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The visibility level (VL), a quality index in road lighting design, also serves to
assess automotive lighting performance. Unlike illuminance levels, the VL
provides a link between lighting design and driving performance. The reference
performance of the VL is the detection of a small uniform target, standing on a
uniform background (the road surface). Still, VL is subject to a number of caveats
with regards to the driving task. We address the non-realistic nature of the
reference target (a uniform square). A driving simulation experiment was
conducted in a virtual night-time rural highway environment. The subjects
drove along the road and came across different targets on the roadside. The
detection distances were recorded and compared with the corresponding VL,
showing rather good agreement.

1. Introduction

The main purpose of automotive lighting is to
provide highway visibility to the driver (a
secondary goal is to signal the vehicle to other
road users). The quantitative assessment of
highway visibility is a challenging issue, in
which the main theoretical background comes
from psychophysics and addresses target
detection.

For road and vehicle lighting design prac-
titioners, Adrian’s empirical target visibility
model is the prevailing alternative to illumi-
nance and luminance levels.1,2 The model is
based on a set of psychophysical data3 and
predicts the threshold contrast of a flat
uniform target on a uniform background.
The visibility level (VL) is the ratio between
the actual contrast of a target and its thresh-
old contrast. Thus, VL¼ 1 means that the

considered target is just visible, albeit in
laboratory conditions. This index is cited in
several national and international stan-
dards.4–6 In order to account for the fact
that visibility in complex driving situations
requires higher thresholds than in laboratory
conditions, lighting engineers introduce a so-
called field factor, which is equivalent to a
threshold VL required to ensure safe driving.
For instance, VL¼ 7 was proposed in the
French recommendations for road lighting.5

Automotive front-lighting designers have
also considered the VL as an alternative to
usual indices in their field, mostly based on
illuminance distributions.7–10 The reason is
the same: Contrary to illuminance, VL is
directly related to a key visual performance in
the driving task, namely detection. Assuming
VL is related to visibility distance, which is in
turn related to accident risk and severity,11

VL might be considered in accident scenarios
to rate lighting systems in terms of safety.

Despite these interesting features, VL suf-
fers from a variety of problems. First, setting
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a unique field factor does not address the fact
that the same VL may lead to various
performance levels depending on the context
(e.g. speed, traffic, task demand, etc.).12

Further discussions about the relevant target
shape,13 about measurement issues14 and
about the impact of the driving task on
target detection performance15–18 have pre-
vented its adoption in automotive lighting
evaluation so far. Computer vision
approaches have also been proposed19–21 to
address implementation issues raised by non-
uniform targets and backgrounds, as well as
for large targets.

Among the caveats with regards to the
actual driving task, we address in this paper
the non-realistic nature of the small uniform
grey square target usually associated with the
VL index. Although this standard target was
initially chosen because of its key features
with respect to hazard detection in terms of
size and uniformity,22 it is a rather unlikely
object to find on the road.

An experiment was conducted, in the hope
of facilitating the implementation of VL for
automotive lighting design. Several issues are
addressed:

1) The first one, as we just said, is the
peculiarity of the standard target. In the
present study, more familiar targets were
compared to the conventional grey square
target.

2) The second issue is the time-varying
apparent size of the target as the driver
comes closer. This was solved by conduct-
ing the study in a driving simulator.

3) The third issue was to identify a straight-
forward link between lighting recommen-
dations and road safety.

The aim of electric lighting is to improve
drivers’ visual performance at night, given that
better anticipation leads to improved road
safety.22 The current belief is that using VL as

a lighting index is more relevant for road safety
than using illuminance. Still, it describes
detection performance, not a safety index,
such as accident risk. To improve the link
between VL and road safety, we introduce the
detection distance as an intermediate variable.
We can then use the stopping distance as a
safety reference for lighting design. Then, the
detection distance provides an input for quan-
titative risk models. For instance, Gallen et al.
relate detection distance to accident probabil-
ity and severity.11 Their model uses driver
parameters such as the detection distance and
reaction time (RT), road parameters such as
slope, curvature and friction, as well as vehicle
speed and dynamics parameters, and com-
putes the stopping distance. Then, the accident
severity can be related to the relative speed
between the driver’s car and the target at the
moment of collision.

In the current context of energy and cost
saving, this quantitative approach may
impact the lighting design methodology:
based on the standard obstacle collision
avoidance scenario, adapting the lighting
system to those characteristics of the road
which affect the stopping distance regardless
of the drivers visual performance would
arguably increase its efficiency.

The driving simulation experiment was
conducted with 27 subjects, in a virtual
night-time highway environment illuminated
with headlamps only, and devoid of traffic. A
target detection performance was assessed for
the standard uniform square and for objects
more familiar to drivers: a road sign, a
pedestrian and a car. These targets were
presented either as uniform grey silhouettes,
or with a more realistic texture. The subjects
had to detect the various targets while driv-
ing, and the detection distance was recorded.
This distance was then compared to the VL
computed from the size and contrast of the
target at the time of detection.

The next section describes the experimental
material and method. Section 3 describes with
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more details the photometric analysis, and
Section 4 gives the experimental results of the
driving simulation experiment. The last
section summarizes the main results and
discusses how they may help improve auto-
motive lighting design.

2. Driving simulator experiment

2.1. Participants

A total of 27 subjects (5 women, 22 men),
with a mean age of 35 years, participated in
the experiment. They were all licensed drivers
with normal or optically corrected vision
(tested for night vision with Essilor
Ergovision tester) without known visual or
auditory impairment. The subjects scored
between 10/10 and 12/10 in a binocular
acuity test, except one who scored 8/10.
Under these conditions, a statistical analysis
using analysis of variance did not show any
effect of visual acuity on visual performance.

Although they were recruited from
IFSTTAR employees, all subjects were naive
to the purpose of the experiment and were
given a full explanation of the experimental
procedure. A written informed consent was
obtained before participation, with the option
to withdraw from the study at any time.

2.2. Apparatus

The driving simulation experiment took
place in a dark room dedicated to photomet-
rically controlled psycho-visual experiments.
The driving simulator comprised a steering
wheel with force feedback, a gear box and
pedals, but no motion system. IFSTTAR’s
own software (SIM2 and DR2) served to run
the simulator and to graphically render the
virtual environment.23 The computer graphics
images were displayed at a 60-Hz frame rate
by means of a SXGA (1280� 1024) video-
projector. The subjects sat in a car seat
mounted on a platform with adjustable
height so as to ensure that they all had their
eyes level with the centre of the projection

screen. The screen was 3m in front of the
subjects. It was 2m in width and 1.5m in
height, subtending a visual field 378 horizon-
tally and 308 vertically.

2.3. Virtual night-time highway environment

The geometry of the road was that of a
rural four-lane freeway with central separa-
tion (see Figure 1(a)). Vehicle headlamp
illumination was simulated by means of a

Figure 1 Three-step special effect to simulate headlight
illumination conditions: (a) daytime scene, (b) with black
fog and (c) with headlamp beam pattern texture.
(Available in colour in electronic version of paper.)
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computer graphics special effect which
involves three steps, illustrated in Figure 1.
The daytime highway environment is first
rendered using photographical textures
(Figure 1(a)). A hardware accelerated black
fog effect is then applied which consists of
multiplying the colour C0 of every pixel by an
exponential function of the depth Z to mimic
the inverse square law of illumination:

C ¼ C0 exp �k
2Z2

� �
ð1Þ

The parameter k was adjusted so that the
brightest pixels in the scene would fade to
black at about 200m (Figure 1(b)). Finally, a
transparency texture built from the intensity
distribution of a high-beam headlamp is
applied to introduce a sense of the beam
pattern, with darker areas on the sides (Figure
1(c)). This rendering technique was designed
to provide a subjective sense of headlight
illumination in dynamic conditions. It does
not produce an accurate luminance pattern
on the road (see a luminance map Figure 2),

and thus, it cannot serve to assess headlight
performance.

2.4. Reaction time

Driving on a highway, at night, without
traffic, leads to high speeds. It is even worse
with driving simulators in which speeds tend
to be higher than on the road.24–26 Indeed, the
mean speed in our experiment was 151 km/h
(93.8mph). This high speed, combined with
RT, has a significant impact on the measured
visibility distance.

In order to account for the distance run
by the car between the moment the driver sees
the target and the moment she or he pushes
the button, the mean RT of every subject was
measured prior to the driving simulation
experiment. During this pre-test, the subjects
were presented with a uniform grey back-
ground on which a sequence of 13 uniform
gray square targets were shortly displayed,
with a high contrast. The time interval
between successive targets was random. The
subjects were simply asked to signal the
appearance of a target by pressing a button
on the steering wheel (the same button as in
the driving simulation experiment). The mean

Figure 2 Left: Snapshot of the virtual environment. Right: Luminance map measured on the projection screen
(logarithmic grey scale)
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RT was computed for every subject (the first
three targets were discarded) and was later
used in order to correct the estimated target
detection distance.

The mean RT over all subjects was 0.43
seconds (with a standard deviation of 0.015
seconds), which corresponds to 18 meters at
151 km/h. Given the inter-individual variabil-
ity in terms of RT (between 0.33 seconds and
0.58 seconds), individual corrections of the
detection distances were preferred to a uni-
form correction.

2.5. Protocol

The independent variable was the type of
target, of which there were seven: a uniform
square, a uniform road sign, a uniform
pedestrian, a uniform car, a textured road
sign, a textured pedestrian and a textured car
(see Figure 3).

During the experiment, each of the seven
targets was presented eight times to every
subject. Targets stood next to the right-hand-
side pavement marking. They were set in
random order, to prevent drivers from antic-
ipating the type of the next target, and to
avoid any learning bias. They were also set at
random positions along 600m long road
sections, with a minimum of 200m between
successive targets, to prevent drivers from
anticipating the location of the next target.
The same sequence of targets was used for all
the subjects, to avoid any bias from the
variations in the local target background
across subjects.

After the RT pre-test, every participant was
given an opportunity to become familiar with
the simulator by driving in the same virtual
environment as in the experiment until they
felt comfortable with the equipment, which
usually happened after a few minutes. The
participants were then given the following
instructions: ‘You are going to drive on a
highway at night. From time to time, you will
meet an object on the roadside. Each time you
see one of these objects, you will tell that you

have seen it by pushing the button on the
steering wheel’. The complete duration of
the experiment was less than half an hour for
each subject, including the pre-test and the
familiarization.

3. Photometric analysis

3.1. Luminance measurements

In order to estimate the photometric
parameters which are needed to implement
the Adrian target visibility model, luminance
measurements were performed on the dis-
played computer graphics images, using an
imaging photometer with a 980� 980 pixel
resolution (Minolta CA2000). Performing
these measurements in the dynamic condi-
tions of the experiment was not feasible,
because of the exposure time required by the
photometer. Therefore, snapshots of the vir-
tual environment were used, taken every 10m
from 150m down to 20m for each type of
target. This resulted in 14� 7¼ 90 luminance
maps (see for example, Figure 2).

3.2. Computation of VLs

A mask was manually defined for every
type of target at every distance, in order to tag
target pixels in the luminance maps
(Figure 4). The luminance of a target was
computed as the mean luminance of the target
pixels. From the number of pixels in the mask
and from the angular size of a pixel, it was
also possible to estimate the equivalent angu-
lar size of each target, defined as the angular
size of a square subtending the same number
of pixels npix:

� ¼ 2atan
apix
2D

ffiffiffiffiffiffiffiffi
�pix
p

� �
ð2Þ

where apix is the size of a pixel (about
1.56mm) and D is the distance between the
subjects and the screen (3m).
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Figure 3 Snapshots of the seven targets presented to the participants in the driving simulator (here at 20 m). Left:
Uniform targets; right: Textured targets. From top to bottom: Uniform square, road sign, pedestrian and car.
(Available in colour in electronic version of paper.)
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For the background and adaptation lumi-
nance, we followed the approach proposed by
Moon and Spencer for non-uniform sur-
rounds.27 The background is contained
within the region covered by foveal vision, a
disc approximately 1.58 in diameter centred in
the middle of the target. So the pixels within
that region, excluding target pixels, were
tagged as background pixels and the back-
ground luminance Lb was computed as the
mean of these luminance values. As for the
adaptation luminance La, Moon and Spencer
established it to be a linear combination of
background luminance Lb and surround
luminance:

La¼ 0:923Lbþ
0:0096

�
!
X
"ij>"f

Lij"
�2
ij cos"ij ð3Þ

where " is the solid angle subtended by a pixel
from the position of the subjects, "ij and
Lij are, respectively, the eccentricity

(in arcminute) and luminance of the pixel at
coordinates (i,j), and "f is the foveal half angle
(about 0.758).

It was thus possible to extract the
parameters of the Adrian model from
the luminance maps, and then to compute
the VL of every target at every distance,
assuming a 0.2-second presentation time (a
standard value for lighting design), and a
35-year-old observer (the mean age of the
participants in the experiment). The results
are summarized in Table 1. There are a few
cases in which the VL could not be
computed, mostly because the target was
too large (�418). The luminance variation
inside a target is described with the lumi-
nance standard deviation (SD, in percent-
age, with respect to the mean luminance).
‘Uniform’ targets do not lead to SD¼ 0,
because even though the reflectance of the
object is uniform, the luminances rendered
on the screen are impacted by the beam
pattern texture.

Figure 4 Illustration of the process to extract photometric data from a luminance map: (a) snapshot of the target
(textured pedestrian), (b) corresponding mask (white for target), (c) foveal region from which data are extracted in the
luminance map (pixels within the white contours contribute to object luminance; pixels within black contours
contribute to background luminance; surrounding pixels contribute to adaptation luminance). (Available in colour in
electronic version of paper.)
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4. Results

Henceforth, detection distance obtained from
the participants is referred to as the
Experimental Detection Distance (EDD),
whereas the detection distance obtained
from VL values is referred to as the
Computed Detection Distance (CDD).

4.1. Target detection performance

The EDD values are presented in Table 2
for every target. They are corrected to
account for individual RT (see Section 2.4).
Each value is a mean over 8 detections and 27
drivers (216 data). A few cases (5 out of 1512:
3 uniform squares, and 2 road signs) were
discarded because the targets had not been
detected at all. The relative visibility with
respect to the reference target (the uniform
square), defined as the ratio between their
respective EDD, is also given in Table 2.
Analysis of variance showed that the ‘target’
factor is statistically significant (p50.001).

These results call for several comments.
First, as expected, the reference target for
lighting design – the uniform square – is
harder to detect than most tested targets.
However, the ‘road sign’ target is unexpect-
edly harder to detect, although the difference
is small (6%). Second, the EDD of the most
visible target (the uniform car) is only 40%
higher than that of the reference target. This
value can be interpreted as a ‘shape bias’
introduced when using the small square as a
reference, instead of a big car, in terms of
detection distance. Third, targets are more
visible when they are uniform than when they

are textured. This may be due to the high
reflectance of the uniform targets, which
makes them more conspicuous than the tex-
tured targets, which are darker in some parts.
The small uniform target is indeed a worst-
case scenario, which justifies its use as a
reference for assessing the performance of
lighting systems in terms of visibility.

4.2. VL and detection distance

The first comment to be made about the
VLs in Table 1 is that the targets are darker
than their background when they appear in
the distance, and then ‘vanish’ at some point
before their contrast becomes positive as the
driver comes closer. However, the VL before
this point never reaches values much higher
than 1, because of the combined effect of
small angular size and low absolute contrast.

From the estimated VL values, we com-
puted detection distance values corresponding
to a threshold VL of 7, a field factor value
recommended for road lighting.5,13,28 The
rationale is to compute the detection distance
as if the driver detects the targets at the very
moment their VL reaches the threshold
VL¼ 7. Table 3 shows this CDD for every
target, compared to the corresponding mean
EDD recorded on the driving simulator.

In most cases, the computed visibility
(CDD) is very close to the measured visibility
(EDD), and the highest difference is 12%
(Table 3). This comes as a confirmation that
the VL is a relevant index for assessing
highway visibility. Setting the threshold to
VL¼ 7 yields CDD values close enough to the
EDD values so that this threshold can be

Table 2 Mean detection distance for each target. The distance and the VL are computed at the moment of target
detection, taking into account the individual reaction time

Target Reference
(uniform square)

Road sign Road sign
(uniform)

Pedestrian Pedestrian
(uniform)

Car Car (uniform)

EDD 106 100 120 124 128 122 149
VL 9 18 13 6 9 14 26
RV ratio 1.00 0.95 1.20 1.17 1.22 1.15 1.41

RV: relative visibility.
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considered relevant for a simple driving task,
such as the one experienced by the partici-
pants on the driving simulator. However, the
CDD values are most of the time higher than
the EDD reference values. Given that EDD
values would be even smaller if the drivers
were not expecting the targets,29 this suggests
that a higher VL threshold should be consid-
ered, in order to compute safer detection
distance estimates.

4.3. Stopping distance

Let us now consider the impact of the
detection distance on the stopping distance,
which is directly related to road safety. On a
straight horizontal highway, the stopping
distance Ds is the sum of two terms which
both depend on speed V (in ms�1): the
distance driven during RT t, and the braking
distance on a pavement with a coefficient of
friction F:

Ds ¼ Vtþ
V2

2gF
ð4Þ

with g¼ 9.81m s�2. Typical values for the RT
for drivers are around 2 seconds. This is much
higher than the RTs measured in the

experiment (less than 0.5 second), because
drivers are normally unaware that they will
need to brake to avoid a collision, whereas the
participants in the experiment were expecting
the targets. Moreover, the action of stepping
on the brake pedal is physiologically a little
slower than the action of pressing a button.
Table 4 shows the stopping distance for a car
running at 90 km/h, assuming a RT of 2 sec-
onds and a coefficient of friction ranging
from 0.3 (wet pavement) to 0.8 (dry concrete
pavement).

Previous studies about the VL have dis-
cussed the threshold needed to get a fair
target detection performance,1,13,30,31 how-
ever, recommendations do not propose prac-
tical implementations5 or do not use VL
thresholds proposed in the scientific litera-
ture.6 The data collected in this study suggest
some design rules for lighting systems, at least
for automotive lighting, based on a ‘safe
visibility distance’. Consider a driving sce-
nario – for example, a pedestrian on a
highway where the speed limit is 90 km/h.
A safe stopping distance can be computed
(e.g. with Equation (4)) which would set a
threshold detection distance (e.g. the braking
distance plus 1 second at the regulatory

Table 3 Comparison between detection distance measured in a driving simulator (Experimental Detection Distance,
EDD), and detection distance predicted from VL using Adrian model with a field factor of 7 (Computed Detection
Distance, CDD)

Reference Road sign
(uniform)

Road sign Pedestrian
(uniform)

Pedestrian Car
(uniform)

Car

EDD 106 120 100 128 124 149 122
CDD 115 131 112 129 124 146 126
Deviation 8% 9% 12% 1% 0% �2% 3%

Table 4 Stopping distance Ds for various values of the pavement coefficient of friction F, at 90 km/h, with a 2 second
reaction time

Coefficient of friction, F 0.3 0.4 0.5 0.6 0.7 0.8

Stopping distance, DS (m) 156 130 114 103 96 90
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speed). Then, the VL of the reference target (a
pedestrian in the current example) could be
computed as a function of the headlamp
illumination, using the Adrian model and the
relative visibility (RV) ratio in Table 2. Based
on previous studies about the relevant VL
threshold, the lighting system could then be
tuned so as to produce this threshold VL
value, for example, VL¼ 7 in the Association
Francaise de l’Eclairage recommendations.5

Note that this implies some knowledge about
the vehicle performance and road surface
characteristics to compute the stopping dis-
tance. If a local map of the infrastructure
characteristics is available,32 better estimates
can be expected.

5. Conclusion

This study, conducted in controlled condi-
tions on a driving simulator, suggests that the
Adrian VL provides a fair description of a
visual performance which is related to a safety
index (the target detection distance). The
results also suggest that the detection perfor-
mance with the usual reference target (a small
uniform square) is quantitatively related to
the detection distance with more natural
targets. Thus, the VL framework is of great
interest for assessing headlight performance.

As expected, the VL of a target at the
moment of detection depends on the nature of
the target (either a reference square, or a
larger target, with a semantic value) and on its
texture. It would be interesting to test whether
targets with equal mean reflectance and
various texture patterns would produce the
same VL and detection distance. However,
the range of RV ratio, for the tested items, is
rather limited (from 95% to 141%, see
Table 2), and might be dealt with as a
target-dependent correction factor.

Setting the VL threshold at the moment of
target detection to VL¼ 7 (based on the road
lighting literature) led to a rather good fit to
the data in an automotive lighting scenario.

However, for design applications, this thresh-
old value is only relevant for a very simple
driving task, such as the one which was
simulated in the experiment (rural environ-
ment without traffic). Field factor values for
more complex situations deserve further study.

These results extend previous findings
about visibility indices in road lighting and
automotive lighting design, by tackling target
visibility in dynamic conditions. In addition,
we introduce a detection distance index based
on the stopping distance, which allows setting
the required visual performance in relation to
road (e.g. friction) and vehicle parameters
(e.g. speed). Such an index can be related to
accident probability and severity,11 which
provides a practical solution for introducing
risk analysis into lighting design.

The present study is limited to automotive
lighting, and the results cannot be extended to
road lighting design directly. The relevance of
the VL as a predictor of the detection distance
in road lighting conditions was tackled in
earlier work,17 but the data did not allow a
definitive conclusion on that particular aspect,
and calls for more investigations. It will also be
interesting to compare the object-oriented
approach (such as the VL approach described
in this paper) to an edge-oriented approach
based on image processing20 which makes no
hypothesis about the target size or uniformity.
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