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Abstract: Recent advances in information technology and the boom in social media provide firms
with easy access to the data of consumers’ preferences and their social interactions. To characterize
marketing resource allocation in networks, this paper develops a game theoretical model that allows
for each firm’s own utility, action strategies of other firms and the inner state (self-belief and opinions)
of consumers. In this model, firms can sway consumers’ opinions by spending marketing resources
among consumers under budget and cost constraints. Each firm competes for the collective preference
of consumers in a social network to maximize its utility. We derived the equilibrium strategies
theoretically in a connected network and a dispersed network from the constructed model. These
reveal that firms should allocate more marketing resources to some of consumers depending on their
initial opinions, self-belief and positions in a network. We found that some structures of consumer
networks may have an innate dominance for one firm, which can be retained in equilibrium results.
This means that network structure can be as a tool for firms to improve their utilities. Furthermore,
the sensitivities of budget and cost to the equilibria were analyzed. These results can provide some
reference for resource allocation strategies in marketing competition.

Keywords: resource allocation; marketing; opinion dynamics; competition; social networks

1. Introduction

The problem of resource allocation is a widely discussed topic that has aroused
the interest of scholars in multiple fields, such as political campaigns, risk control and
marketing management [1–4]. In the field of marketing, resource allocation is a key research
point of investment decision making. What factors influence such a decision? Different
scholars have different answers. Some scholars think the utility of firms with budget or
cost constraints is the main factor of the utility theory [5,6]. Some scholars argue that the
decisions of others are the main factor in game theory [3,7,8]. Some other scholars believe
that people’s beliefs and attitudes are the main factor of the psychology [9–11]. Although
many contributions encounter this allocation problem, most of them only focus on and
explore one of the above aspects. However, the allocation of marketing resources in reality
is often complex and involves multiple aspects [12]. For example, a firm in the market cares
about how to maximize its utility during the process of marketing products. To achieve
this goal, the firm takes an interest in the preferences and interactions of consumers and
lays concern about the decisions of other firms.

With the popularity of social media, firms have easy access to the information of
individual preferences and their network structure, which they can take advantage of to
improve utility [1,13,14]. It provides fertile soil for some new contributions to the allocation
decision, and some scholars have made interdisciplinary efforts accordingly [1,12,15].
Morărescu et al. [12] studied the space–time budget allocation strategy based on opinion
dynamics of consumers in a monopoly market, without considering the allocation decisions
of other marketers. Varma et al. [15] explored the allocation problem of marketing resources
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over consumer networks in terms of long-term utility and proposed a coopetition marketing
strategy for each marketer, without regard to the inner state of consumers. Bimpikis
et al. [1] developed a game theoretic model of competitive advertising between firms
that can shape consumers’ preferences by considering their budgets and derived their
optimal targeted advertising strategies. Agieva et al. [16] investigated dynamic control
strategies of conflicting opinions on networks considering budget constraints in the process
of marketing. However, neither of them considered the inner state of consumers in the
market. Additionally, these models all assume that consumers have no opinions at the
beginning of opinion evolution, which is only applicable to the marketing campaigns of
new products.

Motivated by the above limitations, this paper attempts to build a bridge between
utility theory, game theory and psychology, so as to model the targeted allocation of
marketing resources in networks based on opinion dynamics. Firstly, we propose a novel
social network, the DeGroot (SNDG) model, to capture the heterogeneous beliefs and
interactions of consumers. Secondly, a contest success function was applied to depict the
influence of marketing resources on consumers’ opinions, i.e., purchase intention. Thirdly,
each firm competed for the collective preference of consumers in order to maximize its
utility, and then a game theoretical model was constructed to characterize such an allocation
competition. This model allows for consumers’ initial opinions and therefore is applicable
to the marketing campaigns of new and old products. In this paper, the social network
is regarded as a link between the supply and the demand sides of marketing. Based on
this, we characterized a feedback loop between consumers and firms in the market. On
the one hand, firms sway consumers’ opinions by competitive expenditure. On the other
hand, consumers’ opinions guide the marketing resource allocation strategies of firms. This
feedback loop provides valuable insights into allocation strategies.

On the basis of the constructed game theoretical model, the main contributions of this
paper can be summarized as the following three points.

1. A game theoretical model was developed to characterize the competitive allocation of
marketing resources in networks, which integrates opinion evolution with heteroge-
neous beliefs into the allocation problem under budget and cost constraints.

2. The equilibrium resulted in a connected network and a dispersed network, which were
derived from the model. Some properties of equilibria are discussed. We determined
whether firms should allocate more resources to some of consumers depending on
their characteristics, including their initial opinions, self-belief and positions in the
network.

3. The sensitivities of budget and cost to the equilibrium results were analyzed, and the
role of consumer network structure in the resource allocation problem is explored by
capturing the network dominance gap between different firms.

The remainder of this paper is organized as follows. Section 2 introduces some prelim-
inaries about the DeGroot model and the contest success function. Section 3 formulates the
allocation competition under cost and budget constraints as a non-zero-sum game. Section 4
describes the equilibrium results of the competition game and presents some theoretical
analysis and simulation analysis. Finally, some conclusions are drawn in Section 5.

2. Preliminaries

This section reviews the preliminary knowledge about the DeGroot model and the
contest success function, which is set as a cornerstone of the proposal in this paper.

2.1. DeGroot Model

The DeGroot model is generally regarded as a classical model in continuous opinion
dynamics [17,18]. Degroot [19] first proposed this new model of continuous opinion
evolution and specified its conditions to reach a consensus.

Given a group of agents, N = {1, 2, · · · , n}, each agent expresses his/her opinion
pt

i ∈ (0, 1) at any discrete time t = {0, 1, 2, · · ·}. The DeGroot model assumes that agents
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will update their opinions by comprehensively considering their own and others’ opinions
to a certain extent. Specifically, let ϕij ∈ (0, 1) be the trust weight that agent i assigns to
agent j. The matrix of trust weight does not change with time, and there exists ∑n

j=1 ϕij = 1
for any agent i. Then, the opinion evolution of agent i can be described by

pt+1
i = ϕi1 pt

1 + ϕi2 pt
2 + . . . + ϕin pt

n, t = 0, 1, 2 . . . . (1)

From Equation (1), the opinion evolution can be rewritten as

Pt+1 = E× Pt = Et+1 × P0, t = 0, 1, 2 . . . (2)

where E =
(

ϕij
)

n×n and Pt =
(

pt
1, pt

2, . . . , pt
n
)T ∈ (0, 1)n.

All opinions of agents in the group will form a consensus C, i.e., lim
t→∞

pt
i = C(i = 1, 2, . . . n),

if and only if the matrix power Et+1∗(t∗ ∈ {0, 1, 2, . . .}) contains at least one strictly pos-
itive column. Moreover, the structure of the resulting opinions (consensus) is presented
in Lemma 1.

Lemma 1 [19]. The reached consensus C among agents can be determined by their initial opinions
and a unique weight vector W = (w1, w2, . . . , wn). The weight vector W satisfies the condition
of lim

t→∞

(
ϕij
)t

= wj, where wj ≥ 0 and ∑n
j=1 wj = 1.

C =
n

∑
j=1

wj p0
j (3)

Lemma 1 implies that the consensus C is a linear combination of agents’ initial
opinions profile.

2.2. Contest Success Function

Contest success functions (CSFs) are used to map competitors’ irreversible efforts
onto their winning probability [20]. During the long-term application process, CSFs have
attracted much attention in the field of marketing and developed many different variants.
The lottery CSF is the classic one, where the winning probability is uncertain and propor-
tional to competitors’ efforts. When the opinion is continuous and closely related with
efforts, there exists a one-to-one mapping from opinion space to the winning probability
profile [1,21]. Then, the lottery CSF can be applied to map competitors’ efforts onto the
corresponding opinions [21].

Consider that two competitors, A and B, strive for the preference of opinions through
irreversible efforts. To characterize the asymmetric influence of different competitors’
efforts on opinions, the lottery CSF generally takes the following form:

pi(rA, rB) =
αi(ri)

γ

αA(rA)
γ + αB(rB)

γ (4)

where pi(rA, rB) denotes the opinion for competitor i (i ∈ {A, B}), ri denotes the efforts of
competitor i, γ is the efficiency parameter of efforts (γ > 0), and αi denotes the superiority
parameter of competitor i (αi > 0). αA > αB means that competitor A has superiority in
transforming efforts into opinions over competitor B.

3. Problem Statement

Our paper lays stress on the problem of marketing resource allocation in networks
under cost and budget constraints. Meanwhile, we expect to take advantage of the opinion
evolution among consumers to improve marketing strategies. This section explicates this
problem in the following three parts.
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3.1. Opinion Evolution: A Novel Social Network DeGroot Model

Consider a group of agents embedded in a social network G(V, E) to represent
consumers in the market. The social network G(V, E) is composed of a set V of nodes
and a set E of edges. V = {v1, v2, . . . , vn} denotes the set of agents and E denotes the
social relations among these agents. We use the adjacency matrix A =

(
aij
)

n×n to represent
these social relations. If

(
vi, vj

)
∈ E, the value of aij is 1; otherwise it is 0. Suppose that

G(V, E) is a connected, undirected graph without loops and parallel edges. Specifically,
the connected graph is such a graph that there exists a path between any pair of nodes. The
degree di of vi in G(V, E) indicates the number of neighbors connected to agent vi.

Each agent expresses his/her opinion pt
i ∈ (0, 1) at each discrete time

t (t = {0, 1, 2, . . . , ∞}). Initial opinions at time t = 0 are expressed independently by
each agent. Opinions at other times are evolved from initial opinions under the action of
interactions and marketing campaigns. In this SNDG model, each agent interacts with its
connected neighbors according to the trust relations to update their opinions. During the
opinion evolution process, trust relations do not change with time. To capture the inner
state, let βi ∈ (0, 1) denote the self-belief of agent vi, which reflects this agent’s belief in
his/her own opinion. Thus, the trust of agent vi in all his/her neighbors is 1− βi. Since
the degrees of nodes reflect their importance in the network to some extent [6,22], the trust
weights of agent vi on each neighbor can be treated in the form of Equation (5).

ωij =
(1− βi)aijdj

∑n
j=1, j 6=i aijdj

, j 6= i, i ∈ V (5)

where ωij is the trust weight that agent vi puts on his/her neighbor vj. Rather than putting
the same trust weights among neighbors, as in [23], this paper emphasizes that each agent
assigns heterogeneous trust weights to his neighbors according to their relative importance.
Then, the opinion evolution of any agent vi is as follows.

pt+1
i = βi pt

i +
n

∑
j=1, j 6=i

ωij pt
j (6)

From Equation (6), the opinion evolution of all agents in the network is shown in
Equation (7).

Pt+1 = M× Pt = Mt × P1 = Mt+1 × P0, t = 0, 1, 2 . . . (7)

where Pt =
(

pt
1, pt

2, . . . , pt
n
)T ∈ (0, 1)n and M =

(
mij

)
n×n

=


β1 ω12

ω21 β2
...

...

· · · ω1n
· · · ω2n
. . .

...
ωn1 ωn2 · · · βn

.

As for a general SNDG model, Ding et al. [23] have proposed a sufficient condition for
reaching a consensus in a network, which is also suitable for this paper.

Lemma 2 [23]. Given a social network G(V, E), opinions of all agents in the network will form
a consensus; when there is a vj ∈ V and, for all vi ∈ V/

{
vj
}

, there exists a directed path in the
network from vi to vj, i.e., there exists a sequence of edges (vi, vl), (vl , vk), · · · ,

(
vr, vj

)
that

allows vi to point to vj.

In the connected undirected network G(V, E), there exists a path between any pair of
nodes which guarantees the conditions of Lemma 2. Thus, a consensus will be reached if the
opinions evolve as per Equation (7). Furthermore, we can derive the weight vector in the
consensus structure from Equation (7) and Lemma 1, which is defined as the convergence
weight in this paper.
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When a consensus is formed among agents, i.e., collective preference, the opinion of
each agent evolves into a steady state. Additionally, according to Lemma 1, there exists
lim
t→∞

Pt = lim
t→∞

MtP0 = C(i = 1, 2, . . . n), i.e., lim
t→∞

(
mij
)t

= k j,
(
k j > 0

)
. Then, we have

K·M = K, K = (k1, k2, . . . , kn) with ∑n
j=1 k j = 1,(

MT − I
)

KT = 0.

Specifically, the above equation can be written:

(β1 − 1)k1 +
(1−β2)a21d1
∑n

j=1,j 6=2 a2jdj
k2 + · · ·+ (1−βn)an1d1

∑n−1
j=1 anjdj

kn = 0

(1−β1)a12d2
∑n

j=2 a1jdj
k1 + (β2 − 1)k2 + · · ·+ (1−βn)an2d2

∑n−1
j=1 anjdj

kn = 0

· · · · · ·
(1−β1)a1ndn

∑n
j=2 a1jdj

k1 +
(1−β2)a2ndn
∑n

j=1,j 6=2 a2jdj
k2 + · · ·+ (βn − 1)kn = 0

.

By solving the set of above equations, we have

ki =

(
∑n

j=1,j 6=i aijdj

)
di

1− βi
.

By normalization, the convergence weight vector W = (w1, w2, . . . , wn) is presented

in Equation (8), where wi is non-negative and
n
∑

i=1
wi = 1.

wi =

(
∑n

j=1, j 6=i aijdj

)
di

1−βi

∑n
i=1

{ (
∑n

j=1, j 6=i aijdj

)
di

1−βi

} . (8)

From Equation (8), we found that a highly self-confident agent tends to hold a great
weight in consensus structure. An agent with many neighbors whose neighbors are in turn
numerous generally owns a large share in consensus structure. In other words, a highly
self-confident consumer with many neighbors whose neighbors are also numerous usually
has a strong voice in the reached consensus among consumers.

3.2. Competition Game: Sway Opinions by Competitive Expenditure

There are two exogenous firms, labeled A and B, owning budgets RA and RB, respec-
tively, which can be targeted to agents to sway their opinions. For example, firm Huawei
competes with Apple for people’s purchase opinions on their electronic products. Opinions
reflect the purchase intention of agents. Both firms attempt to sway collective opinion in the
network to their own side by competitive expenditure, so as to maximize their own utility.

Without loss of generality, we suppose that firms A and B hold two conflicting opinions,
1 and 0, respectively. These two firms can be regarded as strategic dummy agents in the
network whose opinions remain unchanged. Other agents in the network are non-strategic,
and their opinions can change with the interaction among neighbors and the marketing
campaigns of firms. Furthermore, an agent with an opinion greater than 0.5 is considered
a supporter of firm A; otherwise he/she is a supporter of firm B. For tractability and
simplifying the exposition, we assume that each firm can only allocate its marketing
resources among agents at time t = 0. Meanwhile, agents update their opinions based on
the resources they received and express these opinions at time t = 1. Additionally, the
social network G(V, E) is fixed and known for both firms. Initial opinions are applied
to mirror the asymmetric advantages of firms in translating their resources into purchase



Mathematics 2022, 10, 394 6 of 21

intention in the beginning. Therefore, based on Equation (4), firms A and B simultaneously
expend marketing resources across agents to change their initial opinions in the form of
Equation (9) [21].

p0
i (0, 0) = p0

i

p1
i (xi, yi) =

p0
i xγ

i
p0

i xγ
i +

(
1− p0

i
)
yγ

i
(9)

where, 0 < r ≤ 1, xi ∈ (0, RA) and yi ∈ (0, RB) denote the marketing resources allocated
to agent vi from firms A and B, respectively. p0

i and 1− p0
i denote the superiority parameter

of firms A and B at time t = 0, respectively. This also means that the impact of marketing
resources on opinions starts with initial opinions. Note that the sum of all resources
allocated to agents shall not exceed the respective budgets of these two firms.

3.3. Resource Allocation Based on Opinion Evolution: Under Cost and Budget Constraints

Marketing resource allocation under the pursuit of utility maximization is not only
limited by budget and cost but also affected by the opinions in the network. The opinion
evolution in a network reflects the change of purchase intention. During the process of
opinion evolution, the opinion of each agent is influenced by its neighbors’ opinions and
its allocated resources. For tractability and brevity of exposition, we divided competitive
expenditure and opinion evolution into separate stages. Stage 1: Firms A and B simultane-
ously sway initial opinions of agents by their competitive expenditure. Stage 2: Based on
the resulting opinions obtained from stage 1, agents’ opinions evolve in the network with
their interaction.

On the basis of Equations (3), (8) and (9), firm A wants to solve the allocation problem
of marketing resources under its cost and budget constraints, as shown in Equation (10).

max
{xi}n

i=1

n
∑

i=1

p0
i xγ

i
p0

i xγ
i +(1−p0

i )yγ
i

wi − CA
n
∑

i=1
xi,

s.t. ∑n
i=1 xi ≤ RA.

(10)

Likewise, firm B wants to solve the allocation problem of marketing resources under
its cost and budget constraints, as shown in Equation (11).

max
{yi}n

i=1

n
∑

i=1

(1−p0
i )yγ

i
p0

i xγ
i +(1−p0

i )yγ
i

wi − CB
n
∑

i=1
yi ,

s.t. ∑n
i=1 yi ≤ RB.

(11)

where Cl(l ∈ {A, B}) is the unit cost parameter of firm l, W = (w1, w2, . . . , wn) is the

convergence weight vector in the consensus structure, and wi =

(
∑n

j=1, j 6=i aijdj

)
di

1−βi

∑n
i=1


(

∑n
j=1, j 6=i aijdj

)
di

1−βi


.

Obviously, a firm’s utility is determined by the collective opinion of agents and the
cost of marketing resources. Each firm needs to decide how to allocate its marketing
resources among agents under cost and budget constraints to maximize their utility. Some
equilibrium results and corresponding decision strategies are put forward in next section.

4. Main Results

This section mainly presents some theoretical and simulation results of the above
allocation problem.

4.1. Equilibria of the Competition Game
4.1.1. Equilibrium Results in a Connected Network

The equilibrium results of the above game in a connected network are presented in
Proposition 1.
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Proposition 1. Given the social network G(V, E) , firms A and B both compete for opinions of
agents in G(V, E) to maximize their own utility by competitive expenditure, as in Equations (10)
and (11). With the modified budgets R̂A and R̂B , the pair of n-vectors X∗ and Y∗ constitute a Nash
equilibrium of such a game:

x∗i = R̂A

p0
i (1−p0

i )(R̂B/R̂A)
γ
(

∑n
j=1, j 6=i aijdj

)
di[

p0
i +(1−p0

i )(R̂B/R̂A)
γ
]2
(1−βi)

∑n
i=1

{
p0

i (1−p0
i )(R̂B/R̂A)

γ
(

∑n
j=1, j 6=i aijdj

)
di[

p0
i +(1−p0

i )(R̂B/R̂A)
γ
]2
(1−βi)

} , (12)

and

y∗i = R̂B

p0
i (1−p0

i )(R̂B/R̂A)
γ
(

∑n
j=1, j 6=i aijdj

)
di[

p0
i +(1−p0

i )(R̂B/R̂A)
γ
]2
(1−βi)

∑n
i=1

{
p0

i (1−p0
i )(R̂B/R̂A)

γ
(

∑n
j=1, j 6=i aijdj

)
di[

p0
i +(1−p0

i )(R̂B/R̂A)
γ
]2
(1−βi)

} , (13)

The equilibrium expected utility of firm A is

EUA =

∑n
i=1

{
p0

i (R̂A)
γ

p0
i (R̂A)

γ
+(1−p0

i )(R̂B)
γ ×

(
∑n

j=1, j 6=i aijdj

)
di

1−βi

}

∑n
i=1

{ (
∑n

j=1, j 6=i aijdj

)
di

1−βi

} − CAR̂A. (14)

The equilibrium expected utility of firm B is

EUB =

∑n
i=1

{
(1−p0

i )(R̂B)
γ

p0
i (R̂A)

γ
+(1−p0

i )(R̂B)
γ ×

(
∑n

j=1, j 6=i aijdj

)
di

1−βi

}

∑n
i=1

{ (
∑n

j=1, j 6=i aijdj

)
di

1−βi

} − CBR̂B. (15)

where R̂A = min

RA,
∑n

i=1

 γp0
i (1−p0

i )(CA/CB)
γ

CA[p0
i +(1−p0

i )(CA/CB)
γ]

2×

(
∑n

j=1, j 6=i aijdj

)
di

1−βi


∑n

i=1


(

∑n
j=1, j 6=i aijdj

)
di

1−βi



 and

R̂B = min

RB,
∑n

i=1

 γp0
i (1−p0

i )(CA/CB)
γ

CB[p0
i +(1−p0

i )(CA/CB)
γ]

2×

(
∑n

j=1, j 6=i aijdj

)
di

1−βi


∑n

i=1


(

∑n
j=1, j 6=i aijdj

)
di

1−βi



.

Proof of Proposition 1. According to the competition game shown in Equations (10) and
(11), the Lagrange functions are constructed as follows.

For A,

LA(xi, yi, λ) =
n

∑
i=1

{
p0

i xγ
i

p0
i xγ

i +
(
1− p0

i
)
yγ

i
wi

}
− CA

n

∑
i=1

xi + λ

(
RA −

n

∑
i=1

xi

)
.

For B,

LB(xi, yi, µ) =
n

∑
i=1

{ (
1− p0

i
)
yγ

i
p0

i xγ
i +

(
1− p0

i
)
yγ

i
wi

}
− CB

n

∑
i=1

yi + µ

(
RB −

n

∑
i=1

yi

)
.
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Then, the Karush–Kuhn–Tucker (KKT) conditions for A and B can be written respec-
tively as

A :



p0
i γxγ−1

i (1−p0
i )yγ

i

[p0
i xγ

i +(1−p0
i )yγ

i ]
2 wi − CA = λ

n
∑

i=1
xi ≤ RA

λ ≥ 0

λ

(
RA −

n
∑

i=1
xi

)
= 0

, (16)

and

B :



p0
i xγ

i γ(1−p0
i )yγ−1

i

[p0
i xγ

i +(1−p0
i )yγ

i ]
2 wi − CB = µ

n
∑

i=1
yi ≤ RB

µ ≥ 0

µ

(
RB −

n
∑

i=1
yi

)
= 0

. (17)

The solutions are discussed in four cases.
Case 1: Suppose λ > 0 and µ > 0. Then, the above KKT conditions (Equations (16)

and (17)) can be rewritten as

A :


p0

i γxγ−1
i (1−p0

i )yγ
i

[p0
i xγ

i +(1−p0
i )yγ

i ]
2 wi − CA = λ

n
∑

i=1
xi = RA

,

and

B :


p0

i xγ
i γ(1−p0

i )yγ−1
i

[p0
i xγ

i +(1−p0
i )yγ

i ]
2 wi − CB = µ

n
∑

i=1
yi = RB

.

From the above two sets of equations, we have

λ + CA
µ + CB

=
y∗i
x∗i

=
RB
RA

. (18)

Thus, we obtain the equilibrium results of Case 1:

x∗i = RA

p0
i (1−p0

i )
(

RB
RA

)γ
wi[

p0
i +(1−p0

i )
(

RB
RA

)γ]2

∑n
i=1

{
p0

i (1−p0
i )
(

RB
RA

)γ
wi[

p0
i +(1−p0

i )
(

RB
RA

)γ]2

} ,

y∗i = RB

p0
i (1−p0

i )
(

RB
RA

)γ
wi[

p0
i +(1−p0

i )
(

RB
RA

)γ]2

∑n
i=1

{
p0

i (1−p0
i )
(

RB
RA

)γ
wi[

p0
i +(1−p0

i )
(

RB
RA

)γ]2

} .

where wi =

(
∑n

j=1, j 6=i aijdj

)
di

1−βi

∑n
i=1


(

∑n
j=1, j 6=i aijdj

)
di

1−βi


..
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Case 2: Suppose λ = 0 and µ = 0. Then, the above KKT conditions (Equations (16)
and (17)) can be rewritten as

A :


p0

i γxγ−1
i (1−p0

i )yγ
i

[p0
i xγ

i +(1−p0
i )yγ

i ]
2 wi − CA = 0

n
∑

i=1
xi < RA

,

and

B :


p0

i xγ
i γ(1−p0

i )yγ−1
i

[p0
i xγ

i +(1−p0
i )yγ

i ]
2 wi − CB = 0

n
∑

i=1
yi < RB

.

From the above two sets of equations, we have

y∗i
x∗i

=
CA
CB

.

Thus, we obtain the equilibrium results of Case 2:

x∗i =
γp0

i (1−p0
i )(CA/CB)

γwi

CA[p0
i +(1−p0

i )(CA/CB)
γ]

2 ,

y∗i =
γp0

i (1−p0
i )(CA/CB)

γwi

CB[p0
i +(1−p0

i )(CA/CB)
γ]

2 .

where wi =

(
∑n

j=1, j 6=i aijdj

)
di

1−βi

∑n
i=1


(

∑n
j=1, j 6=i aijdj

)
di

1−βi


.

Case 3: Suppose λ > 0 and µ = 0. Then, the above KKT conditions (Equations (16)
and (17)) can be rewritten as

A :


p0

i γxγ−1
i (1−p0

i )yγ
i

[p0
i xγ

i +(1−p0
i )yγ

i ]
2 wi − CA = λ

n
∑

i=1
xi = RA

,

and

B :


p0

i xγ
i γ(1−p0

i )yγ−1
i

[p0
i xγ

i +(1−p0
i )yγ

i ]
2 wi − CB = 0

n
∑

i=1
yi < RB

.

From the above two sets of equations, we have

CA
CB

<
y∗i
x∗i

=
λ + CA

CB
<

RB
RA

. (19)

Then,
n

∑
i=1

x∗i =
n

∑
i=1

γp0
i
(
1− p0

i
)( λ+CA

CB

)γ
wi

(λ + CA)
[

p0
i +

(
1− p0

i
)( λ+CA

CB

)γ]2 = RA

With a constructor function g(z) = ∑n
i=1

{
γp0

i (1−p0
i )zγ−1wi

[p0
i +(1−p0

i )zγ]
2

}
, we can solve the above equation:

λ = CBg−1(RACB)− CA
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Then,

R̂A =
n

∑
i=1

x∗i = RA, R̂B =
n

∑
i=1

y∗i = RAg−1(RACB)

However, from Equation (18), we have

λ + CA
µ + CB

=
RB
RA
≤ λ + CA

CB
. (20)

Since Equations (19) and (20) are contradictory, this supposition is not tenable, and
there is no Nash equilibrium in case 3.

Case 4: Suppose λ = 0 and µ > 0. Then, the above KKT conditions (Equations (16)
and (17)) can be rewritten as

A :


p0

i γxγ−1
i (1−p0

i )yγ
i

[p0
i xγ

i +(1−p0
i )yγ

i ]
2 wi − CA = 0

n
∑

i=1
xi < RA

,

and

B :


p0

i xγ
i γ(1−p0

i )yγ−1
i

[p0
i xγ

i +(1−p0
i )yγ

i ]
2 wi − CB = µ

n
∑

i=1
yi = RB

.

From the above two sets of equations, we have

CA
CB

>
y∗i
x∗i

=
CA

µ + CB
>

RB
RA

. (21)

Then,
n

∑
i=1

y∗i =
n

∑
i=1

γp0
i
(
1− p0

i
)( CA

µ+CB

)γ
wi

(µ + CB)
[

p0
i +

(
1− p0

i
)( CA

µ+CB

)γ]2 = RB

With a constructor function f (m) = ∑n
i=1

{
γp0

i (1−p0
i )mγ+1wi

[p0
i +(1−p0

i )mγ]
2

}
, we can solve the

above equation:

µ =
CA

f−1(RBCA)
− CB

Then,

R̂A =
n

∑
i=1

x∗i =
RB

f−1(RBCA)
, R̂B =

n

∑
i=1

y∗i = RB

However, from Equation (18), we have

λ + CA
µ + CB

=
RB
RA
≥ CA

µ + CB
. (22)

Since Equations (21) and (22) are contradictory, this supposition is not tenable, and
there is no Nash equilibrium in case 4.

For a unified expression, we propose the modified budgets R̂A and R̂B to characterize
the equilibrium results. Therefore, Proposition 1 is proved. �

The modified budget in Proposition 1 can be understood as the total amount of
resources actually spent. From Proposition 1, we found that the agents with a greater
convergence weight will obtain more marketing resources from firms A and B, no matter
the modified budgets. It reveals that a network structure represented by convergence
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weight plays a significant role in the equilibrium results. Besides that, initial opinions, unit
cost parameters and budgets all also have effects on the equilibrium results.

Corollary 1. Consider the competition game shown as Equations (10) and (11). As for the network

G
(
V, E, P0), an agent with the initial opinion p0

i = R̂B
γ

R̂A
γ
+R̂B

γ gains the most resources from firms

A and B in equilibrium. The equilibrium expected the utility of firm A to increase monotonically
with p0

i , while the equilibrium expected utility of firm B decreases monotonically with p0
i .

Proof of Corollary 1. According to Proposition 2, we have

x∗i = R̂A

p0
i (1−p0

i )(R̂B/R̂A)
γwi

[p0
i +(1−p0

i )(R̂B/R̂A)
γ]

2

∑n
i=1

 p0
i (1−p0

i )(R̂B/R̂A)
γwi

[p0
i +(1−p0

i )(R̂B/R̂A)
γ]

2


,

y∗i = R̂B

p0
i (1−p0

i )(R̂B/R̂A)
γwi

[p0
i +(1−p0

i )(R̂B/R̂A)
γ]

2

∑n
i=1

 p0
i (1−p0

i )(R̂B/R̂A)
γwi

[p0
i +(1−p0

i )(R̂B/R̂A)
γ]

2


.

From the first-order conditions (FOCs), we have

∂x∗i
∂p0

i
= R̂A

(R̂B/R̂A)
γ

wi

{
(1−p0

i )(R̂B/R̂A)
γ−p0

i

}
[

p0
i +(1−p0

i )(R̂B/R̂A)
γ
]2

{
n
∑
j 6=i

p0
j

(
1−p0

j

)
(R̂B/R̂A)

γ
wj[

p0
j +
(

1−p0
j

)
(R̂B/R̂A)

γ
]2

}
{

∑n
i=1

p0
i (1−p0

i )(R̂B/R̂A)
γ

wi[
p0

i +(1−p0
i )(R̂B/R̂A)

γ
]2

}2

Let ∂x∗i
∂p0

i
= 0, then p0

i = R̂B
γ

R̂A
γ
+R̂B

γ .

When p0
i ∈

(
0, R̂B

γ

R̂A
γ
+R̂B

γ

)
, then ∂x∗i

∂p0
i
> 0. When p0

i ∈
(

R̂B
γ

R̂A
γ
+R̂B

γ , 1
)

, then ∂x∗i
∂p0

i
< 0.

Therefore, x∗i takes its maximum value when p0
i = R̂B

γ

R̂A
γ
+R̂B

γ .

Similarly, let ∂y∗i
∂p0

i
= 0, then p0

i = R̂B
γ

R̂A
γ
+R̂B

γ .

When p0
i ∈

(
0, R̂B

γ

R̂A
γ
+R̂B

γ

)
, then ∂y∗i

∂p0
i
> 0. When p0

i ∈
(

R̂B
γ

R̂A
γ
+R̂B

γ , 1
)

, then ∂y∗i
∂p0

i
< 0.

Therefore, y∗i takes its maximum value when p0
i = R̂B

γ

R̂A
γ
+R̂B

γ .

Additionally, from the FOCs, we have

∂EUA
∂p0

i
=

(R̂A)
γ
(R̂B)

γ
wi[

p0
i (R̂A)

γ
+(1−p0

i )(R̂B)
γ
]2 > 0,

∂EUB
∂p0

i
=

−(R̂A)
γ
(R̂B)

γ
wi[

p0
i (R̂A)

γ
+(1−p0

i )(R̂B)
γ
]2 < 0.

Thus, Corollary 1 is proved. �

Corollary 1 reveals the role of initial opinion in equilibrium to some extent. Initial
opinions can significantly influence the marketing resources allocated to each agent and the
utility of each firm. Consequently, it is necessary to investigate the purchase intention of
market consumers as initial opinions before the marketing decision of product promotion.
The investigation of initial opinions can provide a reference for the marketing resource
allocation strategies of firms. Next, we will conclude this part with a specific example to
aid in the understanding of the equilibrium results.
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Example 1. A social network G(V, E) is given, as shown in Figure 1. Firms A and B
compete for the opinions of agents in G(V, E) to maximize their own utility. Consider that all
other parameters are as follows: RA = 0.902,RB = 0.765, CA = 0.260, CB = 0.312, γ = 0.717,
P0 = (0.334, 0.805, 0.840, 0.354, 0.625, 0.259, 0.043, 0.088, 0.030, 0.980, 0.715, 0.077) and
β = (0.609, 0.268, 0.468, 0.049, 0.254, 0.441, 0.793, 0.422, 0.330, 0.424, 0.633, 0.764). Based
on Proposition 1, the equilibrium results are presented in Table 1, including the equilibrium resources
received by each agent and expected utilities of firms.
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Figure 1. The social network.

Table 1. The equilibrium resources received by each agent and expected utilities of firms.

V v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

wi 0.083 0.044 0.012 0.021 0.035 0.017 0.283 0.045 0.049 0.135 0.027 0.249
xi 0.019 0.006 0.002 0.005 0.008 0.004 0.013 0.004 0.002 0.002 0.005 0.020
yi 0.016 0.005 0.001 0.004 0.007 0.003 0.011 0.003 0.001 0.002 0.004 0.016

p200
i 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.307

0.243
EUB 0.629

The opinion evolution process and marketing game results are shown in Figure 2.
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4.1.2. Equilibrium Results in a Dispersed Network

The equilibrium results of the competition game in a connected network have been
presented in Proposition 1. However, the network of consumers may be dispersed and con-
sist of many subnetworks in reality [14]. Furthermore, we want to explore the equilibrium
results of the competition game in such a dispersed network.
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Assume that the undirected network of agents is dispersed and consists of m disjoint
subnetworks,M =

{
G(1)

(
V(1), E(1), P0

(1)

)
, · · · , G(m)

(
V(m), E(m), P0

(m)

)}
. Each subnet-

work is path-connected and aperiodic. There exists P0 = P0
(1) ∪ P0

(2) ∪ · · · ∪ P0
(m)

and
V = V(1) ∪V(2) ∪ · · · ∪V(m). Lemma 2 implies that agents in each subnetwork can reach a
consensus, but different subnetworks engender different resulting opinions (consensuses).
We applied a weight vector E = (ε1, ε2, · · · , εm) to aggregate the consensuses of each
subnetwork

(
c∗1 , c∗2 , · · · , c∗m

)
so as to obtain a final consensus of all agents. There was no

relationship link between subnetworks. As for the weight vector E among subnetworks,
we followed [4,21] to treat it as the form of Equation (24). In our duopoly settings, each
agent in the market only had two options, namely firm A or firm B. Firm A will win in the
market if more agents favor A, and firm B follows the opposite trend. An agent becomes
pivotal for firms if his/her opinion can change the outcome of marketing competition. Let
N denote the number of choices firm A needs to win. δi denotes the possibility that agent
vi becomes pivotal.

δi = ∑
S ⊂ N\{i}
|S| = N − 1

∏
j ∈ S

k ∈ M

c∗(k)j ∏
j′ /∈ S, j′ 6= i

k′ ∈ M

(
1− c∗(k

′)
j′

)
. (23)

εk =
1∣∣∣V(k)

∣∣∣ ∑
i∈V(k)

δi, ∀k ∈ M (24)

The equilibrium results of the game in subnetworks are presented in Proposition 2.

Proposition 2. Given a group of subnetworksM, firms A and B both compete for agents’ opinions
in these subnetworks to maximize their own utility by competitive expenditure of marketing re-
sources, as in Equations (10) and (11). With the modified budgets R̂A and R̂B, the pair of n-vectors
X∗ and Y∗ constitute a Nash equilibrium of such a game:

x∗i = R̂A

p0
i (1−p0

i )(R̂B/R̂A)
γwi εk

[p0
i +(1−p0

i )(R̂B/R̂A)
γ]

2

∑n
i=1

 p0
i (1−p0

i )(R̂B/R̂A)
γwi εk

[p0
i +(1−p0

i )(R̂B/R̂A)
γ]

2


, i ∈ V(k), k ∈ M

y∗i = R̂B

p0
i (1−p0

i )(R̂B/R̂A)
γwi εk

[p0
i +(1−p0

i )(R̂B/R̂A)
γ]

2

∑n
i=1

 p0
i (1−p0

i )(R̂B/R̂A)
γwi εk

[p0
i +(1−p0

i )(R̂B/R̂A)
γ]

2


, i ∈ V(k), k ∈ M

The equilibrium-expected utility of firm A is

EUA = ∑
k∈M

∑
i∈V(k)


p0

i

(
R̂A

)γ
wiεk

p0
i

(
R̂A

)γ
+
(
1− p0

i
)(

R̂B

)γ

− CAR̂A.

The equilibrium-expected utility of firm B is

EUB = ∑
k∈M

∑
i∈V(k)


(
1− p0

i
)(

R̂B

)γ
wiεk

p0
i

(
R̂A

)γ
+
(
1− p0

i
)(

R̂B

)γ

− CBR̂B.



Mathematics 2022, 10, 394 14 of 21

where wi =

(
∑n

j=1, j 6=i aijdj

)
di

1−βi

∑n
i=1


(

∑n
j=1, j 6=i aijdj

)
di

1−βi


, R̂A = min

{
RA, ∑k∈M ∑i∈V(k)

{
γp0

i (1−p0
i )(CA/CB)

γwiεk

CA[p0
i +(1−p0

i )(CA/CB)
γ]

2

}}

and R̂B = min
{

RB, ∑k∈M ∑i∈V(k)

{
γp0

i (1−p0
i )(CA/CB)

γwiεk

CA[p0
i +(1−p0

i )(CA/CB)
γ]

2

}}
.

Proof of Proposition 2. In the group of subnetworksM, the competition game between
firms A and B can be written as:

max
{xi}

∑
k∈M

∑
i∈V(k)

p0
i xγ

i
p0

i xγ
i +(1−p0

i )yγ
i

wiεk − CA ∑
k∈M

∑
i∈V(k)

xi,

s.t. ∑k∈M ∑i∈V(k)
xi ≤ RA.

(25)

and
max
{yi}

∑
k∈M

∑
i∈V(k)

(1−p0
i )yγ

i
p0

i xγ
i +(1−p0

i )yγ
i

wiεk − CB ∑
k∈M

∑
i∈V(k)

yi,

s.t. ∑k∈M ∑i∈V(k)
yi ≤ RB.

(26)

Similar to the proof of Proposition 1, we construct the Lagrange functions of Equations
(25) and (26) and obtain their respective KKT conditions:

A :



p0
i γxγ−1

i (1−p0
i )yγ

i

[p0
i xγ

i +(1−p0
i )yγ

i ]
2 wiεk − CA = λ

∑
k∈M

∑
i∈V(k)

xi ≤ RA

λ ≥ 0

λ

(
RA − ∑

k∈M
∑

i∈V(k)

xi

)
= 0

,

and

B :



p0
i xγ

i γ(1−p0
i )yγ−1

i

[p0
i xγ

i +(1−p0
i )yγ

i ]
2 wiεk − CB = µ

∑
k∈M

∑
i∈V(k)

yi ≤ RB

µ ≥ 0

µ

(
RB − ∑

k∈M
∑

i∈V(k)

yi

)
= 0

.

Similar to the proof of Proposition 1, the solutions are also discussed in four cases.
Therefore, we obtain the equilibrium results shown in Proposition 2 from the above KKT
conditions. Proposition 2 is proved. �

Proposition 2 indicates that the general weight of each agent consists of the conver-
gence weight in each subnetwork and the weight between subnetworks. Compared with
the equilibrium results in a connected network, the equilibrium results in a dispersed
network are additionally influenced by the size of the subnetwork and the number of all
subnetworks besides some common factors. This may shed light on the market segmenta-
tion strategy in marketing decision making.

4.2. Equilibrium Strategies under Different Budgets and Unit Costs

In reality, budget and corresponding resource cost are often the primary factors affect-
ing marketing decisions. There may exist different equilibrium allocation strategies under
different budgets and unit costs. This part relaxes the previous assumptions of a fixed
budget and given unit cost. Taking the equilibrium results of the connected network as an
example, some relevant theoretical and simulation analysis was carried out as follows.
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Before starting the analysis, we first give some related definitions.

Definition 1. As for the competition game shown in Equations (10) and (11), we define the sum of
firms’ expected utilities as the expected total utility of the market. Let TU denote the expected total
utility of the market. Then,

TU = EUA + EUB = 1−
(

CAR̂A + CBR̂B

)
, (27)

where R̂A and R̂B are denoted as before. Obviously, a low unit cost of each firm means the total
utility of the market will be high.

Definition 2. As for the competition game shown in Equations (10) and (11), we define the
difference between firms’ expected utilities as the outcome of the competition game. Let S denote the
competition outcome. Then,

S = EUA − EUB =
n

∑
i=1


p0

i

(
R̂A

)γ
−
(
1− p0

i
)(

R̂B

)γ

p0
i

(
R̂A

)γ
+
(
1− p0

i
)(

R̂B

)γ wi − CAR̂A + CBR̂B

. (28)

Explicitly, S > 0 means firm A will win the competition in the market, and S < 0 means firm B
will win the competition in the market.

4.2.1. The Effect of Unit Costs on Equilibrium Strategies

Based on Equations (27) and (28), we have their FOCs as below:

∂TU
∂CA

= −R̂A < 0,
∂TU
∂CB

= −R̂B < 0;
∂S

∂CA
= −R̂A< 0,

∂S
∂CB

= R̂B >0. (29)

Applying the FOCs to Equations (14) and (15), we then have

∂EUA
∂CA

= −R̂A < 0,
∂EUB
∂CB

= −R̂B < 0. (30)

We found that the expected utility of each firm decreases monotonically with its unit
cost (see Equation (30)). If the unit cost is reduced, then each firm can not only improve its
expected utility but also improve the total utility of the market (see Equations (29) and (30)).
Therefore, efforts to reduce costs are necessary for each firm in the market. Given other
conditions, each firm can judge its possibility of winning the competition and determine
its allocation strategy according to its unit cost and that of the opponent. Furthermore,
each firm can derive the minimum reduction in unit cost from the definition of competition
outcome so that it can win in the market (see Equation (28)).

Additionally, we applied a small-world network to simulate the consumer network in
a market. Assume that the consumer network consists of 12 agents, whose initial opinions
and self-belief are all generated stochastically in the range of (0, 1). The efficiency parame-
ter γ of each firm is equal and is also generated stochastically in the range of (0, 1). The unit
costs of firms A and B both vary in the scope of [0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45,
0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95]. Define the marketing resource ratio at
equilibrium (RRE) as RRE = y∗i /x∗i . Given the budgets of firms A and B, the simulation
results of competition outcome S and the RRE are presented below.

From Figure 3, we found that the competition outcome S increased monotonically
with CB and decreased monotonically with CA, which is in line with the FOCs shown in
Equation (29). The competition outcome was more sensitive to the change of firm B’s unit
cost in the case of RA = 0.2, RB = 0.8, while the competition outcome was more sensitive
to the change of firm A’s unit cost in the case of RA = 0.8, RB = 0.2. For the case of
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RA = RB = 0.5, the unit cost of each firm had a symmetrical effect on the competition
outcome. Moreover, according to Proposition 1, the value of the RRE determines the
equilibrium-expected utilities of firms A and B, and RRE = {RB/RA, CA/CB}. Figure 3
implies that the RRE will take the value of CA/CB if unit costs of firms A and B are both
high enough. Conversely, the RRE will take the value of RB/RA if the unit costs of firms A
and B are both low enough. In other words, the level of unit cost affects the equilibrium
results by influencing the value of the RRE. High unit costs hinder the enthusiasm of firms
to allocate budgets, while low unit costs promote firms to use up their budgets as much
as possible.
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4.2.2. The Effect of Budgets on Equilibrium Strategies

The modified budget can be interpreted as the total marketing resources that are actu-
ally allocated among agents. According to Proposition 1, the modified budget represents
the budget to some extent. Then, we have the FOCs from Equations (27) and (28):

∂TU
∂R̂A

= −CA < 0,
∂TU
∂R̂B

= −CB < 0. (31)

∂S
∂R̂A

=
n
∑

i=1

2γp0
i (1−p0

i )R̂A
γ−1

R̂B
γ[

p0
i R̂A

γ
+(1−p0

i )R̂B
γ
]2 wi − CA,

∂S
∂R̂B

=
n
∑

i=1

−2γp0
i (1−p0

i )R̂A
γ

R̂B
γ−1[

p0
i R̂A

γ
+(1−p0

i )R̂B
γ
]2 wi + CB.

(32)

Applying the FOCs to Equations (14) and (15), then there are
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∂EUA
∂R̂A

=
n
∑

i=1

γp0
i (1−p0

i )R̂A
γ−1

R̂B
γ[

p0
i R̂A

γ
+(1−p0

i )R̂B
γ
]2 wi − CA,

∂EUB
∂R̂B

=
n
∑

i=1

γp0
i (1−p0

i )R̂A
γ

R̂B
γ−1[

p0
i R̂A

γ
+(1−p0

i )R̂B
γ
]2 wi − CB.

(33)

From Equation (31), we found that the total utility of the market gradually decreases
with the increase resources actually spent. However, according to Equations (32) and (33),
the competition outcome and the utility of each firm are not monotonic on each modified
budget, that is, they are not monotonic on each budget. Additionally, there may exist a
certain modified budget that makes the corresponding expected utility reach its maximum.
Numerical simulations show this more intuitively.

Consider the same small-world network as above. Initial opinions, self-belief and
the efficiency parameter are all generated stochastically in the range of (0, 1). Given
the unit costs of firms A and B, the budgets of each firm both vary in the scope of
[0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95] The
simulation results of competition outcome S and the RRE are shown in Figure 4.
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As Figure 4 shows, the effect of budgets on the competition outcome is quite complex
and non-monotonic, which is consistent with the FOCs shown in Equation (32). By com-
paring Figure 2a–c, we found that a firm with a low unit cost dominates the competition.
The budget has a very limited effect on reversing the competition outcome when there is
a great disparity in unit costs between firms. As seen in each subgraph of Figure 4, the
change of budgets can only have a large impact on the competition outcome if there is a
disparity between the budgets of firms A and B. For a given budget of the opponent, each
firm can assess its chances of winning and optimally adjust its own budget to ensure a
win based on Equation (28). Furthermore, such an adjustment is not unique due to the
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non-monotonicity of the effect. Each firm can take advantage of the non-uniqueness to
make a minimal budget adjustment for a win.

Specifically, these characteristics of the effect on the competition outcome can be
understood in terms of the trend of the RRE, because the value of the RRE determines the
equilibrium results to some extent. We found that the value of the RRE is taken as CA/CB
when the budgets of both firms are large enough; otherwise it is taken as RB/RA. When
the value of the RRE is CA/CB, the competition outcome S can be rewritten as

S =
n

∑
i=1

p0
i −

(
1− p0

i
)
(CA/CB)

γ

p0
i +

(
1− p0

i
)
(CA/CB)

γ wi.

From the above equation, we found the competition outcome is only determined
by the network structure and initial opinions for a given pair of unit costs. Thus, the
competition outcome does not change with budgets of firms A and B, as shown in Figure 4.
As for the case of CA = CB = 0.5, the fluctuation in the upper-right part of Figure 4b was
caused by the stochasticity of network structure and initial opinions in the simulations,
rather than the change of budgets.

4.3. Equilibrium Strategies under Different Network Structures

From Proposition 1, strategic allocation decision is made based on opinion evolution,
and the opinion evolves based on social relations in the network. Therefore, there may exist
different equilibrium strategies under different network structures. Consider a group of
12 agents, the social relations between whom are generated stochastically in the form of
small-world networks. Likewise, budgets, unit costs, self-belief, initial opinions and the
efficiency parameter are all generated stochastically in the range of (0, 1). Additionally,
we considered another case where there are no social connections among agents. By
comparing the two cases of agents with and without connections, we can have an intuitive
understanding of the effect of network structure. The comparison is shown in Figure 5.
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Since the relationships between agents are diverse, there are many possible structures
for the network. From Figure 5, the diversity of network structures allows for multiple
possible results for each firm’s expected utility. Expected utilities of firms in the case of
agents with connections may be greater than or less than those in the case of agents without
connections. For both sides of the competition in the market, the network structure may be
used as a tool to improve utilities.

Inspired by Stewart et al. [24], we applied a novel notion, the network dominance gap
(NDG), to exquisitely characterize the heterogeneous advantages of network structures
to different firms. We can gain a glimpse of the role of network structure in equilibrium
strategies from the NDG, which is defined as follows.
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Definition 3. Given a social network G(V, E) defined as before, let Vi denote the set of neighbors
of agent vi, Vi =

{
j ∈ V

∣∣aij = 1
}

. Agents in the network hold heterogeneous initial opinions,
namely

(
p0

1, p0
2, · · · , p0

n
)
. di is denoted as before. Then, the dominance of vi for firm A is

GA
i = ∑

j∈Vi

(
p0

j ×
dj

∑k∈Vi
dk

)
.

The dominance of vi for firm B is

GB
i = ∑

j∈Vi

[(
1− p0

j

)
×

dj

∑k∈Vi
dk

]
.

Then, the NDG labeled by G is

G =
n

∑
i=1

(
GA

i − GB
i

)
=

n

∑
i=1

∑j∈Vi

(
2p0

j − 1
)

dj

∑j∈Vi
dj

.

From Definition 3, G > 0 means that most agents in the network are surrounded by
supporters of firm A. Thus, most agents in the network meet the condition that the majority
of their neighbors are supporters of firm A. Therefore, G > 0 indicates that this network
has an innate dominance for firm A. Then, G < 0 indicates that this network has an innate
dominance for firm B. What the NDG stresses is the innate network dominance before
opinion evolution, not the final dominance. In the process of opinion evolution, this innate
dominance is affected by other factors, such as self-belief, external resources and unit costs.
So, will this network dominance run through the whole evolution process and be retained
in equilibrium? Numerical simulations give a preliminary answer.

For the same group of agents as Figure 5, the social relations between them are
generated stochastically in the form of small-world networks. All parameters are the same,
as given in Figure 5. Then, the relationship between the NDG and the expected utility of
each firm is shown in Figure 6.
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From Figure 6, the expected utility of firm A is positively correlated with the NDG,
while the expected utility of firm B is negatively correlated with the NDG. Obviously, the
network dominance is retained in equilibrium and manifested in the expected utility of
each firm. A positive and large NDG often means that the network has an advantage for
the marketing campaign of firm A, i.e., EUA is generally greater than EUB, while a negative
and small NDG means that EUA is generally less than EUB. For any given initial opinion
profile, the NDG implies that the difference between expected utilities of firm A and B
varies continuously under different network structures. Consequently, the structure of a
network can indeed be used as a tool for firms to improve their expected utilities, which is
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in line with [12,25]. Therefore, it is quite necessary for firms in the market to investigate
the consumer network and improve its structure accordingly. Meanwhile, each firm can
choose its optimal marketing strategy under different network structures.

5. Conclusions

This paper has investigated the problem of competitive marketing resource allocation
under cost and budget constraints. We modeled the allocation competition as a non-zero-
sum game, where two firms attempt to compete for consumers’ opinions to maximize their
own utilities in a market. In the constructed model, a bridge is built between the inner
state (self-belief and opinions) of consumers and allocation decisions of firms in the game.
Thus, the allocation of marketing resources is targeted and based on dynamic opinions of
consumers in networks, which provides a meaningful feedback loop between consumers
and firms in the market. In general, the main conclusions can be summarized as follows.

1. Combining opinion dynamics and game theory for allocation decisions of mar-
keting resources, we constructed a novel hybrid model to characterize how firms
target their marketing resources to consumers in social networks under cost and
budget constraints.

2. From the constructed model, we obtained its equilibrium results in the form of theo-
retical expressions in a connected network and a dispersed network, which provided
a sharp and apt characterization of the marketing resource allocation strategies.

3. Through discussing the properties of equilibria, we can determine that firms should
allocate more marketing resources to some of consumers with certain characteristics.
As for initial opinions, firms should allocate more resources to the consumer whose
initial opinion is close to R̂B

γ
/
(

R̂A
γ
+ R̂B

γ
)

. As for self-belief, firms should allocate
more resources to consumers with high self-belief. As for the position in a network,
firms should allocate more resources to consumers with many neighbors whose
neighbors are also numerous. All of these provide some implications for marketing
resource management.

4. By relaxing some fixed parameters, we found that the expected utility of each firm
decreases monotonically with its unit cost and is not monotonic on its budget. The
competition outcome is more sensitive to the change of unit cost of a firm with a
relatively small budget and can reach its extremum at some value of the budget. These
imply that reducing the unit cost of marketing is quite essential and that “the more
the better” rule does not apply to a firm’s marketing budget. Moreover, the network
may have an innate dominance for one of the firms in the market competition, and
network structure can be as a tool to improve the firm’s utility. These findings provide
some reference and implications for firms in marketing competition.

Despite the above contributions, this paper still has some limitations, such as difficul-
ties in analyzing the competition of multiple players or modeling a dynamic multi-stage
marketing process. Additionally, there may be negative relationships among agents in
networks, which can hinder the effect of marketing campaigns [26]. Consequently, it is
necessary to explore the problem of marketing competition in a signed network. These
limitations are the focus of our future research. In future research, we plan to further study
such an allocation competition in a dynamic game or in a signed network. Undoubtedly,
dynamic games and signed networks make the competition model closer to the actual
marketing competition in social networks [26–28]. Corresponding allocation strategies will
make sense and be of great interest.
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