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Abstract

Recurrent spiking neural networks (RSNN) in the brain learn to perform a wide range of per-

ceptual, cognitive and motor tasks very efficiently in terms of energy consumption and their

training requires very few examples. This motivates the search for biologically inspired

learning rules for RSNNs, aiming to improve our understanding of brain computation and

the efficiency of artificial intelligence. Several spiking models and learning rules have been

proposed, but it remains a challenge to design RSNNs whose learning relies on biologically

plausible mechanisms and are capable of solving complex temporal tasks. In this paper, we

derive a learning rule, local to the synapse, from a simple mathematical principle, the maxi-

mization of the likelihood for the network to solve a specific task. We propose a novel target-

based learning scheme in which the learning rule derived from likelihood maximization is

used to mimic a specific spatio-temporal spike pattern that encodes the solution to complex

temporal tasks. This method makes the learning extremely rapid and precise, outperforming

state of the art algorithms for RSNNs. While error-based approaches, (e.g. e-prop) trial after

trial optimize the internal sequence of spikes in order to progressively minimize the MSE

we assume that a signal randomly projected from an external origin (e.g. from other brain

areas) directly defines the target sequence. This facilitates the learning procedure since the

network is trained from the beginning to reproduce the desired internal sequence. We pro-

pose two versions of our learning rule: spike-dependent and voltage-dependent. We find

that the latter provides remarkable benefits in terms of learning speed and robustness to

noise. We demonstrate the capacity of our model to tackle several problems like learning

multidimensional trajectories and solving the classical temporal XOR benchmark. Finally,

we show that an online approximation of the gradient ascent, in addition to guaranteeing

complete locality in time and space, allows learning after very few presentations of the target

output. Our model can be applied to different types of biological neurons. The analytically

derived plasticity learning rule is specific to each neuron model and can produce a theoreti-

cal prediction for experimental validation.
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Introduction

The development of biologically inspired and plausible neural networks has a twofold interest.

On the contrary, neuroscience aims to achieve a better understanding of the functioning of

biological intelligence. On the other hand, machine learning (e.g. deep learning [1]) tries to

borrow secrets from biological networks. To justify the search for biological learning principles

it is enough to consider that the human brain works with a baseline power consumption esti-

mated at about 13 watts, of which 75% spent on spike generation and transmission [2].

The transmission of information through spikes is a widespread feature in biological net-

works and is believed to be a key element for efficiency in energy consumption and for the

detection of causal relationship between events. Spike-timing-based neural codes are experi-

mentally suggested to be important in several brain systems. In the barn owl auditory system,

for example, coincidence-detecting neurons receive temporally precise spike signals from both

ears [3]. In humans, precise timing of first spikes in tactile afferents encodes touch signals at

the fingertips [4]. If the same touch stimulus is repeated several times, the relative timing of

action potentials is reliably reproduced [4]. Similar coding have also been suggested in the rat’s

whisker response [5] and for rapid visual processing [6].

Because of the biological relevance of spike-time-based coding, in the last years different

spiking network models have been proposed, for feedforward networks [7–11] and for recur-

rent ones [12–16].

An important step towards biological plausibility has been to show that a backpropagation-

like algorithm works even if the feedback matrix is random and fixed [9]. A similar principle

can be used to obtain a biologically plausible approximation of BPTT and train recurrent neu-

ral networks [12, 17].

However, the capture of long-time temporal dependence on backpropagation-based tech-

niques is computationally expensive and leads to synaptic updating rules that are difficult to

frame in a biological substrate. Target-based learning frameworks [14, 15], as opposed to

error-based [12, 18], bypass the issue of biologically implausible error back-propagation by

providing to the network a target activity to mimic.

A first approach to implement a target based training consists in inducing in the recurrent

network, through an external stimulus, a spatio-temporal pattern of activity, which is learned

by the network through Hebbian plasticity [16, 19, 20]. Other approaches propose to leverage

the intrinsic dynamic of the network by imposing one chaotic sequence produced by the net-

work as an internal target. This strategy has been explored for both rate [21] and spiking neu-

rons [22]. Interestingly, target-based approaches have also been proposed for feedforward

networks, where targets, which propagate instead of errors, can be assigned to each layer of the

deep network [23].

In this work, we provide a theoretical framework based on maximum likelihood techniques

[24, 25] for target-based learning in biological recurrent networks. We show that the introduc-

tion of a likelihood measure as objective function is sufficient to derive biologically realistic

target-based synaptic updating rules.

Other papers have already proposed probability-based approaches assuming that learning

in the recurrent network consists of adapting all the synaptic weights such that the Kullback-

Leibler divergence between the target activity and the generated one is as small as possible (or

similarly such that likelihood of the target activity is as large as possible) [26–29].

However, these probability-based approaches (maximum likelihood or minimum Kull-

back-Leibler divergence) were mainly aimed to train the network to reproduce specific pat-

terns of spikes, while we show how to use randomly projected target patterns of spikes to solve

complex temporal tasks.
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We propose a target-based learning protocol that assigns to the RSNN a specific internal

spike coding for the solution of a task, instead of looking for a solution among those in a huge

space of possible alternatives, as error-based approaches would do.

The choice of a target-based learning protocol was already described in [14, 15] as the full-

FORCE algorithm. The major difference of our model is that we propose as a target a specific

spatio-temporal spike pattern, allowing for precise spike timing coding. For this reason we

named our learning protocol LTTS (Learning Through Target Spikes). This particularity of

LTTS allowed us to achieve tremendous efficiency in learning and precision in the perfor-

mance of the tasks. In addition, our approach turns out to be very natural in terms of biological

plausibility. Indeed it does not require the assumption of error propagation in the cortex,

which is not yet a solid feature in terms of experimental observations. Rather, we rely on the

presence of the so termed ‘referent activity templates’ which are spike patterns generated by

neural circuits present in other portions of the brain, which are to be mimicked by the network

subjected to learning [30, 31]. Also, the learning rule emerging from our likelihood-based

framework results to be biologically plausible because it is local to the synapse, namely it does

not require the evaluation of global observables over multiple neurons or multiple times.

Furthermore, in order to define a learning rule which is completely local in space and

time we perform an online approximation of the gradient ascent [28], which demonstrates

to be extremely beneficial to the training velocity when learning from a small number of

presentations.

We use our learning protocol to train a RNN to solve 3 different tasks. First, we train the

network to reproduce 3D trajectories. We achieved an error which is lower than the ones

achieved by e-prop1 [12] and by the biologically unplausible BPTT. Second, we trained the

network to reproduce a high dimensional (56 dimensions) walking dynamics trajectory [32],

showing that it is able both to learn the sequence and to display a spontaneous walking pattern

beyond the learned epoch. Third, we demonstrate that our model is able to solve the classical

temporal XOR task.

Results

Target-based training protocol

We considered a target-based approach which conceptualizes learning as the successful replay

of a target sequence of spikes starg ¼ fsti;targg where s
t
i;targ is 1 whether the neuron i emitted a

spike at time t and 0 otherwise. A very important point is the way such fsti;targg is defined. Com-

pared to unsupervised or reward-based learning paradigms, supervised paradigms on the level

of single spikes might appear less relevant from a biological point, since it is questionable what

type of signal could tell the neuron about the target spiking sequence. Here we propose a bio-

logically plausible way to generate such target. The neurons in the RSNN to be trained receive

a randomly projected input Itteach from neurons belonging to another population of neurons,

e.g. from other cortical areas [16, 33]. Itteach shapes the probability of firing, defining the target

spiking sequence sti;targ.

The target pattern of spikes

The idea is to construct an internal target pattern of activity fsti;targg for the spiking network

that contains the relevant information needed to solve the task, namely a pattern that encodes

the target output signal.

Let’s now suppose that the teaching signal is a function (e.g. a linear function Itteach ¼ J teachy
in)

of the activity yin of other areas. The objective of our protocol is to train the network to produce
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a target readout ytarg = Jout starg, in principle accessible to another area of the brain. In conclusion

the training phase is obtained under the influence of yin coming from some areas (e.g. a visual

sequence in the visual cortices) and influencing the internal target starg, while in the retrieval the

network is autonomously able to provide the output signal ytarg (e.g. a motor sequence in the

motor cortices). E.g. the target might be to learn a motor task (ytarg) through visual observations

(yin). It is a quite natural hypothesis that the activity yin composing the teaching signal is a func-

tion of target output yin = F(ytarg) (and vice versa). In this work we consider the simplest scenario

where yin = ytarg, as represented in Fig 1A where Jteach projects the y
targ signal.

This choice makes the internal target correlated to the target output ytargmaking easy the

training of the readout weights Jout.

We define the internal target sti;targ as the pattern of spikes induced in the network by the

training current Itteach, in absence of recurrent connections, possibly in combination with an

additional input signal that, depending on the task, can be either superfluous or essential. In

the memory recall tasks the latter may serve as an external clock, in others (e.g. XOR task) it is

the input to be processed to solve the task.

The importance for the choice of a specific internal coding fsti;targg can be clarified after con-

sidering the alternative error-based approach [12]. In that case, the space of the solution is

extremely high, namely a large number of different internal coding are capable to solve the

task. On the other hand, the choice for the specific internal solution fsti;targgmakes the learning

extremely faster.

In terms of biological plausibility, we can assume that the target pattern of spikes is com-

puted by a dedicated compartment of the neuron that receives the training current. This

would be totally equivalent to our protocol. The target activity can be locally computed at

every trial of the training procedure, and it is always accessible to the network, without the

requirement of long-term storage. We consider this assumption biologically plausible because

of the increasing consensus on the specific computational role of the apical compartments of

pyramidal neurons [33] which receive contextual signals from other areas.

Such formalism can be applied to accomplish different temporal tasks. In the next sections,

we first introduce the learning algorithm, then we apply it to several complex tasks.

Network model

We propose a network of spiking neurons described by the real-valued variable vtj 2 R, their
membrane potential, where the j 2 {1, . . ., N} label identifies the neuron and t 2 {1, . . ., T} is a

discrete time index. Each neuron exposes an observable state stj 2 f0; 1g, which represents the

occurrence of a spike from neuron j at time t and it is randomly generated as a function of the

membrane potential pðstþ1
j jvtjÞ. We use vt ¼ fvtjg and st ¼ fstjg to indicate the collections of

internal and observable network states.

Assuming a synchronous update dynamics, the likelihood of a target sequence of spikes

fsttargg can be easily written as the product over all times and neurons of the probability

pðstþ1
j;targjv

t
jÞ. Thus the log-likelihood of the network activity starg can be introduced as:

Lðstarg; JÞ ¼ log pðstarg; JÞ ¼ log
Y

T

t¼1

Y

N

i¼1

pðstþ1

i;targjv
t; JÞ

¼
X

T

t¼1

X

N

i¼1

log pðstþ1

i;targjv
t; JÞ

ð1Þ

where we made explicit the dependence on J, the collection of parameters defining the model.
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Fig 1. Results for the Pattern Generation task. A) Schematics of the system’s architecture. Each neuron is composed of two compartments where the
basal region (green) elaborates a prediction, while the apical part (blue) receives the teaching input and computes the target: the learning rule depends
on the difference between this two quantities. The recurrent activity is decoded via a linear readout layer with three output neurons, one for each
trajectory. B)Dashed lines: the target output signal. Solid lines: output signal generated by the network. An average MSE (Mean Squared Error) of
MSE = 0.001 was achieved. C) (top) The clock input: it ranges between zero and one (vertical shift for visual purposes). (middle) plot the dynamics of
the internal state of six neurons randomly extracted from the network population is reported over time. (bottom) The raster plot of the activity of a
population of 60 neurons from the complete network. The simulation used a network of N = 500 neurons and a total simulation time of T = 1000 time
steps.D) Comparison of different learning algorithms on the Pattern Generation Task. Learning performances are evaluated as final MSEs. The blue
bar represents the final MSE when only the readout layer is trained, thus no recurrent synapses optimization is performed. Performances of the Clopath
[35] learning rule, e-prop1 [12] and Back-Propagation-Through-Time (BPTT), are reported respectively in orange, green an brown. E)MSE as a
function of the number of training iterations, comparison between our model (red) and e-prop (blue).

https://doi.org/10.1371/journal.pone.0247014.g001
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The probability of spike generation can be written as:

p stþ1
i jvti

� �

¼
exp stþ1

i

vt
i
�vth

dv

� �h i

1þ exp
vt
i
�vth

dv

� � ð2Þ

where vth is the firing threshold and δv defines the amount of noise in the spike generation. In

this work, we considered the effect of different δv values on plasticity and their effects on the

learning rate and on the external perturbations. The spike generation is always performed in

the deterministic limit δv! 0 in which Eq (2) becomes pðstþ1

i jvtiÞ ¼ Y½stþ1

i ðvti � vthi Þ�. This

approximation on the spike generation does not impair the convergence of the algorithm and

gives remarkable benefits in terms of learning speed and robustness to noise.

In the left-hand side of Eq (1) the dependence on vt is not explicit. This is because vt

depends on st, and is uniquely defined by setting a specific initial condition vt = v0 and the fol-

lowing rule:

vt ¼ Dðvt�1; sttargÞ ð3Þ

where Dðvt�1; sttargÞ is a generic function and depends on the chosen model of neuron.

Learning rule for cuBa neurons

Without loss of generality (see the section dedicated to conductance based neurons Learning

rule for coBa neurons) we now assume for simplicity that the neuron integrates its input as a

current-based (cuBa, the integration of synaptic input does not depend on the membrane

potential itself) leaky integrate and fire (LIF) neuron. The membrane potential of the neuron

follows the equation:

vt ¼ 1�
Dt

tm

� �

vt�1 þ
Dt

tm
Jŝt þ It þ vrestð Þ � Jress

t ð4Þ

where Δt is the time integration step, τm is the membrane time constant, J 2 RN�N is the recur-

rent network matrix that defines the synaptic connections within our model, while It is a gen-

eral external input. vrest is the rest potential, the asymptotic value of the membrane potential in

absence of input currents. Jres = 20mV accounts for the reset of the membrane potential.

We also assumed that the spikes undergo an exponential synaptic filtering with a time scale

τs. ŝ
t is the filtered spike signal and is expressed as:

ŝt ¼ 1�
Dt

ts

� �

ŝt�1 þ
Dt

ts
st ð5Þ

The derivation can be generalized to different choices of synaptic filtering kernels (e.g.

alpha function). To make the recurrent network reliably reproduce the target pattern of activ-

ity we need to maximize the likelihood Lðstarg; JÞ for the system to express the dynamics

defined by starg ¼ fsti;targg.

This can be achieved by a gradient based algorithm, which suggests that the optimal plastic-

ity rule is a weight update proportional to the likelihood gradient (see Methods section for der-

ivation):

DJij ¼ Z
@Lðstarg; JÞ

@Jij
¼ Z0

X

T�1

t¼1

stþ1

i;targ � stþ1

i;pred

h i @vti
@Jij

ð6Þ

PLOS ONE Target spike patterns enable efficient and biologically plausible learning for complex temporal tasks

PLOSONE | https://doi.org/10.1371/journal.pone.0247014 February 16, 2021 6 / 22

https://doi.org/10.1371/journal.pone.0247014


were Z0 ¼
Z

dv
. η is scaled proportionally to δv to keep η0 constant. sti;pred is the activity predicted

by the network without the teaching signal. This stands in the δv! 0 limit (the case for finite

δv is presented below, see Eq (7)). Indeed, in this limit Eq (2) becomes pðstþ1
i jvtiÞ ¼ Y½stþ1

i ðvti �

vthi Þ� and spike generation is deterministic. We notice that all the numerical experiments are

performed accordingly to this definition of deterministic spike generation.

It is worth underlining the peculiar form of the obtained expression (Eq 6), which is

remarkably similar to the form obtained in [34], where the first term in the left parenthesis can

be regarded as an instantaneous prediction error: at each time step the target and spontaneous

activity are compared and a learning signal is produced.

We assumed that each neuron in the recurrent network is composed of two compartments

(see Fig 1A). The the apical one (blue) receives the teaching signal and computes the target

sti;targ while the basal one (green) elaborates a prediction sti;pred. The learning rule adjusts the

recurrent weights to make the prediction coherent with the target.

The second factor
@vt

i

@Jij
represents what is referred to in the literature as the spike response

function [34]: it uses the information of the target trajectory to enable learning only for synap-

ses which are causally related to recent pre-synaptic activity.

When the δv! 0 limit is not taken we get the following voltage-dependent learning rule

DJij ¼ Z0

X

T�1

t¼1

stþ1

i;targ � f ðvtiÞ
h i @vti

@Jij
ð7Þ

where we defined f ðvthÞ ¼
exp vt�vth

dv

1þ exp vt�vth

dv

. This version of the learning rule (where the determin-

istic limit is not taken), together with a deterministic generation of the spikes (the spike

generation is always deterministic in all experiments described in this paper), provided a

remarkable robustness to noisy perturbations (see Robustness to noise section below).

It is interesting to consider that while the former spike-dependent rule resembles the stan-

dard STDP synaptic update (as discussed in [26]), the latter voltage-dependent rule is coherent

with what has been proposed in [35], where the plasticity depends on the membrane potential

of the postsynaptic neuron.

Finally, in order to further improve biological plausibility, we used an approximation of the

gradient ascent in which the weights are updated at each time bin t accordingly to the follow-

ing equation (for the spike-dependent case):

DJtik ¼ Z0 stþ1
i;targ � stþ1

i;pred

h i @vti
@Jik

ð8Þ

instead of updating them after the end of the training trial as expressed in Eq 6. The compari-

son between the gradient ascent and the online approximation is reported in the section

Learning with very few presentations

Learning 3D trajectories

To test the performances of our learning protocol we first tackle the standard three-dimen-

sional temporal pattern generation task.

The task definition is the following: given an input signal Itclock (which we refer to as clock),

the network is asked to produce an output target signal through a linear readout of the internal

spiking activity. Namely the system is asked to learn a temporal input-output relationship

between the clock signal and the target trajectory.
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However, we remark that for this specific task the clock signal is not necessary (see S4 Fig in

S1 File). A target sequence can be learned and recalled also without a temporally structured

input (what we call clock). The target sequence is reproduced only by recurrent connections.

In this case the sequence is initiated by providing the first spikes of the sequence. Our choice

to use the clock is taken in order to reproduce exactly the same conditions proposed in the

benchmark reported in [12, 13].

The target output yttarg 2 R
3 is a temporal pattern composed of 3 independent continuous

signals (see Fig 1B, solid lines.). Each target signal is specified as the superposition of the

four frequencies f 2 {1, 2, 3, 5} Hz with uniformly extracted random amplitude A 2 [0.5, 2.0]

and phase ϕ 2 [0, 2π]. The network is also supposed to receive a clock-like input signal

Itclock ¼ J inxtclock, where J
in 2 RN�K and xtclock 2 R

K . The temporal structure of the clock is

reported in Fig 1C(top).

For this task we equip our recurrent network with a standard linear read-out layer yt =

Joutst, where Jout 2 R3�N and st 2 {0, 1}N.

To produce a valuable target network activity we record its spontaneous activity, in absence

of recurrent connections, when subject to an input It ¼ Itclock þ Itteach composed of the clock-

like term Itclock ¼ J inclockx
t and a random projection of the target signal Itteach ¼ J inteachy

t
targ. In this

scenario both J inclock and J
in
teach are static random Gaussian matrix with zero mean and variance

σin and σteach. Our choice was to set the teach Itteach and the clock current I
t
clock at comparable

order of magnitudes (see Table 1 for the number of neurons and the other parameters used for

this task).

We observe that the matrix J inteach contributes to define the internal target pattern fsti;targg

since it induces such internal dynamics. The network is asked to learn to autonomously repro-

duce the target internal dynamics fsti;targg by using the recurrent synapses J and the clock signal

Itclock in absence of the teaching signal Itteach. This is achieved through the likelihood maximiza-

tion, and the weight updates expressed in the previous section. Also the readout weight are

trained with a standard minimization of the error function (see Methods section for details).

The readout layer is simultaneously trained to decode such information from the target pat-

tern using standard optimization techniques (MSE objective function with Adam optimizer

Table 1. Collection of model parameters used in the various tasks presented in the main text.We have indicated with GA the gradient ascent algorithm.

3D Trajectories Temporal XOR Walking Dynamics Few Presentations

N 500 500 500 500

T 1000 130 600 50

Δt 1 ms 1 ms 1 ms 1 ms

v0i −0.5 8i −0.5 8i −0.5 8i −0.5 8i

s0i s0i;teach 8i s0i;teach 8i s0i;teach 8i s0i;teach 8i

η/δv 0.5 (Adam) 0.5 (Adam) 0.5 (Adam) 1.0 (GA vs online)

δv !0 !0 !0 !0

vth 0 0 0 0

τs 2 ms 2 ms 2 ms 1.25 ms

τm 8 ms 8 ms 8 ms 2 ms

τrout 20 ms 2 ms 20 ms 20 ms

σteach 10 5 10 10

σin 2 3 2 2

vrest −4 −4 −4 −1

J0rec 0 8i, j 0 8i, j 0 8i, j 0 8i, j

https://doi.org/10.1371/journal.pone.0247014.t001
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[36]), while the recurrent network exploits the maximum-likelihood training procedure to

adjust its synaptic matrix J to generate a recurrent signal that, together with the clock-like

input Itclock, results in the desired temporal pattern.

In the retrieval phase the plasticity is turned off and the clock current is provided to the net-

work. The spiking generated activity is decoded by the linear readout, and such output is com-

pared to the target trajectory by evaluating the mean square error (MSE).

The system is very efficient to solve the task, interestingly after only 100 steps of the online

Adam optimizer (similarly to the online gradient ascent the update is performed at each time

step and not at the end of the trial) the system was able to reproduce the trajectory with an

error Mean Squared Error MSE = 0.02 (we considered δv = 0.2). In Fig 1B (dashed lines) we

reported the results for the Pattern Generation task. After 1000 iterations of the online Adam

optimizer the system achieved a final Mean Squared Error MSE = 0.0010±0.0003 (statistics

computed over 50 realizations of different output targets, δv = 0.2), computed across the three-

dimensional output (for comparison MSEe−prop = 0.014±0.005). The activity of the internal

neuron state vt, is reported over time, together with a raster plot of the recurrent network activ-

ity (Fig 1C). It is relevant to stress that the obtained performances are significantly better with

respect to competing alternative algorithms for spiking neural networks learning temporal

sequences. A quantitative comparison of performances, measured as final MSEs, is reported in

the bar plot of Fig 1C. The blue bar represents the final MSE when only the readout layer is

trained, thus no recurrent synapses optimization is performed. Performances of the Clopath

[35] learning rule, e-prop1 [12] and Back-Propagation-Through-Time (BPTT), are reported

respectively in orange, green an brown.

We also report the MSE achieved by our target-based protocol as a function of the number

of training iterations (see Fig 1E, red line) average over 50 realization of the experiment) and

compare it with the error-based e-prop (Fig 1E, blue line).

Robustness to noise

Amajor consideration we addressed is the behaviour of our system in the presence of noise:

how resilient is the learned dynamics under external perturbation?

To answer this question we considered both the spike-dependent learning rule (for δv! 0,

see Eq (6)) and the voltage-dependent one (δv = 0.05, see Eq (7)).

The network is trained to generate the 3D trajectory (as discussed above). The resulting

MSE as a function of the number of training iterations is shown in Fig 2 (blue lines). Then, we

gauge the robustness of our trained model corrupting the input the network receives by inject-

ing noise on top of the clock current as follows Itclock ¼ J inclockðx
t þ snoiseξðtÞÞ, where ξ(t) is

extracted randomly from a Gaussian with zero mean and unit variance. Statistics is evaluated

over 625 realizations for each σnoise value. (25 different 3D trajectory times 25 realizations of

the noisy input).

Wemeasured theMSE between the target output and the trajectory generated by the perturbed

network and the number of spikes not following the target sequence DS ¼ 1

N T

P

itjs
tþ1
i;targ � stþ1

i;predj.

We observe a superior robustness for the voltage-dependent rule (see Fig 2B, blue line),

with a much weaker robustness to noise for the spike-dependent one (see Fig 2A, blue line).

Also, the δv parameter modulates the network tolerance to failed spikes or altered spikes

timing: red lines in Fig 2A and 2B illustrate such behaviour. When δv! 0 the output MSE is

strongly tied to correct target retrieval: few noise-induced incorrect spikes are sufficient to

immediately degrade performances and the task is failed (example s2
noise=s

2
clock > 0:01). When

δv = 0.05 the system expresses strong resilience to spikes failing: under moderate noise
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(example s2
noise=s

2
clock ¼ 0:1) the spontaneous dynamics suffers from significant artifacts, how-

ever the network is still able to complete the task with little to no noticeable decrease in

performances.

The robustness superiority of the voltage dependent learning rule can be explained as fol-

lows. In the case δv! 0, the learning halts as soon as v crosses the threshold appropriately. E.g.

if starg = 1, when v> 0 the neuron produces a spike (spred = 1) and the target is satisfied. Indeed

in such case starg − spred = 0, and the weight update is zero (see Eq 6). Vice versa starg = 0 requires

v< 0 to get starg − spred = 0. However, since the membrane potential might be very close to the

threshold, a small injection of noise can induce an unwanted threshold crossing, thus corrupt-

ing the spikes pattern and altering the network prediction. Contrarily, in the voltage dependent

formulation the term starg − f(v) never vanishes, bringing the neuron further from the threshold

and ensuring a safety margin. This process increases the network robustness to noise.

Learning with a small number of presentations

Fast learning from a small number of examples is a major feature in biological systems. For

this reason we show an example in which a trajectory is learned by the system after a very

small number of presentations. The task is the same as the one described in the section Learn-

ing 3D trajectories with the only difference that here the trajectory is composed of 50 time

bins.

In Fig 3A each column reports the retrieval of the 3D trajectory after a different number of

learning iterations (in particular after 1,2,3 and 4 presentations) when the online learning rule

is used. The target sequence is represented in solid lines, while the retrieved trajectory is in

dashed lines. After only 4 presentations the trajectory is already learned by the spiking network

with a very low error.

Such fast learning is achieved when the online version of the gradient ascent is used.

This approximation has been shown to be a good approximation of the gradient ascent for

small learning rate [28]. On the other side, in order to have a fast learning, the learning rate

cannot be too small. Here we show that the online approximation, in addition to be local in

time, and then biologically plausible, it is extremely beneficial to the fast learning.

Fig 2. Robustness to noisy perturbations. (A) (blue) MSE (after 1000 training iterations) as a function of amplitude of the Gaussian noise perturbing
the network in the generation mode, δv! 0. Solid line and shaded area: mean and standard deviation of the MSE respectively, statistics evaluated over
50 experiments. (red) Estimation of the number of spikes not following the target pattern in the case δv! 0. (B) The same as in panel A for δv = 0.05.

https://doi.org/10.1371/journal.pone.0247014.g002
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We compared the performances of the gradient ascent and its online approximation on this

version of the task. The results are reported in Fig 3B respectively in red and green. The online

approximation is much faster. It takes on average 5 presentations to learn the trajectory (MSE

<0.01), three times less than what required by the standard gradient ascend.

Walking dynamics

In this task we challenge our proposed framework to address a complex real-world scenario.

The quest is to elaborate the problem of learning a realistic multi-dimensional temporal trajec-

tory. We addressed the benchmark problem [15, 37, 38] of learning the walking dynamics of a

humanoid skeleton composed of 31 joints (head, femur etc. . .) each of which endowed of rota-

tional degrees of freedom θ(t). For example the femur can in principle express rotations on

three different axes yfemur 2 R
3, while the wrist is constrained to rotate just around a single axis

ywrist 2 R. Joints are moreover considered unstretchable, so the set of rotations Θ = {θjoint(t)}

completely defines the system. The total number of temporal trajectories that our network

needs to control is given by the total number of degrees of freedom of the system, which in our

Fig 3. Learning with a small number of presentations. A) Columns represent the network output after 1, 2, 3 and 4
learning steps (dashed line: target trajectory, solid line: retrieved trajectory). At the fourth step the network reached an
MSE = 0.01. B)Online approximation (green) demonstrates to be faster that standard gradient ascent (red). Thick
lines and shadings: average and variance over 30 realizations.

https://doi.org/10.1371/journal.pone.0247014.g003
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problem evaluates to D = 56. Data used in this task are obtained from the database developed

in [32].

An interesting property of the walking dynamics is indeed its periodicity (data is however

derived from motion capture techniques that invalidate exact periodicity). It is thus interesting

to explore if the network, trained on a single cycle, is capable of correctly generalize the learnt

dynamics by producing novel, plausible, walking behaviour.

The protocol used for this task is exactly the same presented in Learning 3D Trajectories

section, with the only difference of the dimension of the trajectory to be learned which is

D = 56 instead of 3. From this follow that the input matrix J teach 2 R
N�D and that the output

layer is composed of D neurons. During training, the system receives a clock which is identical

to what has been described for the 3D trajectories task. During the spontaneous dynamics we

simply replicate the training signal in a cyclic fashion. The network parameters for this task are

defined in Table 1 for details. Results of the described procedure are reported in Fig 4.

The network successfully memorizes and retrieves the target dynamics with a very small

error (MSE = 0.026 on normalized trajectories) after 250 iterations of Adam Optimizer (Fig

4A and 4C up to t = 150). Also we let the model generate the trajectory after the end of the

learned one. Interestingly the network is capable to generate spontaneously a plausible almost

periodic dynamics (Fig 4B and 4C from t = 150 on).

Temporal XOR

In order to further validate the generality of the proposed learning framework, we assessed the

well known temporal XOR task. In this complex temporal task the network has to integrate

Fig 4. Walking dynamics. A) Three-dimensional reconstruction of the walking dynamics produced by the network
activity. Reported frames corresponds to t = {0, 20, 40, 60, 80}. B) Three-dimensional reconstruction of the
spontaneously generated walking dynamics after the end of the learned-by-memory trajectory. A different, but
plausible and exactly periodical behaviour emerges, indicating that the system has successfully learnt how to construct
and independent walking cycle. Frames shown corresponds to t = {150, 170, 190, 210, 230}. C) Collection of 15 out of
the 56 temporal angular trajectories for both the target motion (upper plot) and learnt dynamics (lower plot). The
system receives explicit instructions for t< 150 steps, where training is performed. Vertical dotted blue lines highlight
the temporal frames reported in panel A. The system then produced a longer, spontaneous dynamics for t 2 [150, 600].
Vertical red dotted lines highlight the spontaneous activity frames reported in panel B.

https://doi.org/10.1371/journal.pone.0247014.g004
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cues over time and respond at the right moment. The system is asked to respond at time t3
with a non-linear XOR transformation between the bits A1

in and A
2
in encoded by two input sig-

nals at
1
and at

2
provided at preceding times t1 and t2. They encode the desired bit using the

length of the duty cycle of a single pulse square wave: (50%!0, 25%!1). This defines 4 possi-

ble input signals xt
m
¼ at

1
þ at

2
, μ 2 {0, 1, 2, 3}. The system target response yttarg is a smooth

wave form centered at time t3 whose amplitude A3
out encodes the XOR computation of the two

inputs: A3
out ¼ 2ðA1

in � A2
in � 0:5Þ. This particular choice for the definition of the task is to

reproduce the protocol described in [15].

The system is trained to generate four internal target sequences starg
m

on the four possible

input combinations. Each sequence is produced by extracting the spontaneous activity of an

untrained network receiving as input both the two square-wave signals encoding the bits to

be processed Itbits ¼ J in
m
xt
m
and, similarly to the previous task, the encoded target response

Itteach ¼ J inteachy
t
targ. We notice that Itbits is the equivalent of the clock current described in the pre-

vious tasks. In this task such a current is essential since it provides the input signal, which has

to be processed by the network. The projecting matrices J in
m
and J inteach are static random Gauss-

ian matrix with zero mean and variance σin and σtarg. The recurrent network training increases

the likelihood of all the four target activities starg
m

by processing one sequence at a time in ran-

dom order and performing the maximum-likelihood prescribed updating rule. Concurrently a

standard linear readout is trained to decode the four sequences starg
m

with MSE objective func-

tion and standard Adam optimizer with default parameters.

Fig 5 summarizes the outcome of the training procedure on the temporal XOR task: all the

four possible inputs combination are correctly handled by the system, which learns to accu-

rately reproduce the desired signal (see Table 1 for the number of neurons and the other

parameters used for this task).

Finally, we mention that we successfully extended the temporal XOR to a temporal parity

check, in which more then 2 consecutive inputs are presented in time (see S1 File). We show

good results for 3 and 4 consecutive input bits.

Fig 5. Results for the temporal XOR test. The four possible inputs combinations of the binary temporal XOR
operation are reported together with the produced output response of the system. (top) On the upper part of each
graph the incoming signals are plotted as a function of time, underlining the temporal structure of the task, where the
bit is encoded in the duty cycle of a square wave. On the lower part of the graph both the target and the produced
network response activity are reported. Continuous blue lines are used for the retrieved output signals, while dashed
red lines represents the desired correct output. (bottom) Rastergram of the related internal spiking activity.

https://doi.org/10.1371/journal.pone.0247014.g005
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Learning rule for coBa neurons

As mentioned above our approach is general and allows to analytically derive an optimal plas-

ticity rule for different neuronal models. Namely, a different differential equation brings to

a different plasticity rule. We already derived such rule for current-based leaky integrate and

fire neurons, here we report the learning rule for conductance-based neurons. In this case

the evolution for its membrane potential is different because the input affect its dynamics in a

multiplicative fashion with the membrane potential vti itself and is described by the following

equation:

vt ¼ 1�
Dt

tm

� �

vt�1 þ
Dt

tm
It þ vrest½ �

þ
Dt

tm
ðEexc � vt�1ÞJexcŝ

t�1

exc þ ðEinh � vt�1ÞJ inhŝ
t�1

inh

� �

� Jress
t�1

ð9Þ

Where Eexc and Einh are the reversal potentials for excitatory and inhibitory conductances.

exc and inh subscripts distinguishes between excitatory and inhibitory neurons and synapses.

This means that the populations of neurons has to be segregated in excitatory and inhibitory

neurons.

Thus the spike response function is different for excitatory and inhibitory weights and are

defined iteratively as

rJexc
vt ¼ 1�

Dt

tm
�
Dt

tm
jJj ŝt�1

� �

rJexc
vt�1 þ

Dt

tm
ðEexc � vt�1Þŝt�1

exc ð10Þ

and

rJinh
vt ¼ 1�

Dt

tm
�
Dt

tm
jJj ŝt�1

� �

rJinh
vt�1 þ

Dt

tm
ðEinh � vt�1Þŝt�1

inh ð11Þ

The segregation of the network in excitatory and inhibitory neurons requires paying atten-

tion to the constraint that in the optimization the sign of the synapses has to be conserved. We

compared the performances of coBa and cuBa networks finding comparable results (see S1

File for details).

Discussion

In recent years a wealth of novel training procedures have been proposed for recurrent biologi-

cal networks, both continuous and spike-based. This work proposes a maximum-likelihood

target-based learning framework for recurrent spiking systems. Borrowing from the Machine

Learning and in particular Deep Learning community, the aim is to enable learning in com-

plex systems by defining a suitable architecture and an objective function to be optimized,

from which the synaptic update rule is derived. Even though biological neurons have quite

deterministic dynamics, the modeling of additional noise is required to reproduce effects as

synaptic noise and noisy signal coming from other areas of the brain. For this reason the single

neuron can be approximated as a stochastic unit whose dynamics is described by a likelihood.

The likelihood of a complete network activity is chosen as the training objective function. In

this picture the learning in a biological network is understood to be the processes during

which the synaptic matrix is adapted to reproduce a target dynamics with high probability.

From this simple theoretical assumption explicit synaptic update rules are derived, which offer

a clean interpretation of the single terms. This ensures a tight control on the biological realism

of the learning rule. The proposed target-based training protocol has been tested on several
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temporal tasks: learning to generate trajectory with different dimensionalities (a 3D trajectory

and a 56D walking dynamics) and the temporal XOR, which is a non-linear classification

problem. In the 3D trajectory generation task the proposed target-based algorithm outper-

formed the state-of-the-art error-propagation-based algorithms, including e-prop 1 [12] and

backpropagation through time. Our model relies on two main assumption: the presence of a

teaching signal arriving to the recurrent network and the capability of the neuron to evaluate a

local error. The teaching signal is important to generate the internal target representation, and

it is plausible to assume that is provided by other cortical areas. The local error is evaluated by

the single neuron, and is the difference between the tendency of the neuron to produce a spike

and the desired spikes defined by the teaching signal. Theoretical models suggest that this sig-

nal might be evaluated by a 2 compartment neuron [34]. Alternately, it has been shown that

this learning rule together with a time locality constrain results to be very similar to a standard

STDP [26]. Interestingly, the voltage-dependent variant of such rule (see Eq (7)) appears to be

coherent with what has been proposed in [35], where the plasticity rule depends on the mem-

brane potential of the postsynaptic neuron.

Different models of neurons lead to different plasticity learning rules. E.g. for conductance

based and current based neurons [39, 40] different theoretical learning rules are derived in this

work. Such diversity is a theoretical prediction and can be verified experimentally.

Comparison with other models and biological plausibility

The proposed learning protocol improves the biological plausibility of network architectures

used in other recent papers [12, 15, 28]). The model described in [12] relies on a random pro-

jection of the errors to the network. On the other hand we bet on a random projection of the

desired output into the network, while each neuron evaluate a local error which defines the

plasticity rule. It is very intuitive to imagine that every portion of the cerebral cortex is a recur-

rent neural network receiving signals from the other cortices inducing an internal dynamics

during a specific task. Such hypothesis, which reinforces the necessity of supervised learning,

is inspired by the so termed ‘referent activity templates’ which are spike patterns generated by

neural circuits present in other portions of the brain, which are to be mimicked by the network

subjected to learning [30, 31].

Also, our protocol is computationally efficient since learning requires a calculation of order

O(N2 × T × P) where P is the number of presentations of the target pattern. Indeed, the compu-

tational time is proportional to the number of synapses, to the trial duration and to the number

of repetitions. The online approximation further decreases the computational cost by reducing

the number of required presentations P.

However, even though our target-based approach is extremely successful in the tasks we

presented, we believe that the brain probably uses different learning strategies in different

situations. For example the target-based strategies can be a good approach when imitation is

required. On the other hand error-based learning can be extremely helpful when a reward is

involved.

In the sake of biologically plausibility, in order to achieve a complete locality both in space

and in time, we proposed what we called the online approximation, which is an update of the

weights at every time t, where only the information available at the current time is used.

Namely it is not necessary to wait for the end of the presentation of training example to per-

form the weight update.

Models for fast learning have been proposed, and in general they rely on a suited pre-train-

ing or preparation of the recurrent network [12, 41–43]. This procedure is not task specific.

Subsequently, the training on the task is performed. We do not investigate an optimization of

PLOS ONE Target spike patterns enable efficient and biologically plausible learning for complex temporal tasks

PLOSONE | https://doi.org/10.1371/journal.pone.0247014 February 16, 2021 15 / 22

https://doi.org/10.1371/journal.pone.0247014


the network before the learning task. However, we find that our time local approximation is

extremely advantageous when learning from a small number of examples, increasing signifi-

cantly the learning velocity.

We remark that the analytic formulation used to derive our learning rule resembles those

proposed in [26, 28, 34], but they mainly focused on training the network to learn specific tem-

poral patterns of spike. Here we integrate such approach with a target-based learning protocol,

allowing to solve complex temporal task.

This choice is similar to the one described in the full-FORCE scheme [14, 15]. Although

similar, they are not equivalent, indeed the full-FORCE learning algorithm aims to reproduce

the target input current to each neuron. On the other hand our target is a specific spatio-tem-

poral spike pattern, allowing for precise spike timing coding. Such findings taken together sug-

gest that the capability of a neuron to estimate a local error is beneficial to the learning process.

Experimental evidences suggest that single neurons are indeed capable to integrate different

stimuli to estimate local errors [33]. In addition to this in [34] it is described a plausible mecha-

nism to achieve such an error in a two-compartment neuron model.

Furthermore, in our model, the weights are optimized in order to reproduce a specific

spatio-temporal pattern of spikes, a relevant feature in biological neural networks (see

Introduction). Also, this allows us to reproduce target output trajectories with a tremendous

precision. A target spatio-temporal spike pattern is not directly implied in the full-FORCE,

where the total input current received by each from other neurons is considered as a target

function.

Finally, we propose solutions that further improve the biological plausibility of the model,

such as the online approximation and the online evaluation of the target sequence within the

neuron.

Methods

Theoretical derivation of the learning rule for cuBa neurons

In our formalism neurons are modeled as real-valued variable vtj 2 R, where the j 2 {1, . . ., N}

label identifies the neuron and t 2 {1, . . ., T} is a discrete time variable. Each neuron exposes

an observable state stj 2 f0; 1g, which represents the occurrence of a spike from neuron j at

time t.

We then define the following probabilistic dynamics for our model:

ŝt ¼ 1�
Dt

ts

� �

ŝt�1 þ
Dt

ts
st

vt ¼ 1�
Dt

tm

� �

vt�1 þ
Dt

tm
Jŝt�1 þ It þ vrestð Þ � Jress

t�1

pðstþ1
i jvtiÞ ¼

exp stþ1
i

vt
i
�vth

i

dv

� �h i

1þ exp
vt
i
�vth

i

dv

� �

Where Δt is the discrete time-integration step, while τs and τm are respectively the spike-filter-

ing time constant and the temporal membrane constant. Each neuron is a leaky integrator

with a recurrent filtered input obtained via a synaptic matrix J 2 RN�N and an external signal

It. vth is the firing threshold and δv defines the amount of noise in the spike generation. Jres
accounts for the reset of the membrane potential after the emission of a spike.
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In the δv! 0 limit the generation is deterministic and pðstþ1
i jvtiÞ ¼ Y½stþ1

i ðvti � vthÞ�. The

log-likelihood of a complete network activity s can be expressed as:

Lðs; JÞ ¼ log pðs; JÞ ¼ log
Y

T

t¼1

Y

N

i¼1

pðstþ1

i jvt; JÞ ¼
X

T

t¼1

X

N

i¼1

log pðstþ1

i jvt; JÞ

Where we assumed the parallel update of all the neurons at each time step, and that the proba-

bilistic generation of the spike is independent between neurons at the same time step. Indeed

our noisy generation is equivalent to the presence of a source of noise not explicitly described

in the system. A possible example is an external source of noise for each neuron. Our descrip-

tion doesn’t account for correlated sources of noise.

We notice that in order to evaluate such likelihood it is important to be able to evaluate the

membrane potential at each time t. In order to do so it is necessary to know the spikes st pro-

duced by the network, the law of evolution of the membrane potential (see Eq (4)) and its ini-

tial condition vt = 1 (which we usually define as a constant v0).

The idea now is to exploit the introduced likelihood Lðs; JÞ as a valuable tool for a target-

based learning. We introduce a target activity starg and exploit the dependence of the likelihood

on the recurrent weights J to increase the likelihood of observing the target pattern as the sys-

tem’s spontaneous activity. In particular we compute:

rJLðstarg; JÞ ¼
X

T

t¼1

rJ log pðs
t
targjv

t�1; JÞ ð12Þ

were vt−1 is in turn a function of starg. Indeed, it is computed using Eq (4) and replacing s with

starg. This framework thus prescribes to implement as a viable learning rule the likelihood gra-

dientrJL. Via this optimization protocol, the system learns to exploit its resources to encode

the desired activity.

The maximum likelihood learning rule then prescribes:

@L

@Jik
¼

1

dv

X

T

t¼1

X

N

j

stþ1

j;targ �
exp

vt
j
�vth

dv

1þ exp
vt
j
�vth

dv

2

4

3

5

@vtj
@Jik

ð13Þ

Where in Eq (13) we have rewritten the likelihood gradient using the index notation. The last

term @
@Jik

vtj can be iteratively written by differentiating Eq (4):

@vtþ1
j

@Jik
¼ 1�

Dt

tm

� �

@vtj
@Jik

þ
Dt

tm
ŝtk;targdij ð14Þ

and setting an initial condition, e.g.
@vt¼1

j

@Jik
¼ 0. We stress that the differential operatorrJ is only

applied to vt−1 and not to ŝt�1
targ , because the latter represents the desired target dynamics, which

is assumed to be fixed throughout the training process and thus expresses no dependence on

the synaptic matrix J.

The use of sttarg in the pre-synaptic term is a consequence of likelihood maximization. How-

ever in [29], it as been proposed to replace sttarg with the activity generated by the network dur-

ing the trial, proving that this induces a small error in the learning protocol. Here we claim the

biological plausibility to keep sttarg in the pre-synaptic term because of the presence of the dedi-

cated apical compartment, which make accessible to the network the target pattern of spikes.
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Because of the Kronecher δ in Eq (14), together with its initial condition,
@vt

j

@Jik
differs from

zero only when j = i. We can thus finally write

@L

@Jik
¼

1

dv

X

T

t¼1

stþ1

i;targ �
exp

vt
i
�vth

dv

1þ exp
vt
i
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" #

@vti
@Jik

ð15Þ

It follows that the weight plasticity rule can be expressed as

DJ ¼
Z

dv

X

T

t¼1

stþ1

targ �
exp vt�vth

dv

1þ exp vt�vth

dv

" #>

rJv
t

¼ Z0

X

T

t¼1

½stþ1

targ � f ðvtÞ�
>
rJv

t

ð16Þ

Where we defined f ðvthÞ ¼
exp vt�vth

dv

1þ exp vt�vth

dv

. We observe that this learning rule is voltage dependent

since f(vth) is a function of the membrane potential vth.

It is possible to rewrite this expression by recognizing that the second term in the first fac-

tor, in the limit δv! 0 and with η0 = η/δv finite, represents the network prediction for the

spike vector stþ1
pred value at the subsequent time step, based on the current network hidden state

vt. Shifting the summed index t one obtains:

DJ ¼
Z

dv

X

T�1

t¼0

½stþ1

targ � stþ1

pred�
>
rJv

t ð17Þ

This version of the learning rule is no longer voltage dependent and we refer to it as spike-

dependent. We note how the obtained expression offers a simple interpretation: it effectively

separates into a first learning signal, which is the neuron-wise difference between the teaching

signal and the spontaneous network-induced activity, and an eligibility trace.

Using this maximum-likelihood framework we have obtained an explicit expression for the

synaptic weight update, a result that previously eluded other target-based learning algorithm

[14].

Online approximation

The gradient of the likelihood formulated in Eq 6 requires to accumulate the weight updates

over the all training trial. We performed an online approximation by removing the sum over

time and updating the weights at every time step.

DJ tikðfJ
1;:::t
ik gÞ ¼ Z0 stþ1

i;targ � stþ1
i;predðfJ

1;:::t
ik gÞ

h i @vti
@Jik

ð18Þ

and the total weights update after the whole trial is

DJik ¼
X

t

DJtikðfJ
1;:::t
ik gÞ ð19Þ

In Eq (18) we are making explicit that at every time step the weights are different, and the

update at a specific time step depends on the weights at the same time (and at the previous

times).
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stþ1
i;pred in Eq (18) is the only term depending on the weights Jtij. This means that the gradient

ascent and the online approximation are equivalent with the only difference that in the online

case the weights, and then the prediction, are updated at every time. The same stands for the

voltage-dependent rule.

Generation mode

When the network performs the task it is set in generation mode. The plasticity is turned off

and the network is initialized with the proper initial conditions vt = 1 = v0 (which is the same

as the one defined in the likelihood maximization protocol). We also investigate the case of

noisy initial conditions (see S6 Fig in S1 File). The the voltage and the spiking dynamics follow

respectively Eq (4) and the deterministic limit (δv! 0) of Eq (2).

Readout training

The training of the readout weights is performed through a standard minimization of the MSE

between the output y ¼ Joutŝout and the target output ytarg, which results in the following rule

DJout ¼ ½ytarg � Jout ŝout �̂s
>
out ð20Þ

Where Y targ ¼ fyttargg;Y targ 2 R
3�T is the matrix that collects the target signal over time.

s 2 RN�T is the matrix that collects the spikes emitted by the network over time and ŝout is its

exponential temporal filtering with a time scale τout. (similarly to Eq (5)). See Table 1.

When the online approximation is used to train the network also the the readout is updated

at every time step as follows

DJout ¼ ½yttarg � Joutŝ
t
out �̂s

t;>
out ð21Þ

Simulation parameters and source code

The source code is available for download under CC-BY license in the https://github.com/

myscience/LTTS public repository. We report in the table below the network parameters used

in the different tasks.

In the 3D trajectory benchmark we used realistic synaptic and membrane timescales, in

order to show that we achieved good results with biologically plausible parameters. A smaller

membrane timescale usually facilitates the convergence of the method, for this reason we used

a shorter time scale in order to further decrease the number of steps required for the learning.
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