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In oncology, the “abscopal effect” refers to the therapeutic effect on a distant tumor

resulting from the treatment of local tumor (e. g., ablation, injection, or radiation).

Typically associated with radiation, the abscopal effect is thought to be mediated by

a systemic antitumor immune response that is induced by two concurrent changes

at the treated tumor: (1) the release of tumor antigens and (2) the exposure of

damage-associated molecular patterns. Therapies that produce these changes are

associated with immunogenic cell death (ICD). Some interventions have been shown to

cause an abscopal effect without inducing the release of tumor antigens, suggesting that

release of tumor antigens at baseline plays a significant role in mediating the abscopal

effect. With tumor antigens already present, therapies that target activation of APCs

alone may be sufficient to enhance the abscopal effect. Here, we discuss two therapies

targeted at APC activation, TLR9 and CD40 agonists, and their use in the clinic to

enhance the abscopal effect.
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INTRODUCTION

The abscopal effect (derived from the Latin “ab” meaning away from and “scopus” meaning target)
refers to the local destruction of a tumor which results also in the regression of a distant tumor. The
phenomenon has been well-described in pre-clinical models, often in the context of radiation. For
example, when combined with Flt3-L, irradiation not only resulted in control of the primary tumor
but also of a non-irradiated secondary tumor (1). Though described in pre-clinical settings, the
abscopal effect is still relatively rare in patients. In one study of 34 patients with metastatic prostate
cancer, treatment with radiation and the immunotherapy, ipilimumab, resulted in a complete
response at local and distant tumors for one patient (3%) (2). Ionizing radiation (IR) is thought
to induce the abscopal effect via two changes at the treated tumor: (1) release of tumor associated
antigens (TAAs) and (2) release of damage associated molecular patterns (DAMPs) which activate
antigen presenting cells (APCs). We will examine the relative contribution of both factors to the
abscopal effect and the role of IR in inducing each.

RELEASE OF ANTIGENS AND EXPOSURE OF DAMPS

IR damages a tumor cell’s DNAwhich can result in ICD. In ICD, the tumor cell releases antigen and
enhances phagocytosis by APCs through signals like calreticulin, which facilitates phagocytosis, and
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FIGURE 1 | Targeted therapies that promote APC activation enhance the abscopal effect. At a local tumor, administration of therapies such as CD40 and TLR9

agonists results in the maturation of DCs. Mature DCs can then prime T cells to regress both the local tumor and also distant tumors. DC, dendritic cell; pDC,

plasmacyotid dendritic cell.

ATP, which attracts APCs (3). The net result is the presentation
of tumor antigens by APCs. While tumor cells have been
reported to act as antigen presenting cells, we will use the
term APC to refer to professional APCs such as dendritic
cells (DC) and macrophages. However, antigen presentation by
immature DCs can lead to T cell tolerance as T cells become
anergic, suppressive, or are simply deleted (4). To mediate the
abscopal effect, radiation is thought not only to release tumor
antigens but also DAMPs that activate APCs. DAMPs include
HMGB1, ATP, and non-nuclear DNA (3). While DAMPs exert
their effects by various mechanisms, they converge on the same
functional outcome: activation of APCs that can initiate an
adaptive immune response.

It is important to consider the relative contributions of
both the release of tumor antigens and of DAMPs to the
abscopal effect. During tumor growth, antigens from malignant
cells undergoing chronic turnover are engulfed by DCs.
However, DAMPs may not be released in sufficient quantities
to consistently mature them (5, 6). For example, in a study

by Vicari et al. tumor infiltrating dendritic cells (TIDCs) at
baseline were shown to present antigen albeit in an immature
state. Upon treatment with CpG and IL10R blocking antibody to
activate TIDCs, tumors were regressed by an adaptive immune
response (6). Given the presence of tumor antigens in the
microenvironment, interventions that activate APCs without
releasing additional antigens may be sufficient to initiate a
systemic immune response and abscopal effect. Considering the
rarity of the abscopal effect with radiation, other therapies that
promote DC activation in a targeted manner may increase its
frequency (7) (Figure 1). Here, we discuss TLR9 and CD40 as
promising therapeutic targets to enhance DC activation and
summarize their progress in clinical development.

TLR9

Modern cancer immunotherapy arguably began with Dr.William
Coley’s intratumoral injections of bacterial lysates, derisively
called “Coley’s toxin.” It was later determined that bacterial DNA
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within these lysates, specifically the CpG sequence motif, was
the component responsible for eliciting an immune response
(8). Unmethylated cytosine-phosphate-guanine (CpG) binds to
TLR9 which, in humans, is expressed primarily by (1) B cells
and (2) plasmacytoid dendritic cells (pDCs) (9). TLR9 signals
through each cell type to initiate a differing cascade of immune
effects. TLR9 activation on B cells enhances their differentiation
into antibody-secreting plasma cells (10). TLR9 activation on
pDCs results in several effects: (1) secretion of type-1 interferons
(4) (2) secretion of Th1 type cytokines (e.g., TNFα, IFNγ, IL2)
(10) (3) expression of TNF-related apoptosis-inducing ligand
(TRAIL) which can induce tumor cell death directly (9) and (4)
expression of co-stimulatory molecules (e.g., CD80, CD86) and
lymph node homing signal CCR7 (9). While the APC function
of pDCs is debated (11), pDC secretion of type-1 interferons,
primarily IFNα, is thought to be the dominant effect by which
TLR9 signaling induces antitumor immunity (10). IFNα has
direct effects on tumors including the inhibition of angiogenesis
(12), antiproliferative effects (13), as well as increased MHC I
expression and thus enhanced immunogenicity (13). Its effect on
immune cells include the enhanced ability of NK cells to kill and
produce IFNγ as well as the maturation of conventional DCs
(13). The ability to mature DCs is particularly appealing as a
therapy to enhance the abscopal effect.

Interest in the clinical use of TLR9 agonists has waxed
and waned throughout the years. In mouse studies, therapies
involving CpG have induced extremely potent abscopal
responses, often resulting in complete regression of treated
tumors as well as distant, non-treated tumors (6, 14–16). Early
human data was also promising. As monotherapy, TLR9 agonists
have been shown in several phase I and II to result in objective
responses, and even some complete responses, in cutaneous T
cell lymphoma (17), basal cell carcinoma (18), and melanoma
(18). However, in two phase III trials for advanced NSCLC,
TLR9 in combination with either chemotherapy regimens
paclitaxel/carboplatin (19) or gemcitabine/cisplatin (20) did
not extend overall survival compared to chemotherapy alone.
In fact, addition of TLR9 resulted in increased adverse effects
which led to early discontinuation of TLR9 administration in
those studies. Interest in TLR9 faltered after these trials and
efforts were scaled back on CpG agents like PF-3512676 (10).
The discrepancy between the promising preclinical data and
disappointing clinical results may be partially attributed to the
broad expression of TLR9 in mice (in nearly all myeloid cells)
compared to narrow expression in humans (primarily B cells
and pDCs) (8).

With the recent successes of immune checkpoint blockade,
there has been renewed interest in TLR9 agonists for their
potential in combination therapies with T cell activating agents.
Various combinations are currently being tested in clinical trials
and are detailed in Table 1. These trials improve upon past
trials of such agents for at least two reasons (21). First, whereas
previous failed trials (19, 20) used subcutaneous systemic
administration, current trials often focus on intratumoral
injection (e.g., NCT03410901, NCT03445533). Intratumoral
injection is thought to increase potency while also avoiding
systemic toxicity. Indeed, one CpG agent has been shown

TABLE 1 | Selected TLR9 agonists in clinical development.

Drug Developer Conditions Combination Clinical trials

SD-101 Dynavax B cell Hodgkin’s

Lymphoma

B cell Lymphoma

Melanoma

Head and neck

squamous

cell carcinoma

Lymphoma

SD-101

Anti-OX40 Ab

(BMS 986178)

Radiation

SD-101

Ipilimumab

Radiation

SD-101

Pembrolizumab

SD-101

Epacadostat

Radiation

NCT03410901

NCT02254772

NCT02521870

NCT03322384

IMO-2125 Idera Melanoma

Melanoma

IMO-2125

Ipilimumab

IMO-2125

Ipilimumab/

Pembrolizumab

NCT03445533

NCT02644967

CMP-001 Checkmate

Pharmaceuticals

Melanoma

Melanoma

NSCLC

CMP-001

Pembrolizumab

CMP-001

Nivolumab

CMP-001

Atezolizumab

Radiation

NCT03084640

NCT03618641

NCT03438318

MGN1703 Mologen Advanced solid

cancers

MGN1703

Ipilimumab

NCT02668770

A selection of clinical trials of interest are shown. Information compiled from

clinicaltrials.gov.

to regress tumors when given intratumorally (7) whereas the
same drug had little to no effect when given systemically
(22). Second, the impact of TLR9 agonists in the past may
have been curtailed by negative feedback mechanisms such as
increased PD-1 signaling. Ongoing trials combining TLR9 with
ipilimumab (8) and pembrolizumab (23) attempt to address
these barriers. Recent trials (23, 24) employing these strategies
have been well-tolerated while regressing local, treated tumors,
and untreated, abscopal tumors. Such studies merit further
investigation to further elucidate the effectiveness of CpG for
inducing systemic immunity.

CD40

The TNF superfamily receptor CD40 is expressed on
hematopoietic cells such as DCs, B cells, monocytes, and
macrophages, non-hematopoietic cells such as epithelial cells
and fibroblasts, as well as tumor cells in melanoma and lung
cancer (25). Its ligand, CD40L, is expressed by CD4T cells.
Ligation of CD40 results in activation of the cell on which
is expressed (26). On B cells, CD40 signaling results in class
switching, somatic hypermutation, formation of long lived
plasma, and memory cells (25), and enhanced antigen presenting
function (27). On DCs, CD40 signaling results in upregulation
of costimulatory molecules (e.g., CD80, CD86), production of
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TABLE 2 | Selected CD40 agonists in clinical development.

Drug Developer Fc Conditions Combination Clinical Trials

CP-870,893 Pfizer/VLST IgG2 Advanced solid tumors

Pancreatic adenocarcinoma

Metastatic solid tumors

CP-980,893

CP-980,893

Gemcitabine

CP-980,893

Paclitaxel

Carboplatin

NCT01103635

NCT01456585

NCT00607048

Dacetuzumab (SGN-40) Seattle Genetics IgG1 Lymphoma SGN-40 NCT00435916

Chi Lob 7/4 University of Southampton IgG1 Advanced malignancies Chi Lob 7/4 NCT01561911

APX005M Apexigen IgG1 Melanoma

Pancreatic adenocarcinoma

APX005M

Pembrolizumab

Gemcitabine

Nab-Paclitaxel

APX005M

Nivolumab

NCT02706353

NCT03214250

A selection of clinical trials of interest are shown. Information compiled from clinicaltrials.gov.

cytokines (e.g., IL-12) (26), enhanced expression and stability
of MHC, and increased expression of factors which promote
survival (e.g., Bcl-XL) (25). CD40 signaling occurs through
two categories of adapter protein: (1) TNFR-associated factors
(TRAFs) and (2) Jak family kinase 3 (JAK3). This leads to
activation of various signaling pathways including MAPK, PI3K,
PLCγ, and NF-kβ. Details of these signaling pathways have been
described elsewhere (25).

In preclinical models, agonist CD40 antibodies have been
shown to be effective at regressing tumors (28, 29). The
mechanism of agonist CD40 antibodies can be subdivided into T
cell independent and dependent effects. The T cell independent
effects include direct apoptotic signaling on CD40+ tumors
(30), targeting of CD40+ tumors for ADCC or complement-
dependent cytotoxicity (CDC), and activation of other effector
cells including NK cells (31) and macrophages (32) to regress
tumors. The T cell dependent effects are mediated by activation
of APCs which allow them to prime tumor specific CD8T cells.
In treatment with anti-CD40 mAb, depletion of CD4T cells does
not affect efficacy, suggesting that the CD40 mAb replaces the
need for CD40L from helper T cells (33).

While no anti-CD40 antibodies have been approved by the
FDA, several are in active clinical development and detailed
in Table 2. In the clinic, CD40 agonists have had moderate
therapeutic activity. CD40 agonist, CP-870,893 as single agent has
resulted in 14% objective response rate in a study of advanced
solid cancers (34). Of note, one of these patients with melanoma
went on to have a complete response that has lasted over a
decade (26). However, in another study of advanced solid cancers,
single agent CP-870,893 resulted in no clinical benefit (35). In
combination with chemotherapy, CP-870,893 has had a 20%
response in various advanced solid tumors (36). In the case
of metastatic pancreatic cancer, this was higher than response
rates with chemotherapy alone (37). Other CD40 agonists such
as Chi Lob 7/4 have demonstrated no objective responses in
initial clinical studies (27). In terms of toxicity, CD40 agonists
have been associated with important adverse effects. For example,

CP-870,893 resulted in CRS in a majority of patients and has
been the dose limiting toxicity (38). These two issues, moderate
efficacy, and toxicity, have hindered the clinical development of
CD40 agonists.

To address efficacy, it is important to consider the mechanism
by which these antibodies induce agonism. CD40 mAbs require
crosslinking (i.e., oligomerization) of the CD40 receptor to
induce the agonistic effect. Crosslinking can be enhanced by
an in trans interactions between the CD40 mAb Fc region and
an Fc receptor (FcR) expressed on a neighboring cell (39).
As such, some have worked to improve CD40 agonist activity
through Fc engineering to enhance the Fc-FcR interaction (27,
40–43). Others have suggested that the mAb formatted as
an IgG2b has a compact hinge structure which may mediate
effective crosslinking in the absence of the Fc receptor (44).
Current CD40 agonists do not achieve optimal efficacy for
several different reasons. Most CD40 agonists have been IgG1
and this human isotype has been shown to bind poorly to
FcγRIIb (45), which is thought to be the main Fc receptor that
mediates effective crosslinking (33). IgG2 mAb in development
include CP-870,893 which shuffles between the IgG2a and IgG2b
formats thereby limiting its potency (44). For these reasons, many
CD40 agonists, both IgG1 and IgG2, likely fail to achieve their
full therapeutic efficacy due to suboptimal crosslinking. Higher
order oligomerization of the CD40 receptor (i.e., crosslinking) is
thought to result in greater activation of downstream pathways
such as NF-kβ (46) and drive greater immunostimulation
(25). In a preclinical study of recombinant CD40L, forming
CD40L into higher order oligomers significantly increased B
cell activation (47). Future development of CD40 agonists
should focus on achieving efficient clustering to maximize
therapeutic efficacy.

To address toxicity, researchers have investigated local
injections of CD40 agonists to avoid systemic adverse effects.
For example, at the same dose, local injection was superior
to systemic administration of CD40 agonists (48) while
also reducing biodistribution of the antibody in the liver
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and possibly hepatotoxicity (38). This superior efficacy
of local administration along with decreased toxicity has
been demonstrated in multiple tumor models (41, 49–51).
Efficacy and toxicity go hand in hand. Increased dosing
could be one strategy to compensate for suboptimal efficacy,
but in the case of CD40 agonists, this is problematic due
to issues with toxicity. Until optimal dosing and route
of administration is established, it is unlikely that CD40
agonists will have reached their maximum therapeutic
potential (26).

APC ACTIVATION AS PART OF
COMBINATION IMMUNOTHERAPIES

As an immunotherapeutic strategy, focusing on antigen
presentation represents only one step in mediating a systemic
antitumor response. Other aspects—from T cell infiltration
to immunosuppression by myeloid cells—remain critical
steps for T-cell mediated tumor control. For example, in one

study, the efficacy of checkpoint blockade was significant
enhanced by combination with PI3k-γ, which switches tumor
associated myeloid cells from an immunosuppressive to
immunostimulatory phenotype (52). Therefore, combinatorial
approaches that target multiple aspects of the cycle are promising
strategies for treatment. Future studies that target several aspects
of antitumor immunity, including APC activation, are likely to
improve patient outcomes in the years ahead.
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