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Simple Summary: HER2-low breast cancer (BC) accounts for more than half of breast cancer patients.
Anti-HER2 therapy has been ineffective in HER2-low BC, for which palliative chemotherapy is
the main treatment modality. The definitive efficacy of T-Dxd in HER2-low BC breaks previous
treatment strategies, which will redefine HER2-low and thus reshape anti-HER2 therapy. This review
summarizes detection technologies and novel agents for HER2-low BC, and explores their possible
role in future clinics, to provide ideas for the diagnosis and treatment of HER2-low BC.

Abstract: HER2-low breast cancer (BC) has a poor prognosis, making the development of more
suitable treatment an unmet clinical need. While chemotherapy is the main method of treatment for
HER2-low BC, not all patients benefit from it. Antineoplastic therapy without chemotherapy has
shown promise in clinical trials and is being explored further. As quantitative detection techniques
become more advanced, they assist in better defining the expression level of HER2 and in guiding
the development of targeted therapies, which include directly targeting HER2 receptors on the
cell surface, targeting HER2-related intracellular signaling pathways and targeting the immune
microenvironment. A new anti-HER2 antibody-drug conjugate called T-DM1 has been successfully
tested and found to be highly effective in clinical trials. With this progress, it could eventually
be transformed from a disease without a defined therapeutic target into a disease with a defined
therapeutic molecular target. Furthermore, efforts are being made to compare the sequencing and
combination of chemotherapy, endocrine therapy, and HER2-targeted therapy to improve prognosis
to customize the subtype of HER2 low expression precision treatment regimens. In this review,
we summarize the current and upcoming treatment strategies, to achieve accurate management of
HER2-low BC.

Keywords: breast cancer; HER2-low; anti-HER2 therapies; antibody drug conjugates; novel combinations

1. Introduction

HER2-low breast cancer (BC), defined as HER2 immunohistochemistry (IHC) 2+ and
in situ hybridization (ISH)-negative or IHC1+, accounts for 40–50% of breast cancers [1,2].
Genomics analysis has shown HER2-low BC to be a heterogeneous disease [3,4]. While it is
not known how the HER2-low subtype causes cancer, most patients have poor prognostic
factors, such as larger tumor sizes, higher histological grades, and more regional lymph
node involvement [2,5–10].

Denkert et al. investigated 2310 HER2-negative BC patients receiving neoadjuvant
chemotherapy, and found that approximately 60% of hormone receptor (HR) positive BC
patients also had low HER2 expression compared to 33% of triple negative breast cancer
(TNBC) patients [11]. Compared to HER2-0 BC, HER2-low BC showed distinctive molecular
features. The divergent rates of germline changes for BRCA1/2 and other BC susceptibility
genes differed in both cases. Upon comparison of PIK3CA and TP53 mutations, it was
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particularly evident that HER2-0 and HER2-low BC have distinctly different genetic origins,
which implies that HER2-lowBC has the potential to become a biological entity [11].

Unfortunately, the low HER2 expression failed to provide clinical prognosis benefits.
The available HER2-targeted therapies are inefficient in HER2-low BC, and treatment
options are restricted after the initial treatment progression [12,13]. When classified as
HER2-negative and treated with palliative chemotherapy [1], even if HER2-0 has more
adverse tumor characteristics than HER2-low, clinical trials also show no difference in
survival outcomes between the two [11,14–16], raising the question of whether HER2-low
BC is overtreated or undertreated?

Recent advances in drug development have, however, changed the current view,
indicating that HER2-low BC may benefit from anti-HER2 therapy [17–19]. Moreover, in a
longitudinal study, the inconsistent rate of HER2 expression in patients with advanced or
recurrent BC was as high as 38%, and more than a third of HER2-0 BC patients exhibited
a trend of transformation to HER2-low BC in metastatic lesions [20]. The possibility of
improving the treatment of HER2-low BC is of great clinical significance.

This review addresses the detection technology used for HER2 expression and dis-
cusses novel agents for HER2-low BC, in order to evaluate dosing regimens through clinical
trials and propose ideas for the diagnosis and treatment of HER2-low BC.

2. Detection and Diagnosis of HER2

Regarding the positive impact of antibody–drug conjugates (ADCs), the most urgent
challenge is to refine the definition of low HER2 expression. Indeed, the core content of the
American Society of Clinical Oncology/College of American Pathologists (ASCO/CAP)
guidelines for HER2 testing recommends screening HER2 overexpressing populations that
can benefit from trastuzumab, with a relatively vague description of the borderline range
for low HER2 expression [21].

IHC/ISH is the only standard technique currently applied to define HER2 expression.
IHC involves a reaction between antigens and antibodies, resulting in protein coloration
of the receptor. Since the detection value shows a linear dynamic range, it is difficult to
make an accurate comparison of inferior or superior quantitative results [22]. ISH utilizes
nucleic acid molecular probes to examine HER2 gene amplification status, but the signals
are subject to photobleaching and fading over time [23].

Given the limitations of IHC/ISH, a new method is needed to improve the concor-
dance of HER2-low detection. In this context, IHC combined with other quantitative
techniques can be used to determine the initial HER2 level before ISH is used to exclude
gene amplification, and HER2 can then be defined in the form of continuous numerical
variables [17,24]. Ultimately, the HER2 threshold for producing antitumor activity will
need to be analyzed and clinical trials employed to broaden the population for which
HER2-targeted therapy may be effective.

2.1. HERmark ™

HERmark™ (Monogram Biosciences Inc., South San Francisco, CA, USA) allows for
the accurate detection of HER2 expression in FFPE tissue samples, covering the majority of
the dynamic range from 0 to 3+ [25]. It was found to be highly concordant with conventional
HER2 assays (IHC and ISH), but HERmark™ is highly sensitive and specific [26–28].
As a reliable quantitative assessment tool, HERmark™, can be used for HER2-low BC,
particularly in the case of ambiguous IHC test results [25]. Nonetheless, the core technical
requirements have restricted its application to the central lab, limiting its use in a broader
range of clinical settings.

2.2. Real-Time PCR

Real-time PCR (RT-PCR) allows for rapid and quantitative gene amplification analysis,
giving ISH-like results and accurate quantification of HER2 levels in nonoverexpressing
samples [29,30]. OncotypeDX and MammaTyper, derived from RT-PCR, can predict the
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outcome of chemotherapy and the possibility of recurrence in early HR-positive BC by
analyzing mRNA extracted from FFPE samples [31,32]. Unfortunately, false-negative PCR
results are often found, principally due to differences in the distribution of cells between
different types of tumors, the mixing of noninvasive cancer components in the process of
DNA/RNA extraction and the destruction of mRNA integrity in FFPE samples [33–35].

2.3. Multiplex Ligation-Dependent Probe Amplification

A modified quantitative technique for PCR, multiplex ligation-dependent probe am-
plification (MLPA), allows for the analysis of multiple gene amplifications and different
portions of gene deletions [36]. When there is a discrepancy between IHC and ISH, MLPA
may identify HER2-low but ISH+ cases [37]. Similar to RT-PCR, MLPA may also lack the
ability to detect tumor heterogeneity due to differences in sample cuts. Copy-number
changes detected by MLPA should be verified with other methods [38].

2.4. Time Resolved Fluorescence Resonance Energy Transfer

Time-resolved fluorescence resonance energy transfer (TR-FRET) quantifies the fluo-
rescence signals emitted from energy transfers between two adjacent molecules to assess
HER2 expression [39]. With the application of long-life fluorophore in TR-FRET, a delay
can be introduced between the excitation pulse and the signal measurement window, thus
eliminating the short-lived background autofluorescence in FFPE materials. It thus has
higher sensitivity and lower false-positive rate and false-negative rates [40].

The clinical effectiveness of anti-HER2 therapy is the only way to asses HER2 detection.
To confirm clinical benefits, new technologies must be compared to baseline testing. Once
HER2 expression has been identified, selecting the most suitable treatment is the next step.

Anti-HER2 agents are gaining traction in the treatment of HER2-low BC, indicating
HER2 expression as a possible therapeutic breakthrough. In terms of the drug effect
mechanism, therapies related to HER2 can be divided into those targeting HER2 receptors
on the cell surface, those targeting HER2-related intracellular signaling pathways and those
targeting the immune microenvironment, as shown in Figure 1.
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3. Therapy
3.1. Targeting HER2 Receptors on The Cell Surface

HER2-mediated tumorigenic signal production can be blocked through the competi-
tive binding of exogenous HER2 antibodies to HER2 on the cell membrane surface, thereby
delaying tumor progression [41]. A summary of novel drugs is provided in Table 1.

Table 1. Summary of novel drugs targeted HER2 receptors in development for HER2-low BC.

Drug Target Representative
Clinical Trial Patient Cohort N Treatment

Arms
Main Efficacy

Results Toxity

T-DXd HER2
DS8201-A-J101

trial
NCT02564900

Metastatic
HER2-low BC 54 T-DXd ORR: 37.0%

Interstitial lung
disease, anemia,

diarrhea

RC48 HER2
C001CANCER

phase I trial
NCT02881138

Advanced
malignant solid

tumors with
HER2+

118
(HER2-low

BC: 48)
RC48

ORR: 39.6%;
mPFS: 5.7
months

Hypoesthesia,
fatigue

SYD985 HER2
SYD985.001
phase I trial

NCT02277717

Advanced BC or
gastric, urothelial,

or endometrial
cancer with at least

HER2 IHC 1+

146
(HER2-low

BC: 47)
SYD985

ORR in
HR+/HER2-
low BC: 28%;

ORR in
HR-/HER2-low

BC: 40%

Atigue,
conjunctivitis,

dry eye

A166 HER2
KL166-I-01-

CTP
NCT05311397

Solid tumors with
HER2 expression

57
(HER2-low

BC: 6)
A166 DCR: 75%

Keratitis,
decreased

appetite, dry
eye, vision

blurred

MEDI4276 HER2 D5760C00001
NCT02576548

HER2 expressing
BC or

gastric/stomach
cancers

47 MEDI4276 NA Nausea, fatigue,
vomiting

MCLA128 HER2,
HER3

MCLA-128-
CL02

NCT03321981
Metastatic BC

106
(HER2-low

BC: 48)

MCLA128
with ET DCR: 45% Fatigue,

diarrhea, nausea

SAR443216 HER2 TED16925 trial
NCT05013554

Relapsed/refractory
HER2 expressing

solid tumors
NA SAR443216 NA NA

3.1.1. ADC

An ADC consists of an antibody against a target antigen, cytotoxic drugs (payload)
and cleavable or non-cleavable linkers [42] (Figure 2). ADCs exert cytocidal effects through
targeting of surface antigens, internalization, enzymatic cleavage and drug release [43],
resulting in high target selectivity and potent lethality in chemotherapy.

Trastuzumab deruxtecan (T-DXd) is a broad-spectrum ADC composed of trastuzumab
and a topoisomerase I inhibitor [44]. The payload of T-DXd proved to be highly membrane-
permeable, exerting a powerful bystander effect [44]. Moreover, coupled with a drug struc-
ture different from that of the previously used paclitaxel and platinum-based chemotherapy
for HER2-low BC, it resulted in a reduced risk of cross-resistance. As a corollary, it may
become a good candidate for treatment of HER2-low BC.

The first clinical study (ClinicalTrials.gov identifier: NCT02564900) of T-DXd recruited
54 advanced HER2-low BC patients who progressed after standard treatment. Based upon
the premise that the median number of treatment lines was up to 7.5, T-DXd performed
spectacularly, with an objective remission rate (ORR) of 37.0% and a median duration of
remission (DOR) of 10.4 months [45]. T-DXd was well-tolerated, with interstitial lung
disease being the most prominent toxic reaction [46]. Excitingly, in the DESTINY-Breast04
phase III trial (ClinicalTrials.gov identifier: NCT03734029), significantly longer overall

ClinicalTrials.gov
ClinicalTrials.gov
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survival (OS) and progression-free survival (PFS) were seen in patients treated with T-DXd
versus chemotherapy (OS, 23.9 vs. 17.9 months; hazard ratio (HR), 0.58; p = 0.001; PFS, 9.9
vs. 5.1 months; HR, 0.50; p < 0.001), leading to approval for T-Dxd in the NCCN and ASCO
guidelines [47].
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Additional efforts to broaden the applicability of T-DXd to a larger population, such as
for HR+/HER2-low BC after the progress of endocrine therapy (ClinicalTrials.gov identifier:
NCT04494425), are underway [48]. Moreover, combinations involving endocrine therapy,
chemotherapy, immunotherapy and T-DXd are being explored (ClinicalTrials.gov identifier:
NCT04556773) [49].

Other novel ADCs are RC48, SYD985 and A166, which use different cytotoxic drugs
from T-Dxd (Table 2). They are currently in clinical development, showing encouraging
results in phase I studies. In the C001CANCER phase I study (ClinicalTrials.gov identifier:
NCT02881138) utilizing RC48, a significant improvement in OS and ORR was seen in
an HER2-low cohort [50,51]. The SYD985.001 phase I study (ClinicalTrials.gov identifier:
NCT02277717) evaluated all HER2-low BC patients who achieved a partial response (PR)
with SYD985 [52]. In a phase I study (ClinicalTrials.gov identifier: NCT05311397), patients
with relapsed or refractory solid cancers, including 51 with HER2-positive BC and 6 with
HER2-low BC, received A166 [53]. To date, among the four evaluable patients with the
HER2-low subtype, the disease control rate (DCR) for A166 was 75%, with manageable
toxicity [54].

Table 2. Structural characteristics of ADCs in ongoing clinical trials.

ADC HER2-Targeting
Antibody Linker Cytotoxic Drug Ongoing Clinical Trials

with HER2-low BC

T-DXd Trastuzumab Cleavable Topoisomerase I
inhibitor

NCT04494425
NCT04556773

RC48 [55] Hertuzumab (anti-HER2
humanized Ab) Cleavable MMAE NCT04400695

NCT04965519

SYD985 [56] Trastuzumab Cleavable Duocarmycin analogs
NCT04205630
NCT04602117
NCT04235101

A166 [57] Trastuzumab Cleavable Microtubule inhibitor NCT03602079

ADC, antibody-drug conjugate; BC, breast cancer; T-DXd, trastuzumab deruxtecan; Ab, antibody; MMAE,
monomethyl auristatin E.

ClinicalTrials.gov
ClinicalTrials.gov
ClinicalTrials.gov
ClinicalTrials.gov
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3.1.2. Monoclonal Antibodies

Despite the ineffectiveness of trastuzumab for HER2-low BC, the ability of ADCs to
significantly improve prognosis has spurred interest in conventional targeted agents.

MGAH22 is an Fc-engineered anti-HER2 antibody [58]. In vitro, MGAH22 has similar
antitumor effects to trastuzumab, while additionally improving and enhancing its antibody-
dependent cell-mediated cytotoxicity (ADCC) [58].

A phase II trial of MGAH22 (ClinicalTrials.gov identifier: NCT01828021) in patients
with relapsed or refractory advanced BC, including HER2-low BC, has completed enroll-
ment. The final results will be announced in the near future [59].

3.1.3. Bispecific Antibodies

HER2, an orphan receptor tyrosine kinase without a corresponding ligand, is often
linked to EGFR, HER3 and HER4 [60]. Homogeneous or heterogeneous dimerization
of HER2 rapidly activates downstream signaling cascades, thereby triggering tumor cell
proliferation, migration, and invasion [61]. Bispecific antibodies (BsAbs) are single protein
molecules that recognize two binding sites simultaneously, establishing an association
between tumor cells and immune cells and blocking the appeal process [62].

A novel biparatopic antibody, MEDIA4276 binds to the 39S Fv and trastuzumab ScFV
epitopes with site-specific conjugation to a microtubule inhibitor payload, inhibiting tumor
cell proliferation more effectively than trastuzumab [63]. The antitumor effect of MEDI4276
was observed in several HER2-low cell lines in vitro. Further tests on HER2-low patient-
derived xenografts (PDXs) excluded the interference of HR heterogeneity, which confirmed
the tumor regression induced by MEDI4276 [64].

Unfortunately, in the phase II dose-escalation and expansion study (ClinicalTrials.
gov identifier: NCT02576548), even though MEDI4276 demonstrated obvious clinical
activity, it still showed unbearable toxicity when the dose was higher than 0.3 mg/kg.
Common toxicities included nausea, fatigue and vomiting [65]. The clinical development of
MEDI4276 was severely delayed due to high incidences of drug-related adverse reactions,
and it was therefore halted.

MCLA128 is a BsAb targeting HER2 and HER3 receptors with enhanced ADCC
to directly inhibit tumor growth [66,67]. In 2017, researchers released the results of a
phase II study of MCLA128 (ClinicalTrials.gov identifier: NCT02912949). MCLA128 was
administered with a median of 4.5 cycles to patients with HER2-positive metastatic BC who
had received a median of 5.5 precious lines of metastatic therapy, and the clinical benefit
rate (CBR) was 70% [68].

MCLA128 has the ability to overcome drug resistance in targeted therapy and en-
docrine therapy [66,69]. A phase II study (ClinicalTrials.gov identifier: NCT03321981)
enrolled patients with HER2-low BC who were estrogen receptor (ER)-positive and pro-
gressed to cyclin-dependent kinase 4 and 6 (CDK4/6) and endocrine therapy, with an
effective 24 week CBR of 16.7% for MCLA128 combined with endocrine therapy [70]. No
significant toxicity was observed.

3.1.4. Trispecific Antibody

At the 2021 AACR Annual Meeting, representatives from the Sanofi organization
presented a novel HER2-targeted T-cell splice agent called SAR443216. SAR443216 is a
trispecific antibody that binds to HER2, CD3 and CD28 antigenic sites and contains mutant
IgG4-Fc lacking an effector function [71]. The binding of CD28 can activate the IL-2 and
NF-κB pathways, induce the anti-apoptosis protein Bcl-xL and, subsequently, enhance
T-cell-dependent cytotoxicity (TDCC). In preclinical models, SAR443216 activated both
CD4 and CD8 T cells in HER2-expressing cancer cell lines (including HER2-low), stimulated
the secretion of cytokines and granzyme B, and exerted an antitumor effect [71].

The first phase I/IB open monotherapy trial (ClinicalTrials.gov identifier: NCT05013554)
of TED16925 will recruit patients with different solid tumors expressing HER2, including
those with HER2-low BC.

ClinicalTrials.gov
ClinicalTrials.gov
ClinicalTrials.gov
ClinicalTrials.gov
ClinicalTrials.gov
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3.1.5. Tyrosine Kinase Inhibitors

Tyrosine kinase inhibitors (TKIs) are pan-HER kinase inhibitors that interfere with or
block HER2 signaling downstream by inhibiting tyrosine phosphorylation and the catalytic
activity of the receptor [72]. As a result of its greater HER2 recognition ability and lower
molecular weight, TKIs can prolong the action time of trastuzumab by regulating the ADCC
effect and even cross the blood–brain barrier to protect against brain metastases [73].

Lapatinib, the first TKI approved against both HER2 and EGFR, enhanced HER2
expression in HER2-low BC cells [74], potentially transforming patients with refractory
diseases into patients with tumors sensitive to trastuzumab [75–78].

Neratinib is an irreversible pan-HER inhibitor that more aggressively inhibits prolifer-
ation than lapatinib and may enable phenotypic alterations to increase ADCC mediated by
trastuzumab [79–83].

Poziotinib, a novel oral quinazoline broad-spectrum HER inhibitor developed by
Hanmi Pharm [84], overcomes the differences in drug binding sites, upregulates the ex-
pression of HER2 and enhances the activity of trastuzumab emtansine (T-DM1) [85]. In an
open-label, multicenter, phase II clinical trial (ClinicalTrials.gov identifier: NCT02418689),
a median PFS of 4.04 months was demonstrated when poziotinib was used in patients with
refractory HER2-positive BC who had failed more than second-line HER2-targeted ther-
apy [86,87]. Simmons et al. assessed efficacy outcomes gathered from eight clinical trials
comparing third-line or higher therapy for HER2-positive BC. There were no differences in
the results between T-Dxd and MCLA128, although poziotinib showed a survival benefit
in a phase II trial [88].

Several other anti-HER2 TKIs, including pyrrolizidine, have been studied in light of
these encouraging results (ClinicalTrials.gov identifier: NCT03412383) [89].

An issue that has emerged with TKI is the best application scenario for drugs. With
the current results, TKI performs more as a synergist of HER2-targeting drugs, and related
research is being explored.

3.2. Targeting HER2-Related Intracellular Signaling Pathways
Targeting PI3K/AKT/mTOR

The PI3K/AKT/mTOR signaling pathway is involved in the cell cycle, cell prolifer-
ation and angiogenesis and also regulates HER2 and ER receptor expression; it is thus a
target for reversing endocrine resistance and HER2-targeted drug resistance [90–92]. Most
studies combine PI3K inhibitors and Akt inhibitors with chemotherapy.

Allotype-specific PI3K inhibitors are widely used. They absorb the failure factors of
pan-PI3K inhibitors; improve a variety of defects, such as off-target effects and toxicity; and
specifically target the PI3Kp110 α, p110 β, p110 δ and p110 γ subtypes [93].

Alpelisib is the first PI3Kp110α isotype inhibitor to be approved by the FDA. Multiple
clinical trials enrolling ER-positive BC patients have revealed the potential of alpelisib
as a backline treatment option for endocrine-resistant BC [94–98]. The CBYL719XUS06T
phase I/II study (ClinicalTrials.gov identifier: NCT02379247) investigated alpelisib with
nab-paclitaxel in HER2-negative BC. In Phase I, 13 patients were divided into three groups
treated with alpelisib (250, 300 and 350 mg) plus albumin paclitaxel, and no dose-limiting
toxicity was observed [97]. In phase II, the median PFS was 8.7 months, and the ORR
was 59%, with an overall response rate of 21% [99]. Regrettably, no further analysis was
performed for the HER2-low subgroup.

AKT inhibitors are serine or threonine kinase molecules that target all AKT isoforms,
strongly inhibit cell proliferation and AKT phosphorylation, and alleviate aggressive tumor
behavior [100]. Almost all AKT inhibitors in clinical trials show limited therapeutic activi-
ties as single agents; therefore, combination therapeutic strategies are the main direction
for research [101–105]. Nevertheless, conflicting results for AKT inhibitors in combination
with chemotherapeutic agents have been observed in several clinical studies.

The BEECH phase Ib/II trial (ClinicalTrials.gov identifier: NCT01625286) evaluated
capivasertib, an AKT inhibitor, with paclitaxel vs. paclitaxel alone in HR+/HER2- BC. There

ClinicalTrials.gov
ClinicalTrials.gov
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were similar dose intensities for paclitaxel between the treatment and control groups, with
no significant difference in median PFS [106]. Comparatively, the PAKT trial (ClinicalTrials.
gov identifier: NCT02423603) found capivasertib combined with paclitaxel to be superior
to paclitaxel alone based on PFS (5.9 vs. 4.2 months; HR, 0.74; p = 0.06) [107,108].

In the FAIRLANE study, in which patients with TNBC received ipatasertib, another
AKT inhibitor, with paclitaxel or paclitaxel alone, the pCR showed no clinical benefit or
statistically significant improvement [109]. The PFS in LOTUS was improved under the
same test conditions (ClinicalTrials.gov identifier: NCT02162719) [110].

In accordance with the different therapeutic effects of capivasertib or ipatasertib
combined with chemotherapy, it is speculated that AKT mutations may not be the core
driving event of cancer and that overactivation of the PI3K pathway cannot be effectively
reduced by inhibiting AKT alone. Alternatively, a rapid attack may occur due to a tumor-
acquired immune response or an inability to tolerate primary tumor drug resistance [111].
Since the pathways of cytotoxicity are unrelated to each other, AKT inhibitors should
theoretically act synergistically with anti-HER2-targeted drugs.

3.3. Targeting the Immune Microenvironment

TNBC and HER2-positive groups present immunogenic features for BC, with a large
number of tumor-infiltrating lymphocytes and higher levels of PD-L1, which are potential
immunotherapy candidates [112,113]. Given the anti-tumor activity that HER2-targeted
therapy can exert through the immune-mediated mechanism, immunotherapy and targeted
therapy are being studied together.

3.3.1. HER2-Derived Peptide Vaccine

Vaccinations are a form of active immunotherapy in which the immune system recog-
nizes antigens on the surface of cells. Directly attacking tumor cells and tumor stroma or
indirectly resetting the immune system to antitumor detection mode are the principles of
action, which enhance the sustained effectiveness of the antitumor immune response [114].
Tumors can benefit from vaccination when conventional cytotoxic or targeted drug thera-
pies fail [114].

Tumor-associated antigens (TAAs), including HER2, are the basis of many vaccines
used for BC. Current immunogenic HER2-derived peptides derive from different parts of
HER2 molecules, such as E75 from the extracellular domain, GP2 from the transmembrane
domain and AE37 from the intracellular domain [115]. Their tumor killing effects are
usually achieved by triggering the immune system to target HER2-expressing cells and
induce a tumor-specific immune response [116].

The E75 peptide (nelipepimut-S, NP-S) is the most widely researched and advanced
vaccine for BC. Several clinical studies have observed that the application of the E75 vaccine
can induce an immune response and maintain safety [115–118]. A trial found that, due
to the possible immune tolerance of HER2 positivity, patients carrying HER2-low were
able to show a stronger immune response, suggesting the need for further clinical studies
targeting the HER2-low subgroup.

Subsequently, the PRESENT trial (ClinicalTrials.gov identifier: NCT01479244) re-
cruited lymph node-positive, low-to-moderate HER2-expressing early BC women, who
were randomly assigned to granulocyte–macrophage colony-stimulating factor (GM-CSF)
or NP-S combined with GM-CSF groups [119]. The interim report revealed that the trial did
not demonstrate a clinical benefit for vaccination alone but instead was terminated early by
an independent data monitoring committee due to a rapidly increasing number of recurrent
events [120]. Paradoxically, vaccination with trastuzumab significantly prolonged DFS in
clinical studies conducted simultaneously. In contrast, the DFS of the control group in the
GP2 test was 89%. When the median follow-up was more than 34 months, the DFS was
still 100%, which suggests that there may be a synergistic effect between the HER2-targeted
peptide vaccine and trastuzumab [118,120].
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A prospective, randomized, single-blind, placebo-controlled phase IIb study
(ClinicalTrials.gov identifier: NCT01570036) was revalidated in light of the above results.
In short, 275 patients were randomly assigned to receive NP-S or placebo after one year of
standard treatment with trastuzumab [121].

Intention to treat (ITT) analysis was performed at a median follow-up of 25.7 months.
No significant difference in DFS was observed in HER2 IHC 1+ or 2+ BC (HR, 0.62; 95% CI,
0.31–1.25; p = 0.18). However, the TNBC subset showed potential benefits [121]. Similar
outcomes were seen again in the clinical trial for the AE37 vaccine [122,123]. To clarify the
meaning of TNBC in the context of HER2-derived peptide vaccines, further discussion
should be given to HR status and HER2-0 and HER2-low subgroups.

3.3.2. Immune Checkpoint Inhibitor

Immune escape is the key mechanism of tumor occurrence and development. Gener-
ally, tumors block T-cell activation by connecting immune checkpoint receptors (ICR) with
their ligands. A local microenvironment containing inflammatory cytokines can also in-
duce the undifferentiated expression of PD-1 [124]. In preclinical experiments, blocking the
inhibitory pathway of ICR–ligand interactions in the tumor microenvironment restores the
functional immune response of TAAs [125,126]. Several monoclonal antibodies targeting
ICR markers, including cytotoxic T lymphocyte-associated antigen (CTLA-4), programmed
cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1), have shown good
clinical activity in BC [127–130].

Trials are being conducted to determine whether immune checkpoint inhibitor (ICB)
is effective when used in combination with anti-HER2 therapies. In a dose-escalation test
of DS8201-A-U105 (ClinicalTrials.gov identifier: NCT03523572), the recommended dose
(RDE) of T-Dxd combined with nivolumab was 5.4 mg/kg and 360 mg, respectively [131].

For the HER2-low cohort (n = 16), in the phase II dose-expansion trial, RDE was
administered to 48 participants with an ORR of 37.5% and median PFS of 6.3 months
(95% CI, 2.3-NE) after approximately 7 months of follow-up [132]. Despite the fact that
T-Dxd combined with navumab showed an ORR similar to T-Dxd monotherapy, given that
combination therapy has a much higher benefit rate than any single drug in preclinical
models, clinical benefits cannot be determined without a longer follow-up.

Duvalizumab is a selective and high-affinity monoclonal antibody against human
immunoglobulin G1K that completes the process of T-cell recognition and tumor cell killing
by blocking the binding of PD-L1 to PD-1 and CD80 [133].

Cohort 6 of the multicenter, randomized, IB/II BEGONIA study (ClinicalTrials.gov
identifier: NCT03742102) was designed to evaluate the potency of dovalizumab with
T-DXD as a first-line treatment for HER2-low BC patients [134]. Eighteen patients had
received more than one treatment at the time of the report, and data for twelve identifiable
case assessments were obtained. Treatment resulted in 8 SDs and 1 PR, with an ORR of
66.7% [134]. Despite limited patient numbers, the combination showed positive safety
and effectiveness.

Another study of pembrolizumab in combination with T-Dxd (ClinicalTrials.gov
identifier: NCT04042701) is underway in light of the favorable efficacy of PD-1 inhibitors in
HER2-low BC. The second phase of the trial will give the HER2-low cohort RDE treatment
to obtain ORR outcomes through independent central evaluation (ICR), with preliminary
results expected in May 2023 [135].

4. Other Therapies

Although there is more enthusiasm to develop tumor biologic therapies, given that
chemotherapy and endocrine therapy are the main treatments for BC, it is necessary to
compare the advantages and disadvantages with targeted therapies and determine the best
order of sequential use.
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4.1. Endocrine Therapy

In a retrospective study involving 3689 BC patients examining the intrinsic subtype
distribution of PAM50, the HER2-low BC population was approximately 80.8% HR+. It
is therefore crucial to examine whether HER2 expression levels impact the efficacy of
endocrine therapies [1,10,136].

In the BIG1-98 trial, 3650 postmenopausal women were given letrozole and tamoxifen.
Analysis of heterogeneity demonstrated that HER2 expression levels were not affected
by the drug or the effects of endocrine therapy [137]. The TRANS-AIOG meta-analysis
integrated data from three studies, ATAC, BIG1-98 and TEAM, and compared therapeutic
strategies based on letrozole, tamoxifen or switching from letrozole to tamoxifen and
found evidence, supporting the view that endocrine therapy can benefit various levels of
HER2 expression [138]. AglaiaSchiza et al. further measured the effect of HER2-targeted
therapy and denied the predictive value of HER2 status in postmenopausal BC patients
for endocrine therapy. They reiterated that endocrine therapy is still the first option for
HR-positive BC regardless of HER2 expression [139,140].

With the advent of endocrine therapy, drug resistance has increased. CDK4/6 in-
hibitors (CDK4/6i) are considered effective for retaining endocrine sensitivity by interfering
with the ER cascade, inhibiting RB1 phosphorylation, and triggering G1 to S cell cycle
arrest [141,142]. Since 2014, the MONARCH, PALOMA, and MONALEESA studies have
demonstrated that CDK4/6i is gradually changing the course of endocrine therapy for
advanced BC [143–149]. Palbociclib, ribociclib, and abemaciclib are currently approved as
first-line treatments for HR+/HER2-negative BC in combination with aromatase inhibitors
(AI) or as second-line treatments in combination with fulvestrant.

In addition, some scholars believe that bidirectional crosstalk between members of
the human epidermal growth factor receptor family (HER) and the estrogen receptor (ER)
is the basis of drug resistance; that is, high expression and amplification of HER2 drive
the occurrence of endocrine resistance [150]. Kelvin et al. investigated the relationship
between HER2 expression levels and the efficacy of CDK4/6i combined with letrozole or
fulvestrant therapy in ER+/HER2-negative BC patients [151]. In HER2-low BC, the PFS
was significantly shorter than in HER2-0 (8.9 months vs. 18.8 months, p = 0.014) [151].
HER2 upregulation is responsible for endocrine resistance, resulting in reduced PFS and
pCR rates with overall endocrine therapy.

The ER and HER axes are being targeted simultaneously in order to improve the
response of the HR+/HER2+ population to endocrine therapies and control the onset of
endocrine resistance. Triple therapies targeting HER2, HER3 and ER evaluated in preclinical
studies were effective in the ER+/HER2-low BC pdx model. Lumretuzumab (anti-HER3)
and patuximab (anti-HER2) combined with fulvestrant maintained durable antitumor
effects [69]. This drug combination has not shown promising safety or antitumor activity in
clinical trials, and it has been limited by DLT, has a narrow treatment window and shows a
high incidence of diarrhea [152].

Excitingly, the triple combination has been reversed with the development of the
bispecific antibody MCLA-128, which directly and simultaneously targets HER2/HER3
and also greatly reduces drug toxicity [153]. In a phase II trial recruiting patients who
had progressed after treatment with ET and CDK4/6i, adding MCLA-128 to the ET back-
line resulted in clinical benefit and even reversed endocrine sensitivity in 17% of these
patients [70].

The NA-PHER2 trial (ClinicalTrials.gov identifier: NCT02530424) evaluated the drug
combination of palbociclib, fulvestrant and dual HER2 blockade (trastuzumab,
pertuzumab) [154]. The HR+/HER2-low BC cohort performed well at the endpoint,
with Ki67 decreasing consistently from baseline to 2 weeks after treatment and before
surgery (16 weeks) [155]. The above results show the preliminary efficacy of endocrine
therapy involving CDK4/6i in combination with HER2-targeted drugs for HR+/HER2-
low BC [155,156]. They confirm direct crosstalk between the HER and ER axis, and any
single targeted therapy has limitations. HER-targeted therapy and endocrine therapy are
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therefore likely to be effective for patients with ER+/HER2-low BC who are resistant to
endocrine therapy.

4.2. Chemotherapy

From the perspective of chemotherapy benefit, several clinical trials have found that
HER2-low BC has a lower pCR rate than HER2-0 BC. However, the difference is not statis-
tically significant, and the OS and DFS prognostic outcomes remain uncertain [157–159].
The currently available evidence suggests that chemotherapy regimens for HER2-low BC
can still be managed with reference to HER2-negative BC. The difference is that paclitaxel-
and anthracycline-based regimens for chemotherapy are preferred for the HR-negative sub-
group (TNBC) in HER2-negative BC, regardless of early and late stages, whereas endocrine
therapy is generally preferred in the HR-positive subgroup (luminal A/luminal B). Addi-
tional sequential or combination chemotherapy is recommended for intermediate/high-risk
patients. Chemotherapy is recommended as the first line of treatment when the disease is
critical and, progresses rapidly, and the ER is low [160–162].

5. Discussion and Future Prospects

Several new drugs now have shown clinical evidence that they can be used to treat
HER2-low BC as part of HER2-targeted therapy, reflecting the clearly unmet treatment
needs of HER2-low BC.

Researchers are exploring targeted therapies for HER2-low BC, but HER2 expression
levels must be identified to guide treatment. While IHC/ISH assays have become an
accepted standard of determination, their accuracy is low due to technical shortcomings.
Other quantitative analysis techniques offer advantages and disadvantages, but they are
limited by the core technical requirements, and cannot enter large-scale clinical trials; thus
far, a unified standard that is suitable for use as a verification tool for IHC/ISH has not
been formed.

Different HER2 expression levels respond differently to novel HER2-targeted thera-
pies. The threshold for HER2 grouping should be redefined, abandoning the traditional
dichotomy of HER2-positive and -negative. By repeatedly measuring HER2 expression
levels across different disease nodes, we can redefine the treatment potential and molecular
typing of HER2-negative breast cancer.

As a backbone therapy for patients with HER2-low BC, ADC analogs are unquestion-
ably effective, but their efficacy against early-stage disease remains to be further confirmed.
On the basis of the available evidence, we recommend that HER2-low BC be treated as two
ER+/ER- groups.

Early-stage tumors are still managed as HER2-negative tumors. Patients carrying
an ER+ will likely benefit from hormone therapy, and those with an ER- may benefit
from anthracycline- or paclitaxel-based chemotherapy. In cases where the tumor is at an
advanced stage, T-DXd can be applied first. When the results from inhibiting a single
pathway are inadequate, further chemotherapy, endocrine therapy or immunotherapy can
be considered. Clinical trials are prioritized whenever resistance occurs in the backline.
Since there are a limited number of clinical trials stratified for HER2-low BC, the above
results are still susceptible to error. There will, however, be an increasing number of studies
that will focus on HER2-low BC in the future, providing an empirical basis for anti-HER2
therapeutics and creating more survival opportunities for HER2-low BC patients.
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