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+4 bst ract 

This paper presents a method of gain adjustment for 
an alpha-beta filter when data points are lost or when 
the tracking interval changes. The steady state posi- 
tion and velocity lags are first derived f o r  a step accel- 
eration input. The standard predictor-corrector form 
of the filter equations are algebraically rearranged into 
two uncoupled difference equations; one equation f o r  
the smoothed position and one f o r  smoothed velocity. 
The equations are then solved f o r  the smoothed esti- 
mates using the method of undetermined coeficients. 
The solution is shown to consist of input acceleration, 
transient terms and steady state lags. The transient 
terms counteract the effects of the steady state lags un- 
til the time determined by  the filters lag time. The 
steady-state lags are used for optimal adjustment of fil- 
ter gains for aperiodic track conditions. For a varying 
track update interval, the filter gains which preserve a 
nominal periodic filter lag are derived. Such gain selec- 
tion will preserve the nominal lags associated with the 
constant tracking interval regardless of how the update 
interval varies. A n  example demonstrates the improve- 
ment in performance from using this approach. 

1. Derivation of Acceleration Responses 

Kalman filters are a t  the core of many tracking sys- 
tems [l], [2]. For the particular class of problems where 
the noise is nearly stationary or stationary, the Kalman 
gains converge to fixed values. For the class of prob- 
lems when this occurs, the filter can be viewed as a 
constant gain filter which is nothing more than a ma- 
trix difference equation. This equation can then be 
solved provided the model is deterministic. In general, 

the update equations for a constant gain filter can be 
written as 

qn+l = F q n  + x n + ~ G ,  (1) 
where 

q, = nZhvector state estimate 
F,  G = filter update gain matrices, 

x, = scalar measurement model. 

Alpha-beta filters, which are commonly used in 
radar tracking systems when it is necessary to track 
a large number of objects, are a special case of this 
general class. The tracking equations of an alpha-beta 
filter assume a target that is moving with constant ve- 
locity. For the z-coordinate, these equations are given 
by; 

where 

0 xs(k) G smoothed position at time step k 

0 xp(k) s predicted position at  time step k 

0 xm(k) E measured position at time step k 

0 vs(k) z smoothed velocity at  time step k 

0 v p ( k )  z predicted velocity at  time step k 

0 T 3 radar update interval 

a, /3 = filter gains 
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Similar equations apply for y and z .  The filter gains 
satisfy the following relations , 

0 < a < 1  
P = 2 ( 2 - & ) - 4 f i  

The relation between a and /3 is known as the Kalata 
relation and is obtained from steady state Kalman fil- 
ter theory assuming zero mean white noise in the po- 
sition and velocity state equations [4]. Therefore, for a 
given a,  the optimal choice for /3 is given by the above. 

From Eq. (a), substitute the predictor terms into 
the expressions for IS and ws, apply the Z-transform 
and solve for zs(z ) ,  and us(%) .  As in [3], the equations 
for 2s and vs in the Z-transform domain are; 

In the time domain we arrive at  the following two un- 
coupled difference equations in E S  ( k )  and ws ( k )  

zs(k + 2 )  - ClZS(k + 1) + c2zs(k)  = 

VS(k + 2) - C l V S ( k  + 1) + c p s ( k )  = (3) 

P - (Zm(k  + 2) - zm(k + 1)) T 

c 1 = 2 - a - - p  c 2 = 1 - a  

The method of undetermined coefficients will be 
used to find solutions for zs (k)  and vs(k) with in- 
put z m ( k )  = i a k 2 T 2 ,  where a is constant acceleration 
and t = kT is the discrete time. T is the sampling 
interval and k >_ -2. For k 5 0, zm(k)  = 0. First 
zs (k)  will be found from Eq. (3). Initial conditions 
are zs(0) = 0 and zs(1) = azm( l ) .  With auxiliary 
equation m2 - clm + cg the complementary solution is 

x , ( k )  = dirk cos(l6) +- dark sin(k.6) 

where T = d G ,  0 < a < 1 
and 

) ( 2 - a - - p  
4P - ( a  + PI2 0 = arctan 4 

dland d2 are constants that are determined from initial 
conditions. Substituting z m ( k )  into the rhs of Eq. (3), 

we have the trial solution Alk2+ A2k +As from which 
we get A1 = +aT2,A2 = 0 ,  and A3 = - ( Y ) u T 2 .  
The solution for z s (k )  takes the form 

z s (k )  = z c ( k )  + $ak2T2 - (l/ICI) - aT2 (4) 

The term (1 - a)P-” denoted lp, is the position lag 
coefficient and accounts for the lag in the response due 
to the acceleration input. Equation (4) will be used 
to find the constants d2 and d2. Applying the initial 
conditions we get dl = aT2% and d2 = crd1(2~sinO)-~ 

The complete solution is 

aT2dP k - 1  z s ( k )  = aT2tPrk  COS(^^') + ~ T sin(k.6‘) 
2 sin 6’ 

+$ak2T2 - a$T2 

Since 0 < T < 1, the terms rk and rk-’ represent the 
exponential damping in the transient response. The 
steady state solution is 

(5) 

zss (k)  = $ak2T2 - atpT2 

Repeating the above steps for the difference equation in 
vs(k), we use a trial solution of the form Alk+A2, with 
initial conditions vs(0)  = 0, vs(1) = 0.5aPT. We have 
A1 = UT, A2 = aT( a- i). The term tu = ($- f )  is the P 2  
velocity lag coefficient. The complementary solution 
for vs(k) has the same form as zs (k) .  The solution for 
vs(k) is 

(6) 
+uTt,,rk cos(k6’) + akT - a&T 

After the transients die out, we have the steady state 
solution for the smoothed velocity ws(k) 

v s s ( k )  = akT - &T 

In summary, the steady state position and velocity lags 
for a constant acceleration input are L, = %aT2 and 
L ,  = -!,,UT where t - l-a , 1, = (8 - +). The lag co- 

p -  P 

efficients are related by t - -, assuming the Kalata 

[4] relationship (P = 2(2 - a )  - 4 G )  between the 
coefficients. The terms lP and t,, grow asymptotically 
as the gains cr and /3 become small. We can define a 
velocity lag time, T = l,,T, since in the steady state 
the estimated velocity lags the true velocity by T sec- 
onds. From ws(k), notice that the transient term and 

e 
p -  2 
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the steady state lag act to cancel each other out until 
the time t = T or k = e, ,  The same observation can 
be made about the smoothed position response, zs(k). 
Using 1, = 0.5.l: ,we see that the steady state portions 
of the responses, zs(k) and ws(k)  equals zero at time 
k = e,. 

The preceding analysis can be applied to the pre- 
dicted position and velocity as well. From equation 
(2), the predicted or one step ahead lags for position 
and velocity are; 

1 e,+, = - P 
a 1  e,,, = - + - 
P 2  

e:+1 We also have $+, = - 2 

2. Explicit Control of Filter Lag 

There are some instances where the tracking inter- 
val, T , may vary due to missed data points or some 
adverse environment. Eq. (2) will be re-written in 
terms of a varying data interval Tk along with varying 
filter gains f f k  and p k .  The task will be to find the 
filter gains that will preserve the nominal filter lags, 
L, = lpaT2 and L, = l,aT , where T is the nomi- 
nal update interval, l, and l, are the lag coefficients 
corresponding to  the nominal gains a and p. The pre- 
dicted terms z p ( k )  and vp(k) are substituted into the 
expressions for zs (k) and WS (k) ; 

In matrix form, these equations may be written as 

where 

Writing z m ( k )  = z(k) + ~ ( k ) ,  where z(k) is the true 
target position and ~ ( k )  is zero mean white measure- 
ment noise, Eq. (7) becomes 

& = AkZk-1 + z (k )Gk  + E(k)Gk (8) 

Define XI,  = [ z ( k )  v(k)IT, 

= z(k) z(k - 1 )  + Tkw(k - 1 )  + .5aT: 
V ( k )  = V(k- 1)+aTk. 

The vector Xk represents the true target state and 
’a’ is the acceleration bias. Subtracting from both 
sides of Eq. (8) we have 

A computation shows that 

where 

1 .5aT:( 1 - a k )  [ aTk(1 - Ck = 

Eq. (8) becomes 
h h 

X k  - & = AI,(&-1 - &-I) + ck + ( ( k ) G k  
h 

Defining 
the error vector &, i.e. 

= Xk - &,we have a State equation for 

(9) 
h 

9 = AkG-1 + & + C(k)Gk 

With E(gk)= b k ,  where b k  is defined as the bias 
vector and E is the expected value operator, we get 
from taking expected values of Eq. (9); 

b k  = A k b k - 1  + Ck (10)  
Due to the presence of the acceleration in the target 
model, the bias vector will be non-zero in the steady 
state. Assume that Eq. (10)  reaches a steady state 
corresponding to the nominal update interval, T, and 
nominal filter gains a and P. From the previous section 
this vector is 

1 - &  a 1  
P 2  

, e, = (- - -) e, = - 
P 

The same expression may also be obtained from Eq. 
(10)  with = b k  , A = &;and = C k ;  
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- b = ( I  - A)-lC 

The steady state version of Eq. (10) corresponding to 
varying update interval Tk and filter gains ak and p k  

is; 

In order to find the varying filter gains a k  and ,& which 
will maintain a constant bias corresponding to time 
varying updates Tk , Eq. (11) is solved for a k  and ,& 
in terms of tp and t, 

- b=Akb+Ck (11) 

+ .5Tk)Tk 
(Yk = + (&Tk + .5Tk)Tk 

Tk2 
(%Tk + .5Tk)Tk B k  = 

- 
!2 

-200 

-250 

e2 Setting r = t,T and using lp = f (which implictily 
assumes the Kalata relationship), the above formulas 
may be written in terms of velocity lag time, 7, and 
varying update interval Tk; 

x 
x 
x 

f 

- x xt 

- 

0 

This choice of gains will maintain the nominal filter 
lags no matter how the update interval varies. From 
equation (12), we also have 

Therefore for the case of aperiodic updates, Eq. (12) 
will preserve the nominal or periodic filter lags and also 
maintain the optimal relation between the filter gains. 
The following one dimensional example considers an in- 
coming target initially being tracked at 2 Hz with neg- 
ligible acceleration and an initial velocity of 50 yds/sec 
at 250 data miles. The true target trajectory is cor- 
rupted with 1 milliradian of angle noise. Least squares 
filter gains are used to settle the track to steady state. 
As the target undergoes a 1 g maneuver, the tracking 
interval changes to 1/2 Hz followed by a transition to a 
1/2 g maneuver with a corresponding tracking interval 
of 1 Hz.  Two cases are considered; upon transition to 
steady state, case 1 uses a constant value of a = .15 
while case 2 will use the same constant gain until the 
maneuver and drop in data rate occur. Thereafter case 
2 will use the gain from Eq. (12) which maintains the 
2 Hz lag; from a = .15 to .4419, to .2686. From fig- 
ures 1 and 2 we have the position and velocity errors. 

looo, , , , *-case,i, sohd -,case 2 , , , 

50 100 150 200 250 300 350 400 1 io 
time in sec 

Figure 1. Position Error 

‘-case 1, solid - case 2 
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time in sec 

Figure 2. Velocity Error 

With the exception of the brief transients due to gain 
switching, case 2 suffers relatively little degradation in 
performance. The price payed for maintaining the 2 
Hz lag is a tolerable increase in track noise due to the 
increase in filter gain. 

3. Conclusions 

For a step acceleration input, we have derived the 
position and velocity lags for an alpha-beta filter along 
with the closed form expressions for smoothed posi- 
tion and velocity. For the case of aperiodic tracking, 
the lag terms were used to derive the filter gains which 
preserve the optimal Kalata relation and also maintain 
the periodic filter lag. A simple example demonstrated 
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the improvement in performance for tracking an accel- 
erating target with missed data points. 
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