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Abstract— In this paper, a multi-target tracking system for
collocated video and acoustic sensors is presented. We formulate
the tracking problem using a particle filter based on a state space
approach. We first discuss the acoustic state space formulation
whose observations use a sliding window of direction-of-arrival
estimates. We then present the video state space that tracks a
target’s position on the image plane based on online adaptive
appearance models. For the joint operation of the filter, we
combine the state vectors of the individual modalities and also
introduce a time delay variable to handle the acoustic-video data
synchronization issue, caused by acoustic propagation delays.
A novel particle filter proposal strategy for joint state space
tracking is introduced, which places the random support of the
joint filter where the final posterior is likely to lie. By using the
Kullback-Leibler divergence measure, it is shown that the joint
operation of the filter decreases the worst case divergence of the
individual modalities. The resulting joint tracking filter is quite
robust against video and acoustic occlusions due to our proposal
strategy. Computer simulations are presented with synthetic and
field data to demonstrate the filter’s performance.

I. INTRODUCTION

Recently, hybrid nodes that contain an acoustic array col-

located with a camera were proposed for vehicle tracking

problems [1]. To intelligently fuse information coming from

both modalities, novel strategies for detection and data as-

sociation have to be developed to exploit the multi modal

information. Moreover, the fused tracking system should be

able to sequentially update the joint state vector that consists

of multiple target motion parameters and relevant features

(e.g., shape, color and so on), which is usually only partially

observable by each modality.

It is well known that acoustic and video measurements are

complementary modalities for object tracking. Individually, the

acoustic sensors can detect targets [2]–[4], regardless of the

bearing with low power consumption, and the video sensors

can provide reliable high-resolution localization estimates [5],

regardless of the target range, with high power consumption.

Hence, by fusing the acoustic and video modalities, we (i)

achieve tracking robustness at low acoustic signal-to-noise

ratios (SNR) or during video occlusion, (ii) improve target
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counting/confirmation, and (iii) design algorithms that permit a

power vs. performance trade-off for hybrid node management.

In the literature, one finds that fusion of acoustic and video

modalities has been applied to problems such as tracking

of humans under surveillance and smart videoconferencing.

Typically, the sensors are a video camera and an acoustic array

(not necessarily collocated). In [6], the acoustic time delay-of-

arrivals (TDOA’s), derived from the peaks of the generalized

cross-correlation function, are used along with active contours

to achieve robust speaker tracking with fast lock recovery.

In [7], jump Markov models are used for tracking humans

using audio-visual cues, based on foreground detection, image-

differencing, spatiospectral covariance matrices, and training

data. The work by Gatica-Perez et al. [8] demonstrates that

particle filters, whose proposal function uses audio cues, have

better speaker tracking performance under visual occlusions.

The videoconferencing papers encourage the fusion of

acoustics and video; however, the approaches in these papers

do not extend to the outdoor vehicle tracking problem. They

omit the audio-video synchronization issue that must be mod-

eled to account for acoustic propagation delays. In vehicle

tracking problems, average target ranges of 100-600m result

in acoustic propagation delays in the range of 0.3-2s. Acoustics

and video asynchronization causes biased localization esti-

mates that can lead to filter divergence. This is because the bias

in the fused cost function increases the video’s susceptibility

to drift in the background. In addition, motion models should

adaptively account for any rapid target motion. Moreover,

the visual appearance models should be calculated online as

opposed to using trained models for tracking. Although fixed

image templates (e.g., wire-frames in [6], [8], [9]) are very

useful for face tracking, they are not effective for tracking

vehicles in outdoor environments. Adaptive appearance models

are necessary for achieving robustness [10]–[12].

To track vehicles using acoustic and video measurements,

we propose a particle filtering solution that can handle mul-

tiple sensor modalities. We use a fully joint tracker, which

combines the video particle filter tracker [11] and a modified

implementation of the acoustic particle filter tracker [13]

at the state space level. We emphasize that combining the

output of two particle filters is different from formulating

one fully joint filter [14] or one interacting filter [1] (e.g.,

one modality driving the other). The generic proposal strategy

described in [15] is used to carefully combine the optimal

proposal strategies for the individual acoustic and video state

spaces such that the random support of the particle filter

is concentrated where the final posterior of the joint state
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space lies. The resulting filter posterior has a lower Kullback-

Leibler distance to the true target posterior than any output

combination of the individual filters.

The joint filter state vector includes the target heading

direction φk(t), the logarithm of velocity over range Qk(t) =
log (vk/rk(t)), observable only by the acoustics; target shape

deformation parameters {a1, a2, a3, a4}k, the vertical 2D im-

age plane translation parameter ηk(t), observable only by

the video; and the target DOA θk(t), observable by both

modalities. The subscript k refers to the kth target. We also

incorporate a time delay variable τk(t) into the filter state

vector to account for acoustic propagation delays needed

to synchronize the acoustic and video measurements. This

variable is necessary to robustly combine the high resolution

video modality with the lower resolution acoustic modality

and to prevent biases in the state vector estimates.

The filter is initialized using a matching pursuit strategy

to generate the particle distribution for each new target, one

at a time [13], [16]. A partitioning approach is used to

create the multiple target state vector, where each partition

is assumed to be independent. Moreover, the particle filter

importance function independently proposes particles for each

target partition to increase the efficiency of the algorithm at

moderate increase in computational complexity.

The organization of the paper is as follows. Sections II

and III present the state space formulation of the individual

modalities. Section IV describes a Bayesian framework for

the joint state space, and Sect. V introduces the proposal

strategy for the fully joint particle filter tracker. Section VI

discusses the audio-video synchronization issue and presents

our solution. Section VII details the practical aspects of the

proposed tracking approach. Finally, Sect. VIII gives experi-

mental results using synthetic and field data.

II. ACOUSTIC STATE SPACE

The acoustic state space, presented in this section, is a

modified form of the one used in [17]. we choose this par-

ticular acoustic state space because of its flexible observation

model that can handle (i) multiple target harmonics, (ii)

acoustic propagation losses, and (iii) time-varying frequency

characteristics of the observed target acoustic signals, without

changing the filter equations. Figure 1 shows the behavior of

the acoustic state variables for a two-target example using

simulated data.

A. State Equation

The acoustic state vector for target k has three elements

xk(t) , [ θk(t) , Qk(t) , φk(t) ]
T

, where θk(t) is the kth

target DOA, φk(t) is its heading direction, and Qk(t) is its

logarithm of the velocity-range ratio. The angular parameters

θk(t) and φk(t) are measured counterclockwise with respect

to the x-axis.

The state update equation is derived from the geometry

imposed by the locally constant velocity model. The resulting

state update equation is nonlinear [18], [19]:

xk(t+ τ) = hτ (xk(t)) + uk(t), (1)
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Fig. 1. (Top Left) Particle filter DOA tracking example with two targets.
(Bottom Left) True track vs. calculated track. Note that the particle filter track
is estimated using the filter outputs and the correct initial position. The particle
filter jointly estimates the target heading (Bottom Right) and the target velocity
over range ratio (Top Right), while estimating the target bearing. Note that the
heading estimates typically tend to be much noisier than the DOA estimates.

where uk(t) ∼ N (0,Σu) with Σu = diag{σ2
θ,k, σ

2
Q,k, σ

2
φ,k}

and hτ (xk(t)) =



tan−1
{

sin θk(t)+τ expQk(t) sinφk(t)
cos θk(t)+τ expQk(t) cosφk(t)

}

Qk(t) −
1
2 log {1 + 2τ expQk(t) cos(θk(t) − φk(t))+

τ2 exp(2Qk(t))
}

φk(t)


 .

(2)

Reference [19] also discusses state update equations based on

a constant acceleration assumption.

B. Observation Equation

The observations yt,f = {yt−mτ,f (p)}
M−1
m=0 consist of a

batch of DOA estimates from a beamformer, indexed by m.

Hence, the acoustic data of window-length T is segmented into

M segments of length τ , equal to a single video frame duration

(typically τ = 1/30s). The target motion should satisfy the

constant velocity assumption during a window-length T . For

ground targets, T = 1s is a reasonable choice. Each of these

segments is processed by a beamformer, based on the temporal

frequency structure of the observed target signals, to calculate

possible DOA estimates. This procedure can be repeated F
times for each narrow-band frequency indexed by f (Fig. 2).

Note that only the peak locations are kept in the beamformer

power pattern. Moreover, the peak values, indexed by p, need

not be ordered or associated with peaks from the previous

time in the batch and the number of peaks retained can be

time-dependent.

The sliding batch of DOA’s, yt,f , is assumed to form a

normally distributed cloud around the true target DOA tracks.

In addition, only one DOA is present for each target at each

frequency f or the target is missed: multiple DOA measure-

ments imply the presence of clutter or other targets. We also

assume that there is a constant detection probability for each

target denoted by κf , which might depend on the particular



3

time

F
re

q
u
en

cy
 i

n
 [

H
z]

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

450

500

(a)

0 20 40 60 80 100

100

120

140

160

180

200

220

240

260

time

θ 
in

 [
° ]

(b)

0 20 40 60 80 100

100

120

140

160

180

200

220

240

260

time

θ 
in

 [
° ]

(c)

0 20 40 60 80 100

100

120

140

160

180

200

220

240

260

time

θ 
in

 [
° ]

(d)

Fig. 2. A 10-element uniform circular microphone array is used to record
a target’s acoustic signal, while it is moving on an oval track (refer to
Fig. 11). The acoustic array’s inter-microphone distance is 1.1m. Hence, the
maximum beamforming frequency without aliasing is approximately 150Hz.
The acoustic sampling frequency is 44100Hz. (a) The time-frequency plot
of the received signal. We estimated the bearing track of the vehicle using
the MVDR beamformer [2], where the beamforming frequencies are chosen
to be the dashed line for (b), the solid line for (c), and the dotted line for
(d). For each acoustic bearing estimate, 1470 acoustic data samples are used,
corresponding to 30 bearing estimates per second. The bearing tracks in (b-d)
are indexed by f = 1, 2, 3 in the acoustic state space derivation and F = 3.

frequency f . If the targets are also simultaneously identified,

an additional partition dependency, i.e., κfk , is added.

For a given target, if we assume that the data is only

due to its partition and clutter (hence, the DOA data

corresponding to other targets are treated as clutter), we

can derive the observation likelihood for the state xt =[
xT1 (t), xT2 (t), . . . , xTK(t)

]T
[17] as:

p(yt|xt) =
∏K
k=1 p(yt|xk(t)) =

∏K
k=1

∏F
f=1

∏M−1
m=0



κf0,1

(
γ
2π

)Pm,f + κf1,1
(
γ
2π

)Pm,f−1 ∑Pm,f

p=1

ψt,m,f

 

p

∣∣∣xk

!

Pm,f




,

(3)

where the parameters κfn,K (
∑
n κ

f
n,K = 1) are the elements

of a detection (or confusion) matrix, p = 0, 1, . . . , Pm,f for

each f and m, and γ ≫ 1 is a constant that depends on the

maximum number of beamformer peaks P , the smoothness of

the beamformer’s steered response, and the number of targets

K. The function ψ in (3) is derived from the assumption

that the associated target DOA’s form a Gaussian distribution

around the true target DOA tracks:

ψt,m,f

(
pi

∣∣∣xi
)

=

1√
2πσ2

θ
(m,f)

exp

{
−

(hθ
mτ (xi(t))−yt+mτ,f (pi))

2

2σ2
θ
(m,f)

}
,

(4)

where the superscript θ on the state update function h refers

only to the DOA component of the state update and σ2
θ(m, f)

is supplied by the beamformer, using the curvature of the DOA

power pattern at the peak location.

III. VIDEO STATE SPACE

In this section, we give the details of the video state space.

This video state space is also described in greater detail in [11].

We assume that the camera is stationary and is mounted

at the center of the acoustic microphone array, at a known

height above the ground. We also assume that the camera

calibration parameters are known, which allows us to convert

a location on the image plane to a DOA estimate while having

the same reference axis as the acoustic state space. Figure 3

demonstrates a video tracker based on state space described

in this section.

(a) Frame 1 (b) Frame 8 (c) Frame 15

(d) Frame 22 (e) Frame 29 (f) Frame 36

(g) Frame 43 (h) Frame 50 (i) Frame 57

Fig. 3. Intensity based visual tracking of the white car using the particle filter
based on the video state space described in this section. The solid box shows
the mean of the posterior, whereas the dashed box shows the location of
the mode of the posterior. The dot cloud depicts spatial particle distribution.
In this scenario, the white car is occluded for 1 second corresponding to
30 video frames. The particle spread during occlusion increases because the
robust statistics measure [11] renders the likelihood function non-informative.
The filter quickly locks back to the target after occlusion.

A. State Equation

The video state vector for target k has six el-

ements: four affine deformation parameters ak(t) =
[ ak,1,t , . . . , ak,4,t ]

T
, a vertical 2-D translation pa-

rameter ηk(t), and the target DOA θk(t): xk(t) ,[
aTk (t) , ηk(t) , θk(t)

]T
. The affine deformation parame-

ters linearly model the object rotation, shear and scaling (affine

minus translation), whereas the translation parameter and the

DOA account for the object translation, all on the image plane.

The state update equation consists of a predictive shift and a

diffusion component:

xk(t) = hτ (xk(t− τ)) + uk(t) = x̂k(t− τ) + νk(t) + uk(t),
(5)

where νk(t) is an adaptive velocity component, affecting

only ηk(t) and θk(t) in the state vector. It is calculated
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using a first-order linear prediction method on two successive

frames; x̂k(t − τ) is the maximum a posteriori estimate

of the state at time t − τ ; and uk(t) is an adaptive noise

component, calculated by measuring the difference between

the updated appearance and the calculated appearance at time

t, as described in [11]. Note that the video state mode estimates

x̂k(t−τ) are stored in the memory, because they are later used

for adaptively determining a time delay variable for acoustic-

video synchronization.

The state equation is constructed so that it can effectively

capture rapid target motions. The adaptive velocity component

accounts for the object’s shift within the image frame, whereas

the adaptive noise term captures its drift around its motion.

Hence, the adaptive velocity model simply encodes the object’s

inertia into the tracker and generates particles that are tightly

centered around the object of interest for improved efficiency

(Fig. 4). If we do not account for the object’s shift using the

adaptive noise component, we need to increase the variance

of the drift component to capture the actual movement of the

object. Hence, we may start to lose our focus on the target as

shown in Fig. 4(b) without the adaptive velocity component. In

this case, if the background is somewhat similar to the target,

it is automatically injected into the appearance models through

the EM algorithm. Hence, the background also becomes part

of the tracked object, thereby creating local minima to confuse

the tracker in its later iterations.

The adaptive noise variance is based on residual motion er-

rors generated by the adaptive velocity component. It decreases

when the quality of the prediction from the adaptive velocity

component is high, and increases when the prediction is poor.

Finally, when the tracker is visually occluded (occlusion is

defined in the next subsection), the target motion is charac-

terized using a Brownian motion and νk(t) = 0 is enforced.

Hence, during an occlusion, the state dynamics changes to the

following form:

xk(t) = xk(t− τ) + uk(t). (6)

We avoid the use of the adaptive velocity model during

occlusion because the object motion may change significantly

during an occlusion.

(a) with the adaptive velocity model (b) without the adaptive velocity
model

Fig. 4. Comparison of the proposed particles when the adaptive velocity model
is used. Note that the particles are tightly clustered around the target when
we use the adaptive velocity model. In contrast, without velocity prediction,
we need to use more particles to represent the same posterior, because most
particles have very low weights.

B. Observation Equation

The observation model is a mixture of following adaptive

appearance models: a wandering Wt, a stable St, and an

optional fixed template model Ft. The wandering model Wt

captures transient appearance changes based on two successive

frames, whereas the stable model St encodes appearance

properties that remain relatively constant over a large number

of frames (Fig. 5). The fixed template Ft is useful for tracking

recognized targets, however it is not considered any further

in this paper. The adaptive observation model in this paper

uses the pixel intensity values for these appearance models

for computational efficiency as suggested in [11]. Although

the image intensity values are typically not robust to changes

in illumination, the appearance model described here can adapt

to changes in illumination. However, it is still possible to lose

track if there are sudden changes in illumination. We use a

very simple model to circumvent this problem. We normalize

the mean and the variance of the appearance as seen by each

particle. This makes our tracker immune to uniform scaling

of the intensities. If we know that the illumination changes

are severe, we can adopt an alternative feature at the expense

of computation without chancing our filter mechanics, such as

the spatial phase data of the object [12] that is more robust to

illumination changes.

The observation model is dynamically updated by an on-

line expectation maximization (EM) algorithm that adaptively

calculates the appearance parameters {µi,t, σ2
i,t}, (i = w, s)

of the appearance models At = {Wt,St}, and the model

mixture probabilities mi,t, (i = w, s) for each pixel [20], [21].

The details of the EM algorithm for calculating the mixture

probabilities and model parameters can be found in [11],

[12]. Omitting the details of the derivations, the observation

likelihood is given by the following expression:

p(yt|xt) =

K∏

k=1

d∏

j=1





∑

i=w,s

mi,tN(Tk(yt(j));µi,t(j), σ
2
i,t(j))



 ,

(7)

where Tk is the affine transformation that extracts the image

patch of interest by using the state vector xk(t); d is the

number of pixels in the image patch; and N(x;µ, σ2) is the

density

N(u;µ, σ2) ∝ exp

{
−ρ

(
u− µ

σ

)}
, (8)

where u is normalized to have unit variance, and

ρ(u) =

{
1
2u

2, if |u| ≤ c;
c |u| − 1

2c
2, o/w.

(9)

The function ρ(·) is Huber’s criterion function, which is com-

monly used for outlier rejection [22]. It provides a compromise

between mean estimators that are susceptible to outliers and

median estimators that are usually robust to outliers. The

constant c is used to determine the outlier pixels that cannot

be explained by the underlying models. Furthermore, methods

from robust statistics allow us to formally decide when the

tracker is visually occluded, which implies that the particle

with the highest likelihood has more than 50% of its pixels,

which are classified as outliers by the appearance model. This
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Online Appearance Model with Fixed Template Size

S: Stable W: Wandering

Good match Poor match
High likelihood Particle Low likelihood Particle

Mapping from the box below
to the template is governed
by the affine deformation
parameters in the particle

Fig. 5. The online appearance model is illustrated. The model has two
components: S (stable) and W (wandering). The stable model temporally
integrates the target image in its bounding box using a forgetting factor. On
the other hand, the wandering model uses two-frame averages. Note that
each model uses a fixed size image template that is updated by an online
EM algorithm [11]. To determine a particle’s likelihood, an image patch is
first determined using the particle elements. Then, the patch is mapped back
to the template domain using the affine transformation parameters, where
it is compared with the updated appearance model. This operation requires
interpolation and contributes to most of the filter’s computational complexity.

criterion is discussed in greater detail in [11].

Deciding on whether or not an object is occluded is an

arduous task. However, this task is alleviated when we also

track the appearance. Our decision is based on the outlier

statistics and is reliable. We provide a Monte Carlo run of

the occlusion decision in the simulations section to show

the reliability of our occlusion strategy. We show that the

variability of the occlusion detection is rather small once

a threshold is chosen. Further examples of this occlusion

strategy can be found in [11]. The influence of an error on

this decision is discussed in our observation model. If we are

late in declaring an occlusion, the appearance of the occluding

object injects itself into the target appearance, thereby causing

local minima in the tracking algorithm. However, given the

complexity of the problem, one should not expect superlative

performance for all the possible cases.

Another issue in handling occlusion is the change in the

appearance of the target during occlusion. This could happen

due to changes in global illumination, changes in the pose

of the target, or dramatic changes in the projected target size

on the image plane. Recovery of visual tracking cannot be

guaranteed, except when these changes are not severe. In

cases, where the track is recovered, we update the appearance

model using the appearance associated with the particle with

maximum likelihood. We say that track has been regained

after occlusion, when the tracker is not visually occluded (as

defined before) for a fixed set of frames (ten frames for the

experiments in the paper).

IV. BAYESIAN FRAMEWORK FOR TRACKING THE JOINT

STATE SPACE

In this section, a Bayesian framework is described for

combining the acoustic (S1) and video (S2) state spaces

that share a common state parameter. The results below can

be generalized to time-varying systems including nuisance

parameters. It is assumed that the state dimensions are constant

even if the system is time-varying. Define

Si : xi,t =

[
χt
ψi,t

]
∼ qi(xi,t|xi,t−1)

yi,t ∼ fi(yi,t|xi,t),

(10)

where the observed data in each space is represented by

{yi,t, i = 1, 2}, χt = θt (overlapping state parameter),

ψ1,t = [ Q(t) , φ(t) ]
T

, and ψ2,t =
[

aT (t) , η(t)
]T

. The

state transition density functions qi(·|−) are given by (1)

and (5). The observations are explained through the density

functions fi(·|−), given by (3) and (7). The observation

sets yi are modeled as statistically independent given the

state through conditionally independent observation densities.

This assumption is justified in our problem: for example, a

vehicle’s time-frequency signature is independent of its colors

or textures. In most cases, it may be necessary to verify this

assumption mathematically for the problem at hand [14], [23]

by using the specific observation models.

To track the joint state vector xt = [χt, ψ1,t, ψ2,t] with a

particle filter, the following target posterior should be deter-

mined:

p(xt|xt−1, y1,t, y2,t) ∝ p(y1,t, y2,t|xt)p(xt|xt−1)

= πt(y1,t, y2,t)πt−1(xt),
(11)

where πs(·) = p(·|xs). Note that the Markovian property

is enforced in (11). That is, given the previous state and

the current data observations, the current state distribution

does not depend on the previous state track and the previous

observations.

Equation (11) allows the target posterior to be calculated

up to a proportionality constant, where the proportionality is

independent of the current state xt. The first pdf on the right

hand side of (11) is called the joint-data likelihood and can

be simplified, using the conditional independence assumption

on the observations:

πt(y1,t, y2,t) = f1(y1,t|x1,t)f2(y2,t|x2,t). (12)

The second pdf in (11), corresponding to a joint state

update, requires more attention. State spaces S1 and S2 may

have different updates for the common parameter set since
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they had different models.1 This poses a challenge in terms

of formulating the common state update for xt. Instead of

assuming a given analytical form for the joint state update as

in [14], we combine the individual state update marginal pdfs

for the common state parameter as follows:

πt−1(χt) = cp1(χt)
o1p2(χt)

o2r(χt)
o3 , (13)

where c ≥ 1 is a constant, pi(χt) , p(χt|xi,t−1) is the

marginal density, the probabilities oi for i = 1, 2 (
∑
i oi = 1)

define an ownership of the underlying phenomenon by the

state models, and r(χt) is a (uniform/reference) prior in

the natural space of the parameter χt [24] to account for

unexplained observations by the state models.

If we denote the Kullback-Leibler distance as D, then

D(α(χt)||πt−1(χt)) = − log c+
∑

i

oiD(α(χt)||pi(χt))

(14)

where α is the unknown true χt distribution. Hence,

D(α||πt−1) ≤ maxi{D(α||pi)}. πt−1(χt) always has a

smaller KL distance to the true distribution than the maximum

KL distance of pi(χt). This implies that (13) alleviates the

worst case divergence from the true distribution [25]. Hence,

this proves that one of the trackers does assist the other in this

framework.

The ownership probabilities, oi, can be determined using

an error criteria. For example, one way is to monitor how

well each partition xi,t in xt explains the information streams

yi,t through their state-observation equation pair defined by

Si, (10). Then, the respective likelihood functions can be

aggregated with an exponential envelope to recursively solve

for the oi’s (e.g., using an EM algorithm). In this case,

the target posterior will be dynamically shifting towards the

better self-consistent model while still taking into account

the information coming from the other, possibly incomplete,

model, which might be temporarily unable to explain the data

stream.

If one believes that both models explain the underlying

process equally well regardless of their self-consistency, one

can set o1 = o2 = 1/2 to have the marginal distribution

of χt resemble the product of the marginal distributions

imposed by both state spaces. The proposal strategy in the

next section is derived with this assumption on the ownership

probabilities, because, interestingly, it is possible to show that

assuming equal ownership probabilities along with (13) leads

to the following conditional independence relation on the state

spaces:

πt−1(x1,t)πt−1(x2,t) = q1(x1,t|x1,t−1)q2(x2,t|x2,t−1). (15)

Equation (15) finally results in the following update equa-

tion:

1There is no exact state update function for all targets. Individual state
spaces may employ different functions for robustness, which is the case in
our problem.

πt−1(xt) = πt−1(ψ1,t, ψ2,t|χt)πt−1(χt)

= πt−1(ψ1,t|χt)πt−1(ψ2,t|χt)πt−1(χt)

=
πt−1(x1,t)πt−1(x2,t)

πt−1(χt)

⇒ πt−1(xt) =
q1(x1,t|x1,t−1)q2(x2,t|x2,t)

πt−1(χt)
,

(16)

where

πt−1(χt) ∝

[∫∫
q1(x1,t|x1,t−1)dψ1,tq2(x2,t|x2,t)dψ2,t

]1/2

.

(17)

V. PROPOSAL STRATEGY

A proposal function, denoted as g(xt|xt−1, yt), determines

the random support for the particle candidates to be weighted

by the particle filter. Two very popular choices are (i) the

state update g ∝ qi(xt|xt−1) and (ii) the full posterior g ∝
fi(yt|xt)qi(xt|xt−1). The first one is attractive because it is

analytically tractable. The second one is better because it

incorporates the latest data while proposing particles, and it

results in less variance in the importance weights of the parti-

cle filter since, in effect, it directly samples the posterior [26],

[27]. Moreover, it can be analytically approximated for faster

particle generation by using local linearization techniques (see

[27]), where the full posterior is approximated by a Gaussian.

The analytical form of the proposal functions for acoustic

and video state spaces, obtained by local linearization of the

posterior, is given by

g(xt|xt−1, yt) ∼ N (µg,Σg) , (18)

where the Gaussian density parameters are

Σg =
(
Σ−1
y + Σ−1

u

)−1
,

µg = Σg
(
Σ−1
y xmode + Σ−1

u hτ (x(t− τ))
)
,

(19)

and where xmode is the mode of the data likelihood, and

Σ−1
y (k) is the Hessian of data likelihood at xmode. The details

of these proposal functions can be found in [11], [13]. Hence,

in either way of proposing particles, one can assume that an

analytical relation for gi, defining the support of the actual

posterior for each state space, can be obtained.

Figure 6 describes the proposal strategy used for the joint

state space. Each state space has a proposal strategy described

by the analytical functions {gi, i = 1, 2} defined over the

whole state spaces. Then, the proposal functions of each state

gi are used to propose particles for the joint space by carefully

combining the supports of the individual posteriors. First,

marginalize out the parameters ψi,t:

ĝi(χt|xi,t−1, yi,t) =

∫
gi(xi,t|xi,t−1, yi,t)dψi,t. (20)

The functions, ĝi, describe the random support for the common

state parameter χt and can be combined in the same way as

the joint state update (13). Hence, the following function

ĝ(χt|xt−1, y1,t, y2,t) ∝ [ĝ1(χt|x1,t−1, y1,t)ĝ2(χt|x2,t−1, y2,t)]
1/2

(21)
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χtχtχtS1 S2

ψ
(j)
1,t

χ
(j)
t

ψ
(j)
2,t

ψ1,t

ψ1,t

ψ2,t

ψ2,t

g1
g2

ĝ

ĝ

∫
dψ1,t

∫
dψ2,t

ĝ1

ĝ2

g1(χ
(j)
t , ψ1,t)

g2(χ
(j)
t , ψ2,t)

Support

for ψ1,t

Support

for ψ2,t

Fig. 6. The supports, gi’s, for the posterior distribution in each state space, Si,
are shown on the axes χt vs. ψi,t. Particles for the joint state are generated by
first generating χt’s from the combined supports of the marginal distributions
of χt. Then, the ψi,t’s are sampled from the gi’s as constrained by the given
χt realization.

can be used to generate the candidates χ
(j)
t for the overlapping

state parameters. Then using χ
(j)
t , one can generate ψ

(j)
i,t from

gi(χ
(j)
t , ψi,t|xi,t−1, yi,t) and form x

(j)
t = [χ

(j)
t , ψ

(j)
t , ϕ

(j)
t ].

In general, Monté-Carlo simulation methods can be used

to simulate the marginal integrals in this section [28].

Here, we show how to calculate the marginal integrals

of the state models. Simulation of the other integrals are

quite similar. Given χ
(j)
t , draw M samples using ψ

(m)
i,t ∼

gi(χ
(j)
t , ψi,t|xi,t−1, yi,t).

2 Then,

∫
q1(χ

(j)
t , ψi,t|x1,t−1)dψi,t ≈

1

M

M∑

m=1

q1(χ
(j)
t , ψ

(m)
i,t |x1,t−1)

g1(χ
(j)
t , ψ

(m)
i,t |x1,t−1, y1,t)

.

(22)

The pseudo-code for the joint strategy is given in Table I.

Finally, the importance weights for the particles generated by

the joint strategy described in this section can be calculated

as follows:

w(j) ∝
p(x

(j)
t |xt−1, y1,t, y2,t)ĝ(χ

(j)
t |xt−1, y1,t, y2,t)

g1(χ
(j)
t , ψ

(j)
1,t |x1,t−1, y1,t)g2(χ

(j)
t , ψ

(j)
2,t |x2,t−1, y2,t)

.

(23)

VI. TIME DELAY PARAMETER

The joint acoustic video particle filter sequentially estimates

its state vector at video frame rate, as the acoustic data

arrives. Hence, the joint filter state estimates are delayed with

respect to the actual event that produces the state, because the

acoustic information propagates much slower than the video

information. Although it is possible to formulate a filter so that

estimates are computed as the video data arrives, the resulting

filter cannot use the delayed acoustic data. Hence, it is not con-

sidered here. The adaptive time delay estimation also allows

position tracking on the ground plane. However, small errors

in the time delay estimates translate into rather large errors

2It is actually not necessary to draw the samples directly from

gi(χ
(j)
t , ψi,t|−). An easier distribution function approximating only qi can

be used for simulating the marginalization integral (22).

TABLE I

PSEUDO CODE FOR JOINT PROPOSAL STRATEGY

i. Given the state update qi and observation relations fi for

the individual state spaces {Si, i = 1, 2}, determine

analytical relations for the proposal functions gi’s. For

the individual proposal functions gi, it is important to

approximate the true posterior as close as possible

because these approximations are used to define the

random support for the final joint posterior. For this

purpose, Gaussian approximation of the posterior (18) or

linearization of the state equations can be used [27].

ii. Determine the support for the common state parameter

χt using (21). The expression for ĝ may have to be

approximated or simulated to generate candidates χ
(j)
t ,

j = 1, 2, . . . , N where N is the number of particles.

iii. Given χ
(j)
t ,

• calculate the marginal integrals by using (22) to

determine gi,
• generate ψ

(j)
i,t ∼ gi(χ

(j)
t , ψi,t|xi,t−1, yi,t),

• form x
(j)
t = [χ

(j)
t , ψ

(j)
1,t , ψ

(j)
2,t ], and

• calculate the importance weights, w(j)’s, using (23).

in target range estimates, resulting in large errors in target

position estimates. Hence, the main reason for estimating time

delay is to ensure the stability of the joint filter.

Beamformer

Vid. Mo. Detector Motion Mode Est.

Motion Mode Est.

Batch Memory

Batch Memory

Time Alignment

AD

VD

d(t),σ2
d

JT

JT

JT

θ1(t)

θ2(t)

{θ1}t

{θ2}t

{θ1}(t−T+τ):(t−τ)

{θ2}(t−T+τ):(t−τ)

Fig. 7. At time t, τ seconds of acoustic data (AD) and a frame of video
data (VD) are processed to obtain possible target DOA’s {θi}t. This prepro-
cessing is done by a beamformer block and a video motion detector block,
respectively. With the guidance of the joint tracker (JT), these DOA’s are
used to determine the DOA mode tracks, θi(t) (Fig. 8), to estimate the time
delay d(t). The estimated time delay parameters are then used in the proposal
function of the joint tracker.

To synchronize the audio-video information, we add an

additional time delay variable dk(t) for each target k to form

an augmented joint filter state:

xk(t) ,
[

aTk (t) , ηk(t) , θk(t) , Qk(t) , φk(t) , dk(t)
]T
.

(24)

The time delay dk(t) is defined geometrically as:

dk(t) = ||ξ − χk (t− dk(t)) ||/c, (25)
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where ξ = [sx, sy]
T is the hybrid node position in 2D, χt =

[xk,target(t), yk,target(t)]
T

is the kth target position, and c is

the speed of sound. Using the geometry of the problem, it is

possible to derive an update equation for dk(t):

dk(t+ τ) = dk(t) exp{ud,k(t)}√
1 + 2τ exp{Qk(t)} cos (θk(t) − φk(t)) + τ2 exp{2Qk(t)},

(26)

where the Gaussian state noise ud,k(t) is injected as multi-

plicative.

We suppress the partition dependence on the variables from

now on for brevity. Figure 7 illustrates the mechanics of time

delay estimation. To determine d(t), we first determine the

mode of the acoustic state vector within a batch period of

T seconds. Given the calculated acoustic data mode, which is

also used in the proposal stage of the particle filter, x1,mode(t),
an analytical relation for acoustic DOA track θ1(t) (Fig. 8) is

determined, using the state update function (2). This functional

estimate θ1(t) of the acoustic DOA’s and acoustic data is used

to determine an average variance of the DOA’s σ̃2
1,θ around the

functional, between times t and t−T . Note that σ̃2
θ is estimated

using the missing and spurious data assumptions similar to the

ones presented in Sect. II.

Next, we search the stored mode estimates of the video

state, which is used in the video state update function (5),

to determine M = T/τ (i.e., the number of video frames

per second) closest video DOA estimates. These DOA’s are

used, along with the constant velocity motion assumption, to

determine a functional estimate θ2(t) of the DOA track and an

average DOA variance σ̃2
2,θ, based on the video observations,

as shown in Fig. 8. The observation likelihood for the time

delay variable d(t) is approximated by the following Gaussian:

p(d(t)|y1,t,y2,t) ≈ N
(
µd

(
1 + TeQmode

cos [(θ1(t− T ) + θ1(t))/2 − φmode] + T 2e2Qmode/4
) 1

2 , σ2
d

)
,

(27)

where the mean is the average distance between the func-

tional inverses of θ1(t) and θ2(t):

µd =

∣∣∣∣∣∣

∫ θ1(t−T )

θ1(t)

[
θ−1
1 (θ′) − θ−1

2 (θ′)
]
dθ′

θ1(t) − θ1(t− T )

∣∣∣∣∣∣
. (28)

The variance σ2
d is determined by dividing the average DOA

variances by the functional slope average:

σ2
d =

∣∣∣∣∣
θ1(t) − θ1(t− T )
∫ t
t−T

∂θ1(t′)
∂t′ dt′

∣∣∣∣∣ σ̃
2
1,θ +

∣∣∣∣∣
θ1(t) − θ1(t− T )
∫ t
t−T

∂θ2(t′)
∂t′ dt′

∣∣∣∣∣ σ̃
2
2,θ.

(29)

In the joint filter, the particles for the time delay parameter

are independently proposed with a Gaussian approximation to

the full time delay posterior, using (26) and (27) [27].

VII. ALGORITHM DETAILS

The joint acoustic-video particle filter tracker code is given

in Table II. In the following subsections, we discuss other

practical aspects of the filter.

t− T tt− τt− T − τ Time

DOA

T

dk(t′)

τ

θ1(t)

θ2(t)

θ1(t)

θ1(t− T )

Fig. 8. The time delay dk(t) between the acoustic and video DOA tracks,
θ1(t) and θ2(t), respectively.

A. Initialization

The organic initialization algorithms for the video and

acoustic trackers are employed to initialize the joint filter.

The joint filter initialization requires an interplay between the

modalities, because the state vector is only partially observable

by either modality. In most cases, the video initializer is

cued by the acoustics, because the video modality consumes

significantly more power. Below, we describe the general case

where each modality is turned on.

Briefly, the organic initialization algorithms work as fol-

lows. In video, motion cues and background modeling are

used to initialize target appearance models, aTk (t), ηk(t), and

θk(t) by placing a bounding box on targets and by coherent

temporal processing of the video frames [11]. In acoustics,

the temporal consistency of the observed DOA’s is used to

initialize target partitions by using a modified Metropolis-

Hastings algorithm [13], [29].

To initialize targets, a matching-pursuit idea is used [13],

[16]. The most likely target is initialized first and then its

corresponding data is gated out [30]. Note that the target

motion parameters alleviate the data association issues be-

tween the video and acoustic sensors, because both modalities

are collocated. Hence, the overlapping state parameter θ is

used to fuse the video shape parameters and acoustic motion

parameters.

When a target is detected by the organic initialization

algorithms, the time delay variable is estimated using the

scheme described in Sect. VI. The initialization scheme in [13]

is used to determine the target motion parameters, where

the video DOA mode estimates are used as an independent

observation dimension to improve the accuracy. Finally, a

target partition is deleted by the tracking algorithm at the

proposal stage if both acoustic and video modalities do not

see any data in the vicinity of the proposed target state.

B. Multi Target Posterior

The joint filter treats the multiple targets independently,

using a partition approach. The proposal and particle weight-

ing of each target partitions are independent. This allows
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a parallel implementation of the filter where a new single

target tracking joint filter is employed for each new target.

Hence, the complexity of the filter increases linearly with the

number of targets. Note that for each target partition, it is

crucial that data corresponding to the other target partitions

are treated as clutter. This approach is different from the joint

probability density association (JPDA) approach that would

be optimal for assigning probabilities to each partition by

adding mixtures that consist of data permutations and partition

combinations [30]. In JPDA, no data would be assigned to

more than one target. However, in our approach, the same

DOA might be assigned to multiple targets.

Notably, it is shown in [13] that the independence assump-

tion in this paper for the joint state space is reasonable for

the acoustic tracker. There is a slight performance degradation

in bearing estimation, when the targets cross; however, it is

not noticeable in most cases. Moreover, the JPDA approach

is not required by the video tracker. When the targets cross,

if the targets are not occluding each other as their DOA’s

cross, the vertical 2-D translation parameter ηk(t) resolves

the data association issue between the partitions. The motion

parameters also resolve the data association, similar to the

acoustic tracker, to alleviate the filter performance. If there

is occlusion, it is handled separately using robust statistics as

described below.

C. Occlusion Handling

In video, if the number of outlier pixels, defined in (9),

is above some threshold, occlusion is declared. In that case,

the updates on the appearance model and the adaptive velocity

component in the state update (5) are stopped. The current ap-

pearance model is kept and the state is diffused with increasing

diffusion variance. The data likelihood for the occluded target

is set to 1 for an uninformative response under the influence

of robust statistics. Similarly, the acoustic data likelihood is

set to 1 when the number of DOA’s within the batch gate of

a partition is less than some threshold (e.g., M/2).

VIII. SIMULATIONS

Our objective with the simulations is to demonstrate the

robustness and capabilities of the proposed tracker. We provide

two examples. In the first example, a vehicle is visually

occluded and the acoustic mode enables track recovery. In

the second example, we provide joint tracking of two targets

and provide time delay estimation results.

A. Tracking through Occlusion

Figure 9 shows the tracking results for a car that is occluded

by a tree. The role of the DOA variable in the state space is

crucial for this case. In the absence of information from any

one of the modalities, the DOA still remains observable and is

estimated from the modality that is not occluded. However, the

rest of the states corresponding to the failed modality remains

unobservable, and the variance of the particles along these

dimensions continues to increase as the occlusion persists.

Hence, it is therefore sometimes necessary to use an increasing

number of particles to regain track until the failed modality is

rectified.

The video modality regains the track immediately, as the

target comes out of occlusion. The spread of particles (the dot

cloud in Fig. 9) gives an idea of the observability of the vertical

location parameter on the image plane. Further, the dramatic

reduction in this spread as the target comes out of occlusion,

demonstrates the previously unobservable visual components

recovering the track. It is also interesting to compare the spread

of particles in Fig. 9 with the pure visual tracking example in

Fig. 3, where the spread of particle increases isotropically on

the image plane, due to complete occlusion. Hence, the joint

tracking reduces the uncertainty through the second modality.

For this example, the simulation parameters are given in Table

III. The acoustic bearing data is generated by adding Gaussian

noise to the bearing track that corresponds to the ground truth.

The acoustic bearing variance is 4 degrees between t = 1s to

t = 5s, when the vehicle engine is getting occluded by the

tree. It is 2 degrees when the vehicle engine is not occluded.

Figure 10 shows the results of a Monte-Carlo run, where

the filter is rerun with different acoustic noise realizations. The

threshold for declaring an occlusion is set as 40%. Figure 10(a)

shows the joint bearing estimate results whereas Fig. 10(b) and

(c) show the acoustics-only and video-only tracking results,

respectively. In Fig. 10(a), there is a small positive bias in the

bearing estimates at the end due to the target’s pose change.

As can be seen in Fig. 9(h) and (i), the rear end of the vehicle

is visible after the vehicle comes out of the occlusion. The

online appearance model locks on the front of the vehicle,

whose appearance was stored before the occlusion. Hence,

the rear end of the vehicle is ignored, causing the bias. We

see in Fig. 10(c) that the video-only tracker cannot handle this

persistent occlusion without the help of the acoustics.

Note the time evolution of the estimate variances shown

in Figs. 10(d) and (e) for the joint tracker and the acoustics-

only tracker. When the video modality is unable to contribute,

the variance of the estimate approaches acoustics-only results.

When the video recovers, the estimate variance drops sharply.

Figures 10(f) and (g) show the distribution of the vertical

displacement parameter. When the occlusion is over at t =
6s, the video quickly resolves its ambiguity in the vertical

displacement (Fig. 10(g)), whereas the variance of the vertical

displacement in Fig. 10(f) increases linearly with time due to

divergence. Figures 10(h) and (i) demonstrate the occlusion

probability of the target.

TABLE III

SIMULATION PARAMETERS

Number of particles, N 1000
ϕ(t) noise Σϕ diag [0.02, 0.002, 0.002, 0.2, 2]
θ noise σθ,k 1 ◦

Q noise σQ,k 0.05s−1

φ noise σφ,k 4 ◦

Video Measurement noise σθ 0.1,◦

App. Model Template Size 15×15 (in pixels)

Beamformer batch period, τ 1
30

s
Frame Size 720× 480
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TABLE II

JOINT ACOUSTIC VIDEO PARTICLE FILTER TRACKER PSEUDO-CODE

1. For each particle i (i = 1, 2, . . . , N ) and each partition k (k = 1, 2, . . . ,K)

• Sample the time delay d
(i)
k (t) ∼ gd(dk(t)|y1,t, y2,t, x

(i)
k (t− T )), where gd(·) is the Gaussian approximation to (26)

and (27).

• Using the procedure illustrated in Table I, sample χ
(i)
k (t), ψ

(i)
k (t), and ϕ

(i)
k (t) from x

(i)
k (t− T ) with the time

synchronized acoustic and video data y1,t and y2,t−d(i)(t).

2. Calculate the weights w∗(i)
t using (23). Determine visual and acoustic occlusions by looking at the likelihood estimates of

each particle: p(y1,t|χ
(i)(t), ψ(i)(t)) (acoustics) and p(y2,t|χ

(i)(t), ϕ(i)(t)) (video).

• A particle is visually occluded if a sufficient number of pixels in the template are outliers for the appearance model.

The number of outlier pixels is calculated by (7) and (9): the number of terms in the summation for which ρ(u)
function is evaluated on the region |u| > c. If the number of such pixels is higher than 50%, it is claimed that the

appearance, as hypothesized by the particle, is visually occluded.

• If the particle that has the maximum video likelihood is visually occluded, then declare that the target has been

occluded for the frame. In this case, the states represented by ϕ(t) are unobservable and their sampling is done

separately as in [11].

• Similarly, a particle is acoustically occluded, if the observation DOA’s y1,t differ significantly from the value of DOA

hypothesized by the mode particle. By counting the DOA’s y1,t+mτ in the gate of the hypothesized DOA’s

hmτ (x
(i)(t)), we declare an acoustic occlusion. If more than half the DOA observations in the batch are termed

occluded, the particle is labeled as acoustically occluded.

• If the particle that has the maximum acoustic likelihood is acoustically occluded, then we term the estimation at time

t to be acoustically occluded. In this case, the states ψ(t) are unobservable and are sampled separately as in [13].

• When a particle is occluded, the corresponding time delay is sampled from (26).

3. Calculate the weights using (23) and normalize.

4. Perform the estimation [27]: E{f(xt)} =
∑N
i=1 w

(i)
t f(x

(i)
t ).

5. Resample the particles: Only states that are observable participate in resampling. For example, if the observations are

visually occluded then the states ϕ(t) are not resampled. Similarly, if the observations are acoustically occluded, then the

states ψ(t) are not resampled.

• Heapsort the particles in a ascending order according to their weights: x
(i)
t → x̃

(i)
t .

• Generate ω ∼ U [0, 1).
• For j = 1, 2, . . . , N

a. u(j) = j−ω
N ,

b. Find i, satisfying
∑i−1
l=1 w̃

(i)
t < u(j) ≤

∑i
l=1 w̃

(i)
t ,

c. Set x
(j)
t = x̃

(i)
t .

6. Update the appearance model with the appearance corresponding to the particle with maximum likelihood, if this

likelihood value exceeds the threshold. The appearance model is not updated during visual occlusion. Finally, we

reinitialize the appearance model when the tracker is visually unoccluded for 10 consecutive frames, after visual

occlusions of at least one second.

B. Time Delay Estimation

We performed a simulation with the time delay variable on a

synthetically constructed multi-target data set. The simulation

parameters are given in Table IV. The temporal tracks of two

targets are shown in Fig. 11. The simulation parameters are

given in Table II. The results of the DOA and time delay

estimation are shown in Fig. 12. The filter handles multiple

targets independently by treating the data of the other target as

clutter. Note the variance of the time delay estimates decreases

as the targets get closer to the hybrid sensors. It is important to

account for this time delay, because filter instability occurs due

to the estimation biases when filtered with the unsynchronized

data.

IX. CONCLUSIONS

In this paper, we presented a particle filter tracker that can

exploit acoustic and video observations for target tracking by

merging different state space models that overlap on a common

parameter. By the construction of its proposal function, the

filter mechanics render the particle filter robust against target

occlusions in either modality, when used with Huber’s robust

statistics criterion function. The presented filter also demon-

strates a scheme for adaptive time-synchronization of the multi
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(a) Frame 1 (b) Frame 30 (c) Frame 60

(d) Frame 90 (e) Frame 120 (f) Frame 150

(g) Frame 180 (h) Frame 195 (i) Frame 210

Fig. 9. Joint tracking of a vehicle that is occluded by a tree. The particle cloud
at each frame represents the discrete support of the posterior distribution of the
vehicle position in the image plane. Note that the particle spread during the
occlusion increases along the vertical axis. This spread suddenly decreases,
once occlusion is gone. The target is occluded in frames 40 to 180.

TABLE IV

SIMULATION PARAMETERS

Number of particles, N 1000
θ noise σθ,k 1 ◦

Q noise σQ,k 0.05s−1

φ noise σφ,k 4 ◦

Time delay d noise σd,k 0.2s

Acoustic Measurement noise σθ 1 ◦

Video Measurement noise σθ 0.1,◦

Beamformer batch period, τ 1
30

s

modal data for parameter estimation. The time delay variable is

incorporated into the filter and is modeled as multiplicative. It

is the authors’ observation that without the time delay variable,

the joint filter is susceptible to divergence.

X. ACKNOWLEDGEMENTS

The authors would like to thank Milind Borkar, Soner

Ozgur, and Mahesh Ramachandran for their help in the col-

lection of the data that generated Figs. 3, 4, 5, and 9. We

also would like to thank the anonymous reviewers, whose

comments improved the final presentation of the paper.

REFERENCES

[1] R. Chellappa, G. Qian, and Q. Zheng, “Vehicle detection and tracking
using acoustic and video sensors,” in ICASSP 2004, Montreal, CA,
17-21 May 2004.

[2] D. H. Johnson and D. E. Dudgeon, Array Signal Processing: Concepts
and Techniques, Prentice Hall, 1993.

[3] M. Wax and T. Kaliath, “Detection of signals by information theoretic
criteria,” IEEE Trans. on Acoustics, Speech, and Signal Processing, vol.
ASSP-33, pp. 387–392, April 1985.

[4] S. Valaee and P. Kabal, “Detection of signals by information theoretic
criteria,” IEEE Trans. on Signal Processing, vol. 52, pp. 1171–1178,
May 2004.

1 2 3 4 5 6 7
−8

−6

−4

−2

0

2

4

6

8

10

12

θ 
in

 [
°]

time in [s]

(a)

1 2 3 4 5 6 7
−8

−6

−4

−2

0

2

4

6

8

10

12

θ 
in

 [
°]

time in [s]

(b)

1 2 3 4 5 6 7
−8

−6

−4

−2

0

2

4

6

8

10

12

θ 
in

 [
°]

time in [s]

(c)

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time in [s]

S
td

. 
D

ev
ia

ti
o

n
 i

n
 [

°]

(d)

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time in [s]

S
td

. 
D

ev
ia

ti
o

n
 i

n
 [

°]

(e)

1 2 3 4 5 6 7
200

210

220

230

240

250

260

270

280

290

300

V
er

ti
ca

l 
D

is
p

la
ce

m
en

t 
in

 [
p

ix
el

s]

time in [s]

(f)

1 2 3 4 5 6 7
200

210

220

230

240

250

260

270

280

290

300

V
er

ti
ca

l 
D

is
p
la

ce
m

en
t 

in
 [

p
ix

el
s]

time in [s]

(g)

1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

0.6

O
cc

lu
si

o
n
 P

ro
b
.

time in [s]

(h)

time in [s]

M
o
n
te

−
C

a
rl

o
 I

te
ra

ti
o
n

1 2 3 4 5 6 7

50

100

150

200

250

300 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(i)

Fig. 10. Results of 300 independent Monte-Carlo simulations of the exper-
iment illustrated in Fig. 9. (a) MATLAB’s boxplot of the estimated target
DOA track with the joint tracker. The visual occlusion is between t = 1s
and t = 6s. There is a small positive bias in the bearing estimates because
of effect of the Brownian nature of the video state update equation in (13).
(b) The estimated DOA track using acoustics-only. (c) The estimated DOA
track using video-only. The video cannot handle the persistent occlusion by
itself. (d-e) The time evolution of the estimate variances is shown for the joint
filter and acoustics only, in their respective order. When the video is unable
to provide information, the joint tracker’ estimation performance becomes
similar to the acoustics-only tracking results. The joint tracker’s variance of
the bearing estimate during the occlusion is slightly smaller than the acoustics-
only variance because it is biased. (f) Vertical displacement is unobservable
during the visual occlusion. Hence, the video-only estimate variance increases
linearly with time. (g) Note the variance of the estimates dramatically reduces
once the target becomes unoccluded, demonstrating the recovery speed of the
tracker. (h) The occluded percentage of pixels, corresponding to the MAP
particle. The gradual rise is attributed to the increasing partial occlusion as
the car drives behind the tree, hence there is significant drop once the target
comes out of occlusion. (i) Probability of occlusion for the Monte-Carlo runs.
The track recovery after occlusion is robust as illustrated by the Monte-Carlo
runs.
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Fig. 11. Two targets follow an oval track (dotted line). The hybrid node is
situated at the origin.
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Fig. 12. (a) Tracking of multiple targets with simulatenous estimation of time
delay. (b) Estimated time delays. Note the reduction in the variance of the
time delay estimates as the time delays get smaller.
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