and TG-1
† Value of significance P < 0.001 (α = 0.05)
‡ Comparison of NCG with TG-2

Parameters Groups

CG NCGσ,† TG-1 TG-2†,‡

Vit. C 
(mmol/
ml)

0.61 ± 0.98 0.53 + 1.04 0.78 + 0.09 0.69 + 0.75

CAT 
(µmol/
ml)

4.61 + 0.64 2.15 + 0.32 4.29 + 0.31 4.32 + 0.86

GSH (mg/
ml)

4.59 + 0.57 1.59 + 0.35 5.69 + 0.76 5.65 + 0.87

GPX (mg/
ml)

7.05 + 0.61 3.95 + 0.18 6.59 + 0.87 6.48 + 0.96

SOD (U/
ml)

1.10 + 0.02 0.79 + 0.25 1.03 + 0.19 1.19 + 0.03

MDA 
(nmol/
ml)

14.26 + 0.21 20.13 + 0.86 11.89 + 0.87 12.02 + 0.65
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Fig. 9  Impacts of β-amyrin in regulating the TNF-α in DMN-induced 
mice model. TG-2 scored P < 0.001 in correlation to NCG (**), 
whereas the correlation among each of the groups except NCG is 
P < 0.0001 (*) in scale of significance P < 0.05. CG is insignificant to 
the NCG means P < 0.08 (##)
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values with an upper bound of 4.114 Å and a lower bound 
of 0.364 Å (Fig. 6D). Similar findings have been reported in 
several recent pieces of literature (Dutta et al. 2021).

The molecular surface area (MolSA) represents the sta-
bility profiles of any ligands-protein complex in MDS (Are-
fin et al. 2021). After the 100 ns molecular simulation, the 
α-1G8Q complex demonstrated the lowest value and was 
thus considered the least stable ligand (Fig. 7A). On the 
contrary, the rest of the three ligands (benzyl salicylate, β, 
and δ-amyrins) formed stable complexes according to their 
MolSA values. Similarly, the radius of gyration (Rg) is 
another vital parameter for evaluating the stability of the 
docked protein–ligand complexes, which measures the dis-
tance between the center of mass and the terminal protein 
(Yamamoto et al. 2021). Due to having the lowest radius of 
gyration values, α-amyrin was found to be comparatively 
stable. The higher Rg value represents fragile protein confor-
mation, whereas the lower Rg value depicts the compactness 
of the protein molecule (Zaki et al. 2022). In this sense, the 
higher Rg values of the control ligand, β, and δ-amyrins, 
revealed their weak protein folding rendering and compact-
ness (Fig. 7B). This description of Rg values is strongly 
supported by other literature (Ayyamperumal et al. 2021).

Polar surface area is one of MDS's key elements, which 
deals with the accessibility of the drug molecule inside the 
blood–brain barrier (Alsenan et al. 2020). The accepted 
range of PSA of a proper drug molecule exhibiting the 
ability to cross the blood–brain barrier falls between 40 
Å2 < X ≤ 90 Å2 (X = substance) (Nipun et  al. 2021). In 
this current study, the α-amyrin ligand exemplifies a much 
higher PSA value ranging from 109.106 Å2 to 121.875 Å2, 
deviating from the standard range. The rest of the ligands, 
including the control, were within an inclusive PSA range 
of 33.314 Å2 < X ≤ 41.648 Å2 (X = substance). It is a very 
positive result for the β and δ-amyrins to be used as poten-
tial drugs for the targeted site of CD81 (Fig. 7C). On the 
other hand, the drug binding to a protein can influence the 
solvent-accessible surface area. Hydrophobic interaction 
is one of the essential intermolecular interactions between 

the docked protein–ligand complex and the surround-
ing water molecules. Hydrophobic bonds are established 
among non-polar amino acids to ensure the stability of the 
protein–ligand complex in an aqueous environment solu-
tion (Shi et al. 2019). The shielding of the non-polar amino 
acids in hydrophobic cores moves away from the aqueous 
environment leading to decreased SASA values. In this in 
silico study, after the 100 ns molecular dynamic simula-
tion, only α-amyrin provided the lowest SASA value range 
(104.599–352.148 Å2) than the other ligands, including 
the control (Fig. 7D), referring to α-amyrin as the superior 
ligand to others (Khan et al. 2020). The total area-to-energy 
ratio for all the ligands, based on the water probe radius 
(1.4 Å), was the same for both the polar (1914.83) and apolar 
(2196.92) considerations. No unknown surface was available 
for all the ligand–protein complexes (Table 5). According 
to the MMGBSA dG binding score, all the amyrin subu-
nits showed an extreme endpoint energy level (Kcal/mol) 
than that of the control ligand (Table 6), even at the very 
last frames of the molecular dynamics simulation. A higher 
negative value could be achieved, and the more stable 
ligand–protein complex formation is considered an essen-
tial precursor for in silico bioprospecting of drug candidates 
(Pandey et al. 2015).

Analysis of the gene–gene interaction (GGI) 
behind the protein–protein interaction (PPI) 
of CD81

The CD81 receptor protein contains a very complex string 
networking in its genetic stage from which the signal of clus-
tering with other related proteins is triggered. The CD81 
gene is the main coder of the CD81 receptor, which inter-
acts with a group of genes. Among all those genes, the rela-
tionship among the CD81, CD82, CD19, and IFITM1 was 
found to be highly significant (Wilkins et al. 2013; Narayana 
et al. 2015; Harris et al. 2010) in terms of genetic coexpres-
sion inside the living systems (Fig. 8A). Unlike any average 
coexpression, not all genes in any gene-string network are 

Table 8  β-amyrin effects on the 
serum-liver-marker enzymes 
in mice infected with hepatic 
fibroblast (DMN-induced)

CG control group; NCG negative control group; TG treatment group; ALP alkaline phosphatase; LDH lac-
tate dehydrogenase; AST aspartate aminotransferase; ALT alanine transaminase
σ Comparison of NCG with CG and TG-1
† Value of significance P < 0.001 (α = 0.05)
‡ Comparison of NCG with TG-2

Factors/parameters Groups

CG NCGσ,† TG-1 TG-2†,‡

ALP (IU/L) 30.47 ± 1.86 71.31 ± 1.11 30.13 ± 0.98 31.12 ± 0.56
LDH (IU/L) 75.71 ± 1.29 115.14 ± 3.11 76.43 ± 3.09 79.23 ± 2.54
AST (IU/L) 59.11 ± 0.23 139.99 ± 9.01 60.93 ± 1.01 61.03 ± 0.98
ALT (IU/L) 34.09 ± 0.09 79.76 ± 0.19 34.91 ± 0.89 36.09 ± 2.09
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essential for allowing the organism to insert any foreign par-
ticle (virus) inside its cells. Instead, there are mainly corre-
sponding genes whose compromised function paves the way 
for influxing any viral particle (E2 protein of HCV in this 
case) inside the cell. In case of HCV infection, the E2 recep-
tor is required to take the help of several interactive genes 
from the exact string, such as CD81, IFITM1, IFITM2, and 
IFITM3 (Fig. 8B). The genetic signaling and coexpression 
of the CD81 receptor protein, starts to follow clustering 
with the related proteins- IGSF8, CLDN1, CR2, CD4, and 
CD19. The clustering of CD4 and CD19 with CD81 protein 
is rigorous (Fig. 8C). This phenomenon is common in HCV 
research in human cellular systems (Narayana et al. 2015; 
Harris et al. 2010).

Alike phytochemical sources, most often selective func-
tional bioactive components like fatty acids, antimicrobial 
peptides, and secondary therapeutic derivatives are derived 
from different microorganisms (Dipta et al. 2021a, b; Azad 
et al. 2016), where many of which are clinically considered 
probiotics (Abdullah-Al-Mamun et al. 2016). These bioac-
tive compounds can render proper opsonization as part of 
our secondary immune response against infectious diseases 
including HCV infection and cancer (Al Azad et al. 2016; 
Al Azad and Khan 2019).

In vivo analysis of the liver‑specific serological 
parameters

In this current study, β-amyrin consolidated its potentialities 
as a target-specific novel compound, resulting in significant 
scores in basic serological and HCV-specific serological 
parameters as P < 0.0001 for TNF-α (Fig. 9) and P < 0.001 
(Tables 7, and 8) respectively in the scale of significance 
α = 0.05. Among the HCV and consequent hepatic fibrosis-
specific parameters, the secretion and co-existence of dif-
ferent liver enzymes were estimated, such as ALP (IU/L) 
(alkaline phosphatase), LDH (IU/L) (lactate dehydroge-
nase), AST (IU/L) (aspartate aminotransferase), ALT (IU/L) 
(alanine transaminase) (Table 8). The values obtained from 
the experimental groups' post-trial analysis were almost 
similar to the previously reported findings (Krishnan et al. 
2014; Parvez et al. 2018; Thirupathi et al. 2017). The results 
from the group administrated β-amyrin with and without 
DMN resulted very closely. The concentrations of MDA 
(nmol/ml) among the OSM and antioxidant parameters 
were maximum in volume, valuing 11.89 ± 0.87 (nmol/ml) 
(TG-1) and 12.02 ± 0.65 (nmol/ml) (TG-2) as compared to 
14.26 ± 0.21 (nmol/ml) (CG), and 20.13 ± 0.86 (nmol/ml) 
(NCG) (Table 7). Similar to these, LDH was the highest 
in volume among the liver-specific enzymes secreted dur-
ing HCV and hepatic fibroblast mean 76.43 ± 3.09 (IU/L) 
(TG-1) and 79.23 ± 2.54 (IU/L) (TG-2) as compared to 

115.14 ± 3.11 (IU/L) (NCG), ensuring P < 0.001 (Table 8). 
These values strongly matched the research outputs of some 
previous studies, including Parvez et al. (2018), Sharif et al. 
(2021), and Thirupathi et al. (2017). Reactive oxygen spe-
cies (ROS) has become an excellent factor in determining 
the antiviral and anticancer activity of different phytochemi-
cal pharmacophores where β-amyrin can be a very effective 
target specific therapeutic similar to the quercetin, studied 
previously (Biswas et al. 2022).

Limitations of this study

In some frames of the molecular dynamic simulation, the 
SASA values fluctuated randomly with the increase of tem-
perature issues sometimes that were overcome instantly in 
the following steps. Though α-amyrin showed very strong 
ADMET, QSAR, and MDS properties, it surprisingly failed 
to form a hydrogen bond in the active site of the CD81 
protein. The docking process was repeated several times 
between α-amyrin and CD81, but the same result was found 
each time, which can be considered another finding. Besides, 
comprehensive serological and immunological assessment 
approaches are needed to analyze the in vivo feasibility of 
using those three subunits of amyrin as target-specific drugs. 
Though the authors' are working on that as well, the work 
will require much time to be accomplished.

Conclusion

Considering the frequent infection and fatality of HCV, 
the current study aimed to figure out the target specificity 
and therapeutic efficacy of the three different subunits of 
amyrin from the list of 203 potential bioactive compounds. 
Diversified in silico pharmacokinetic and pharmacody-
namic parameters were analyzed. Afterward, the molecular 
dynamic simulation was conducted comprehensively for 
100 ns to reveal the target-specificity of the β and δ-amyrin 
on the superactive position of the CD81 receptor, identified 
through the quantum tunneling algorithm. Values from the 
parameters mean- RMSD, RMSF, Rg, SASA, Cα, MolSA, 
and PSA resulted within the favorable ranges for all amyrin 
subunits when complexed. Finally, CD81-mediated gene 
clusters were identified to know about responsible ones 
for regulating the protein–protein infection (PPI) pathways 
during the HCV infection inside the cells. Following the in 
silico pharmacokinetic, pharmacodynamic, and molecular-
string profiles, the present research strongly recommends 
the amyrin subunits to be used as prophylactics for HCV 
infection in humans as a targeted drug on the CD81 recep-
tor protein. Despite the full-length in silico bioprospecting, 
the amyrins have been taken for further in vivo analysis in 
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continuation to this study to validate the doses in the mice 
model, and the in vivo research is still underway.
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