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Simple Summary: The current main technological strategies for the delivery of anticancer drugs are
discussed herein. This comprehensive review may help researchers design suitable delivery systems.

Abstract: Several drug-delivery systems have been reported on and often successfully applied in
cancer therapy. Cell-targeted delivery can reduce the overall toxicity of cytotoxic drugs and increase
their effectiveness and selectivity. Besides traditional liposomal and micellar formulations, various
nanocarrier systems have recently become the focus of developmental interest. This review discusses
the preparation and targeting techniques as well as the properties of several liposome-, micelle-,
solid-lipid nanoparticle-, dendrimer-, gold-, and magnetic-nanoparticle-based delivery systems.
Approaches for targeted drug delivery and systems for drug release under a range of stimuli are
also discussed.

Keywords: nanocarriers; metal nanoparticles; dendrimers; oligo- and polysaccharides; solid-lipid
systems; stimuli-responsive

1. Introduction

Over the past 30 years, the number of successful cancer treatments has significantly
increased, predominantly driven by our improved understanding of carcinogenesis pro-
cesses, cell biology, and the tumor microenvironment [1,2]. However, many cancers are
still fatal despite the sustained effort being invested in preclinical and clinical research.
One of the ways to improve the survival rate of cancer patients is the targeted delivery
of anticancer drugs. Advances in biomedical science and biotechnology have led to the
discovery and development of effective drug carriers such as liposomes, dendrimers, and
gold and magnetic nanoparticles [3–6]. The principal difference between these new types of
formulation and classical ones is their suitability for the potential development of technolo-
gies for targeted drug delivery to specific tissues, cells, and even intracellular organelles.
The essence of targeted delivery lies in the surface of a drug container (carrier) bearing a
modified drug or molecule with a functional group that can be recognized by the target cell
receptors. Folic acid modification is a classic example as it is actively taken up by tumor
cells [7–9]. Antibodies and aptamers are universal molecules that recognize the surface
of a target cell [10–12]. Thanks to advances in basic biomedical research, the antigenic
portraits of cells are becoming more and more detailed, allowing us to distinguish one cell
from another based on their surface characteristics. Orally or parenterally administered
medicines are distributed throughout the body, with only a small portion reaching the
target area. Targeted delivery methods, therefore, make it possible to reduce the dosage
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of an administered drug and minimize its effect on other cells, which is very important
in chemotherapy as drugs are highly toxic. The presence of recognizing or recognizable
molecules on the surface of a delivery system allows it to concentrate on the desired area. It
is also vital that the delivery system penetrates the cell and that the drug is then delivered
to the nucleus, mitochondria, endoplasmic reticulum, and other organelles. In fact, the con-
cept of intracellular drug delivery is under active development. Knowledge of the signaling
pathways involving proteins that lead to different cellular structures is essential to achieve
efficient intracellular transport [13]. Equally important is the need for more knowledge
of the motor proteins of cells, which directionally move loads over long distances inside
cells. It is also necessary to understand the mechanisms by which drugs are released from
delivery systems, including diffusion, degradation, swelling, and other processes that can
control the release of drugs [14–16].

2. Types of Containers and Carriers

A drug-delivery system may be considered suitable for clinical practice if it is non-toxic,
biocompatible, stable in blood, non-immunogenic, non-thrombogenic, and biodegradable [17].

The enhanced permeability and retention (EPR) effect is the principle behind the
passive targeting used in all containers and carriers. This principle and term were proposed
in 1986 [18]. Rapid tumor growth is accompanied by neovascularization with wide fenes-
trations and the suppression of lymphatic drainage [19]. Traditionally, the EPR concept
presumes that small molecules enter via diffusion and leave the interstitial space of the
tumor, whereas macromolecules (containers, carriers) are no longer able to do so after
extravasation [20]. In addition to the traditional explanation, other theories concerning how
the pathophysiological characteristics of tumor growth shape the EPR effect have been put
forward [21,22]. Thus, the EPR effect has been accepted as a universal principle incorpo-
rated into the design of anticancer drug-delivery systems [23]. However, there are currently
serious disputes about the effectiveness of the EPR effect when using nanoparticles [24,25].
At the same time, it is important to note that the current understanding of the EPR effect is
based on results obtained in animal models, meaning that the results of EPR-effect studies
in patients must be collated if delivery systems that fully exploit the EPR effect are to be
successfully designed [26].

2.1. Liposomes

Liposomes are spherical vesicles consisting of one or more lipid bilayers. A liposome
has a hollow structure that is usually filled with a solvent and can deliver a variety of
substances. Its hydrophobic membrane allows it to merge with cell membranes and
transport its contents inside cells. Liposomes are most often composed of phospholipids
and cholesterol, but may also include other lipids to improve endocytosis and tissue
compatibility. Many methods have been developed to produce a range of liposomal
compositions [27], and all described liposome fabrication methods combine lipids with
the aqueous phase in some way [28,29]. The thin-layer hydration method, also known as
the Bangham method, is one of the first and still most commonly used methods for the
preparation of liposomes [30]. This method involves lipids being dissolved in the organic
phase and removing the organic solvent, usually by evaporation, to form a lipid film. The
lipid film is then dispersed in an aqueous medium that contains the drug under vigorous
stirring to form the sealed spherical structures; liposomes. The short elimination half-life
of liposomes, caused by their opsonization principally in the liver and spleen, is a crucial
weak point in their use [31]. The modification of liposome surfaces with various functional
ligands, such as polyethylene glycol (PEG) coating, reduces the interaction between the
surface and blood components, thus ensuring that the liposomes have a longer residence
time in the bloodstream [32]. PEG can be attached to liposome surfaces in a variety of ways:

• Physical adsorption onto the surface of liposomes.
• Covalent attachment using reactive groups on the surface of preformed liposomes.
• Inclusion of a PEG-lipid conjugate in liposome preparations.
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The most common method anchors the polymer in the membrane using a cross-
linked lipid (e.g., PEG-distearoylphosphatidylethanolamine) [33]. The presence of PEG
on liposome surfaces reduces their aggregation [34]. To ensure targeted delivery, PEG is
also often covalently bound to proteins (transport, signaling) so that, while the mechanism
of action of the proteins does not change, there is a change in protein pharmacokinetics;
PEG-asparaginase (used in the treatment of leukemia), PEG-aldesleukin (an antineoplastic
agent), PEG-filgrastim (for the treatment of chemotherapy-induced febrile neutropenia),
and PEG-epoetin-β (for the treatment of anemia) are commonly used in the treatment of
cancer [35,36]. The liposomal delivery of anticancer drugs has been successfully used in
cancer therapy for several decades [37].

2.2. Micelles

Micelles are particles of tens of nanometers in size with a hydrophobic core and
a hydrophilic surface and are commonly used as carriers of hydrophobic drugs. Like
liposomes, they can be delivered directly into the bloodstream through the respiratory
tract or skin. In recent years, amphiphilic block copolymers, which spontaneously form
micellar structures, have attracted much attention because of their use in the delivery of
cytostatic drugs [38,39]. Amphiphilic block copolymers are usually assembled from two
or three blocks, with PEG being the most common hydrophilic block in the copolymer
structure. Other hydrophilic block-forming polymers include chitosan, polyvinylpyrroli-
done, and poly(N-isopropyl acrylamide) [40]. Polymers of various compound classes are
used as hydrophobic polymer blocks for micellar core creation: polyethers (poly(propylene
oxide)) polyesters (polylactide), polycarboxylic acids (poly(aspartic acid)) and lipids (dis-
tearoylphosphatidyl ethanolamine) [40]. Micelles that contain functional groups (-NH2,
-COOH) in their core can transfer drugs by chemical modification and not just by physical
encapsulation [41], and various cytostatic drug micelles (doxorubicin, paclitaxel) have
shown significant results in several in-vitro and in-vivo studies [42]. Paclitaxel encapsu-
lated in micelles has been tested in clinical trials in patients with malignant tumors with a
resulting reduction in toxicity and no change in the antitumor activity compared to free
paclitaxel [43].

2.3. Solid-Lipid Nanoparticles

Solid-lipid nanoparticles are colloidal nanoparticles stabilized by surfactants and
composed of mono-, di- and triglycerides, solid fats, and waxes. They have been developed
as an alternative to liposome technologies to increase stability, modulate the release of
encapsulated drugs, reduce costs, and simplify manufacturing [44]. Unlike liposomes,
which are usually injected into the body intravenously, intraperitoneally, subcutaneously,
and orally, solid-lipid nanoparticles can be administered via different routes, via inhalation,
intranasally, and intravesically [45], thus ensuring the local targeting of the drug. Recent
in-vitro and in-vivo experiments have shown that solid-lipid nanoparticles that contain
cytostatic drugs appear to be superior to conventional drug solutions and are comparable
to other encapsulated systems in many aspects, such as efficacy, pharmacokinetics, and
bioavailability [46]. However, clinical studies have not yet been conducted in this area.

2.4. Gold Nanoparticles

Gold nanoparticles (AuNP) can boast a combination of unique physical and chem-
ical properties relative to other biomedical nanotechnologies and can selectively deliver
cytostatic drugs [47,48]. AuNPs offer significant potential for new approaches to cancer
treatment as they are easy to produce, have low toxicity, and display antiangiogenic prop-
erties [49]. AuNPs are up to 100 nm in size, have a pronounced EPR-effect, and, as a result,
preferentially accumulate in tumors.

AuNP-based supports are most often synthesized using colloidal methods; gold salts
(e.g., hydrogen tetrachloroaurate (III)) are reduced in the presence of surface stabilizers
that prevent the aggregation of the resulting solution [50]. Spherical AuNPs are principally
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used to create delivery systems because they can be synthesized on a large scale with
high monodispersity. The other forms of AuNP include nanorods, nanoshells, and nano
cells [51]. AuNPs can undergo surface modification thanks to their covalent and non-
covalent bond-forming properties [51]. A stabilizing agent (e.g., citric acid) is responsible
for the overall charge of the AuNP surface. The correct choice of a stabilizing agent allows
various biomolecules (DNA, antibodies, polypeptides) to be conjugated to the AuNP
surface via electrostatic interactions, whereas covalent attachment to AuNPs is usually
achieved via the interaction between gold and thiol, amine, and carboxylate functional
groups [52]. Unlike liposomes and micelles, the drug is conjugated directly to the AuNP
surface using various linkers [52–54]. It is worth noting that the overwhelming majority of
studies on AuNP-based directional transport are based on spherical AuNPs, and this is, at
least in part, because they undergo surface modification and penetrate cells more easily
than more complex AuNPs. A drug conjugated to AuNPs has shown increased antitumor
potential compared to the free drug in in-vitro and in-vivo studies [47,55–58].

2.5. Magnetic Nanoparticles

Magnetic targeting is of great interest in the treatment of malign tumors as the tech-
nique not only provides targeted drug delivery but also makes it possible to monitor the
accumulation of magnetic nanoparticles (MNP) in tumors using magnetic resonance imag-
ing (MRI) [59,60]. MNPs that carry a drug are first accumulated in the target tissue using
an external magnetic field, and the drug is then released from the MNPs in a controlled
manner [61].

MNPs are magnetic materials with small particle sizes (from 10 to 100 nm), a large
specific surface area, magnetic response, and superparamagnetism [62]. This superparam-
agnetism means that MNPs are in a single-domain state, as they are uniformly magnetized
throughout the entire volume [63], and that the orientation of their magnetic moment
changes with temperature [63]. Iron oxides, for example magnetite (Fe3O4 or FeO.Fe2O3)
and maghemite (γ-Fe2O3), are usually used for MNP production [60,64]. The MNP core,
which consists of magnetite, maghemite, or a mixture of the two, is usually obtained via the
precipitation of Fe2+ and Fe3+ iron salts from an aqueous solution [65,66]. Moreover, it is
possible to regulate the size of the resulting nanoparticles by adding various iron salts (chlo-
ride, sulfate, nitrate, etc.) and by changing the ratio of Fe2+ and Fe3+, the pH, and the ionic
strength in the solution [62,67]. Reactions are carried out in an inert atmosphere to prevent
the oxidation of the formed nanoparticles [68]. The formed MNPs have a hydrophobic
surface and are coated with synthetic and natural polymers to reduce nanoparticle ag-
glomeration [60] and further modify the surface to conjugate drugs and biomolecules [69].
The most commonly used polymers are PEG, dextran, polyvinylpyrrolidone, polyaniline,
alginate various fatty acids, and chitosan [70,71]. In general, the conjugates of MNPs
with various cytostatics show decreased overall toxicity, and the concentration of cytostatic
agents is required to achieve a therapeutic effect [72–77]. The ability of MNPs to accumulate
in tumors has also been confirmed by MRI [59,74,78–80].

2.6. Dendrimers

Dendrimers are three-dimensional, monomolecular, highly branched monodisperse
macromolecules [81] that usually have rotational symmetry and often take on a spherical
shape. In general, dendrimers have a hydrophobic core from which they branch, ending in
terminal functional groups responsible for their solubility in water [82]. These dendrimers
can retain hydrophobic drugs and increase their concentration in water. Biocompatibility,
easy excretion from the body, and a significantly improved EPR effect are the most remark-
able advantages of dendrimers. However, dendrimers have one significant drawback; they
are cytotoxic for normal cells due to the physiological stability of cationic groups on their
surfaces [83]. The problem of dendrimer cytotoxicity is usually solved by modifying their
surface using biocompatible polymers, for example, PEG. The PEG-modified dendrimer
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surface provides the necessary screening of the cationic surface charge, which leads to a
biologically safe carrier [84].

Dendrimer synthesis is a rather laborious process. There are two principal approaches
to the synthesis of dendrimers; divergent and convergent methods [85]. In the divergent
version, a base reagent (a molecule that is protected at its end groups, if necessary) is
attached to the original branching center (which has several end groups). The protecting
groups are removed, and a 1st generation dendrimer is formed. Subsequently, dendrimers
of higher generations are obtained by attaching either the original branching center or the
base reagent, followed by deprotection [86]. In the convergent method, the arms of the
dendrimer are synthesized first and then connected [86], and this method produces more
monodisperse dendrimers than the divergent version. However, the size of dendrimers
obtained using the convergent method is limited due to steric hindrance, whereas den-
drimers of a wider variety of sizes can be obtained using the divergent method [85,86]. The
most widely used dendrimers are currently the commercially available poly(amidoamine)
(PAMAM) dendrimers [87–89]. Delivery systems based on poly(propylene imine) [90],
polylysine [91], carbosilane [92], and phosphorus dendrimers [93] have also been devel-
oped. Numerous studies have shown the effectiveness of using different dendrimers
for targeted transport in cancer therapy [94–99], and several clinical trials using various
dendrimers as targeted delivery systems are underway [100].

2.7. Albumin-Based Nanoparticles

Albumin is the most abundant plasma protein in human blood, with a molecular
weight of about 67 kDa. Due to its endogenous origin, it is non-toxic, non-immunogenic,
biocompatible, and biodegradable [101]. Human serum albumin (HSA) and the cheaper
bovine serum albumin (BSA) and ovalbumin (OVA) have been used to create delivery
systems [102]. HSA has several ligand binding sites that can be used for transfer via both hy-
drophobic and electrostatic interactions [103,104], and the presence of a free cysteine residue
on its surface means that albumin easily conjugates with a variety of ligands [105,106]. Re-
ceptors, such as albondin (Gp60) and secreted protein acidic and rich in cysteine (SPARC),
have been shown to overexpress in some cancers [107] and can mediate albumin tran-
scytosis [108], while the Gp30 and Gp18 receptors, the megalin/cubilin complex and the
neonatal Fc receptor (FcRn) are also involved in albumin transport [106]. Albumin-based
delivery systems can therefore accumulate in tumors via mechanisms beyond the EPR
effect. Albumin-based nanoparticles are obtained by various methods, including emulsifi-
cation, self-assembly of thermal gelation, desolvation, and nanospray drying [109,110]. The
patented nanoparticle albumin-bound (NAB) technology, which consists of the evaporation
of an emulsion with the creation of cross-links between albumin units, is the best-known
preparation method for albumin-based nanoparticles [105,106]. In addition to Abraxane®,
which is created with the help of NAB technology and has been successfully used in
clinical practice [111–113], work is also underway to create a range of albumin-based
nanoparticles [104–118].

2.8. Porous Materials

Zeolites are hydrated crystalline aluminosilicates consisting of tetrahedral groups,
[SiO4]4− and [AlO4]5−, united by common vertices into a three-dimensional framework.
The open frame-cavity structure of zeolites has a negative charge, which is compensated for
by counterions [119]. Zeolites have a porous structure that can absorb various substances,
making zeolites an ideal material for drug-delivery systems [120]. To prevent the untimely
release of a drug, either a zeolite with an optimal pore size is selected [121], or its surface
is modified with various ligands [122,123]. In general, zeolites are promising carriers for
creating systems for the delivery of cytotoxic substances [124–127].

Mesoporous silica particles (MSP) are another porous material used for drug deliv-
ery [128]. Their pore size can be adjusted from 2 to 50 nm, as in the case of zeolites, to tune
them for a specific drug [129–131]. The surfaces of MSPs are rich in reactive silanol groups,
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which can be used for conjugation with various substances [132], and MSPs have been de-
veloped with several structures. The morphology and size of both the particles themselves
and their pores can be controlled via the choice of a synthetic method [133,134]. MSP-based
delivery systems have shown high drug-loading capacity, successfully controlled release,
and increased antitumor activity [79,135–137].

2.9. Carbon Nanoparticles

Carbon has many allotropic modifications, including carbon nanotubes, fullerenes,
and nanodiamonds, which have found applications as carriers for drug delivery [138].
Carbon-based quantum dots are also used (see the Section 2.10). Carbon nanoparticles have
a high specific surface area and hydrophobicity. Carbon nanotubes and fullerenes have
cavities in their structure and can encapsulate active substances [138,139]. However, unlike
fullerenes and carbon nanotubes, the surface of nanodiamonds is rougher, which increases
adhesion with drugs [140]. Under the action of acidic oxidation, carboxyl groups are formed
on the surface of carbon nanoparticles and are used for surface modification, as well as
for the covalent attachment of anticancer drugs [141–143]. Carbon nanoparticles with
the desired properties can be obtained by correctly choosing and adapting the synthesis
method [144–146].

While carbon nanoparticles are currently widely used for drug delivery, their toxic
properties are concentration-dependent [147–149]. Attention should therefore be paid
to the delivery method when developing carbon-nanoparticle supports. For example, it
has been shown that the absorption of fullerene by the respiratory and digestive tracts is
low [150]. In addition, as has been demonstrated, inhaled carbon nanotubes can act on the
body similarly to asbestos [151].

2.10. Quantum Dots

Quantum dots are inorganic semiconductor nanocrystals and are typically up to
10 nm in size. Quantum dots have fluorescent, optical and electronic properties [152], with
cadmium-compound-based and carbon quantum dots being the most widespread [153,154].
In addition to drug delivery, quantum dots can visualize cancer cells due to their unique
optical properties, which derive from quantum and other effects [155]. The quantum
dots used in biomedicine typically consist of a core and a coating with the core imparting
optical properties to the system and the coating performing a protective function, which
enables the surface to be functionalized with various ligands and is responsible for water
solubility [156]. The quantum-dot core may be composed of cadmium compounds, such
as cadmium selenide (CdSe), cadmium sulfide (CdS), and cadmium telluride (CdTe),
and these quantum dots have shown notable results as drug carriers [157–159]. It is
important to mention that these quantum dots are not biodegradable and are not cell and
environmentally friendly due to the toxicity of cadmium compounds [160].

Carbon-based quantum dots, which can be classified as either carbon quantum dots
or graphene quantum dots, are widely used in various fields of biomedicine [161]. They
possess low toxicity, high specific surface area, high photostability and are easily modi-
fied [162]. Carbon-based quantum dots are excellent carriers for anticancer drugs due to
their biocompatibility, ease of manufacture, and lower environmental impact [163–166].

2.11. Calcium Phosphate

Calcium phosphate (CaP)-based nanoparticles are crystalline formations of predomi-
nantly carbonate apatite capable of transporting a drug both on their surface and within
their structure [167,168]. Minerals based on CaPs are the main inorganic components of the
bones and teeth of vertebrates and humans [169]. CaP-based nanoparticles have several
peculiar properties that make them attractive for delivering anticancer drugs. CaPs are
fully biodegradable, release non-toxic calcium and phosphate ions upon degradation, and
decompose faster than other inorganic nanoparticles (zeolites, mesoporous silica particles,
carbon nanoparticles, and quantum dots) [168,170]. Moreover, CaP-based nanoparticles
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have pH-sensitive solubility; they are insoluble at the physiological pH of blood plasma (7.4)
but quickly dissolve in acidic biological media (pH < 5), for example, in endosomes and
lysosomes, where they rapidly release encapsulated substances [170–172]. There are cur-
rently many approaches for synthesizing CaP-based nanoparticles, and the careful selection
of synthesis conditions makes it possible to control the size and morphology of the result-
ing particles [173–176]. Although nanoparticles with different morphologies are used for
delivery in cancer therapy, including rod shapes [169,177], porous structures [178,179], and
core-shell shapes [180,181], spherical nanoparticles are the most commonly used since they
are more thermodynamically stable [182,183].

2.12. Oligo- and Polysaccharide-Based Drug-Delivery Systems
2.12.1. Chitosan

Chitosan is a type of amino polysaccharide polymer (see Figure 1) produced via the
deacetylation of chitin, and is the second most common biopolymer in nature after cellulose.
Chitin is the main component of the exoskeleton of arthropods and many other inverte-
brates and is also part of the cell walls of fungi [184]. Chitosan has amino functionalities
that are useful for biopolymer modification [185]. Its biodegradability, biocompatibility,
low immunogenicity, and non-toxicity mean that chitosan is used in delivery systems for
various chemotherapeutic drugs [186]. Chitosan and its derivatives, such as carboxymethyl
chitosan, sulfated chitosan, sulfated benzaldehyde chitosan, and polypyrrole-chitosan,
have been shown to have anticancer activity in and of themselves [187–190]. This property
is assumed to be related to the antioxidant properties of chitosan and its derivatives, which
are capable of trapping cancer-causing free radicals [191].
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As mentioned earlier, chitosan can be a hydrophilic moiety in an amphiphilic block
copolymer [192]. The presence of free amino groups in the chitosan backbone grants
it a unique polycationic character that ensures that negatively charged drugs, such as
doxorubicin, are properly encapsulated [193]. Some chitosan-based hydrogels that contain
a significant amount of water and retain a self-organized three-dimensional structure
have been developed and can be used for the encapsulation and delivery of anticancer
drugs [194,195]. Various forms of delivery systems, such as microspheres, film capsules, etc.,
have been obtained using water-insoluble species of chitosan [196], meaning that the
properties of chitosan-based delivery systems are easy to modulate. Depending on the
preparation method selected, it is possible to regulate the particle size, toxicity, thermal and
chemical stability, and release kinetics [197].
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2.12.2. Cyclodextrins

Cyclodextrins (CDs) are a family of cyclic oligosaccharides that consist of glucose
subunits obtained by enzymatic means from starch [198]. The most commonly used CD
types are α-, β- and γ-CDs (Figure 2a), named according to the number of glucose residues
they possess [199,200].
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CDs have a hydrophilic outer surface and a significantly less hydrophilic cavity. They
take the form of a truncated cone with a cylindrical-torus cavity inside (Figure 2b) [201].
CDs can form various complexes with hydrophilic, lipophilic, and amphiphilic substances.
CDs, therefore, can often increase the solubility and bioavailability of many anticancer
drugs [202], and various cyclodextrin derivatives are widely used to create drug-delivery
systems [203].

CDs are often combined with other nanoparticles to create delivery systems [201].
It has been shown that the loading of liposomes with anticancer drugs in combination
with cyclodextrin increases their half-life, reduces toxicity, and increases liposome load-
ing [204–207]. Several CD-based polymers have also been developed and used successfully
in drug transport [208].

The cross-linking of CDs results in unique particles, namely CD polymers and
nanosponges. Nanosponges are a type of nanoparticle that has a porous structure with
a pore size of several nanometers. Due to their unique structure, CD polymers and
nanosponges can encapsulate various substances in their pores and act as drug trans-
porters [209]. One of the advantages of natural CD-based delivery systems is the creation
of effective oral, mucosal and transdermal drug formulations [210]. Cyclodextrin-based
macromolecules can transfer oligonucleotides, siRNAs, or their fragments into the cells.
Though the promising results reported by these associations, experimental trials are still in
progress [211–214].

2.12.3. Pectins

Pectins are polysaccharides that are mainly formed from residues of galacturonic acid.
Pectins are extracted in different ways from higher plants, mainly from their fruits. Conse-
quently, the structures of pectins can be very diverse, although they can be classified into
three types based on their general characteristics: homogalacturonan, rhamnogalacturonan-
I, and substituted galacturonans [215]. Pectin and its various modifications have anticancer
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activities [216–218], and the majority of studies on natural and modified pectins, and their
delivery systems, have mainly focused on colon cancer [219–221]. This is primarily because
pectin is not digested in the gastrointestinal tract until it reaches the colon, where it is fer-
mented and breaks down to release encapsulated active ingredients [222,223]. Pectin-based
microgranules and microspheres have been developed to encapsulate anticancer drugs and
release them directly into the colon [224,225]. Another use of pectins is as a drug carrier
in the preparation of various hydrogels [226,227]. As pectins contain carboxyl groups, it
is possible to use them to create negatively charged particles that retain drugs thanks to
electrostatic interactions [228]. Moreover, pectin has been used to create self-organizing
polymer nanoparticles to deliver ursolic acid [229].

3. The Targeting Methods of Delivery Systems

Active targeting is used to increase the concentration of cytostatics in the desired
organ or tissues to achieve higher and more selective therapeutic activity. The surface of
the container or carrier is modified with various recognizable or recognition molecules,
such as monoclonal antibodies or their fragments, aptamers, proteins, peptides, and low
molecular weight compounds, to grant active-targeting properties [230].

3.1. Antibodies and Aptamers

Numerous monoclonal antibodies (mAb) have recently been developed against vari-
ous epitopes of cancer cells and are used as therapeutic agents in and of themselves [231].
mAb-conjugated containers or carriers specifically bind to a target cell (receptor, protein,
etc.) in the desired areas and then release the encapsulated drug. The surface modification
of the carrier systems with mAbs can either be achieved via non-covalent physical inter-
actions or the formation of covalent bonds [232], with non-covalent bonding being faster
than covalent. However, the antigen-binding domains of mAbs are arranged chaotically
in non-covalent conjugation, which can lead to disruption in mAb functionality [233].
The most commonly used method for non-covalent conjugation is the streptavidin-biotin
method [234]. It consists of the preliminary non-covalent conjugation of the surface of the
delivery systems with streptavidin, which has a high affinity for biotin, which, in turn, is
covalently linked to the mAbs.

The most commonly used cancer targets for mAbs are:

• Epidermal growth factor receptor (EGFR) [235–237].
• Human epidermal growth factor receptor 2 (HEP2) [238–240].
• B-lymphocyte antigen CD19 [241–243].
• Guanine deaminase (GAH) [244,245].
• Receptor cluster of differentiation 47 (CD47) [246,247].

Conjugation with aptamers is a newer approach to targeted delivery. Aptamers
are oligonucleotides (DNA, RNA aptamers) or peptide molecules that specifically bind to
specific target molecules and can be considered analogs of monoclonal antibodies. However,
they have many advantages over antibodies. Their production is much easier, cheaper, and
faster than monoclonal antibodies. They have a much smaller size and, therefore, more
easily penetrate tissues and cells, as well as having higher affinity and specificity [248]. The
potential for the in-vivo targeting of RNA aptamers in cancer therapy was demonstrated
for the first time in 2006 [249]. More than 20 different systems for targeted transport are
currently being developed using oligonucleotide aptamers [250].

Peptide aptamers consist of a short (10–20 amino acid), conformationally limited
peptide sequence that is inserted into a scaffold protein (most often the bacterial protein
thioredoxin A) [251,252]. A unique feature of peptide aptamers is that their variable
region has a double limitation as both ends are connected to a framework (protein), unlike
oligonucleotide aptamers and antibodies [252]. For this reason, peptide aptamers have
limited conformations and require less energy to bind to the target, which, in turn, increases
their affinity.
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3.2. Proteins and Peptides

The most commonly used protein for targeting delivery systems is transferrin, a serum
glycoprotein that transports iron into cells by binding to transferrin receptors on the cell
surface [253]. The transferrin receptor is present in malignant tumors at levels that are
hundreds of times higher than in normal cells (Figure 3) [254]. Containers and carriers,
their surface modified by transferrin molecules, can therefore penetrate cancer cells and
accumulate in them [230]. The following proteins and peptides are used to target other
receptors that are overexpressed in cancer cells:

• A designed ankyrin repeat protein (DARPin) can target the Epithelial cell adhesion
molecule (EpCAM) [255,256].

• The peptide K237 targets the kinase insert domain receptor (KDR) [257,258].
• The peptide bombesin targets the gastrin-releasing peptide receptor [259,260].
• The peptide octreotide targets the somatostatin receptor type 2 [261,262].

Cancers 2022, 14, x FOR PEER REVIEW 10 of 30 
 

 

they have many advantages over antibodies. Their production is much easier, cheaper, 

and faster than monoclonal antibodies. They have a much smaller size and, therefore, 

more easily penetrate tissues and cells, as well as having higher affinity and specificity 

[248]. The potential for the in-vivo targeting of RNA aptamers in cancer therapy was 

demonstrated for the first time in 2006 [249]. More than 20 different systems for targeted 

transport are currently being developed using oligonucleotide aptamers [250]. 

Peptide aptamers consist of a short (10–20 amino acid), conformationally limited pep-

tide sequence that is inserted into a scaffold protein (most often the bacterial protein thi-

oredoxin A) [251,252]. A unique feature of peptide aptamers is that their variable region 

has a double limitation as both ends are connected to a framework (protein), unlike oligo-

nucleotide aptamers and antibodies [252]. For this reason, peptide aptamers have limited 

conformations and require less energy to bind to the target, which, in turn, increases their 

affinity. 

3.2. Proteins and Peptides 

The most commonly used protein for targeting delivery systems is transferrin, a se-

rum glycoprotein that transports iron into cells by binding to transferrin receptors on the 

cell surface [253]. The transferrin receptor is present in malignant tumors at levels that are 

hundreds of times higher than in normal cells (Figure 3) [254]. Containers and carriers, 

their surface modified by transferrin molecules, can therefore penetrate cancer cells and 

accumulate in them [230]. The following proteins and peptides are used to target other 

receptors that are overexpressed in cancer cells: 

 A designed ankyrin repeat protein (DARPin) can target the Epithelial cell adhesion 

molecule (EpCAM) [255,256]. 

 The peptide K237 targets the kinase insert domain receptor (KDR) [257,258]. 

 The peptide bombesin targets the gastrin-releasing peptide receptor [259,260]. 

 The peptide octreotide targets the somatostatin receptor type 2 [261,262]. 

 

Figure 3. Schematic representation of the penetration of transferrin into a cell via receptor-mediated 

endocytosis. Original diagram inspired by [263]. 

3.3. Low Molecular Weight Compounds 

Modifying the surfaces of containers and carriers with folic acid is currently a com-

monly used methodology to ensure the delivery of an encapsulated drug into cancer cells 

[264]. Folic acid is a low molecular weight compound, a vitamin required by eukaryotic 

cells for the biosynthesis of purines and pyrimidines [265]. Folate uptake by cells occurs 

via two mechanisms: via the low-affinity-reduced folate carrier (RFC), found in almost all 

Figure 3. Schematic representation of the penetration of transferrin into a cell via receptor-mediated
endocytosis. Original diagram inspired by [263].

3.3. Low Molecular Weight Compounds

Modifying the surfaces of containers and carriers with folic acid is currently a com-
monly used methodology to ensure the delivery of an encapsulated drug into cancer
cells [264]. Folic acid is a low molecular weight compound, a vitamin required by eukary-
otic cells for the biosynthesis of purines and pyrimidines [265]. Folate uptake by cells occurs
via two mechanisms: via the low-affinity-reduced folate carrier (RFC), found in almost all
cells, and via the high-affinity glycosylphosphatidylinositol-linked folate receptor (FOLR),
which has limited distribution [266]. FOLR can transport conjugated folate into cells, unlike
RFC [266,267], and FOLR is also significantly expressed in different types of human tumors
but is minimally expressed in most normal tissues [268]. Consequently, FOLR is a target
for the selective delivery of anticancer molecules. A wide range of containers and carriers,
such as liposomes, micelles, gold nanoparticles, dendrimers, and magnetic nanoparticles,
have been targeted to cancerous tumors using folic acid as the targeting component [269].

Other small molecule compounds are used to target specific cancers. For example,
the asialoglycoprotein receptor (ASGPR) is overexpressed on the surfaces of hepatocytes
in hepatocellular carcinoma [270]. Studies have shown that modifying the surface of a
container or carrier with D-galactose residues or N-acetylgalactosamine effectively targets
the delivery system to hepatocytes via ASGPR [271,272]. Surface modification with lactose
is also used to target hepatocytes via ASGPR [273,274]. It has been shown that the cells of
some cancers, such as brain cancer, colon cancer, melanoma, and breast cancer, overexpress
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sigma receptors [275–278]. The conjugation of containers and carriers with anisamide,
which has a high affinity for sigma receptors, has been proposed as a means of targeting
sigma receptors [279]. More than ten different delivery systems that use the sigma receptor
as a target have already been developed [280].

3.4. Small Molecule-Drug Conjugates

Small molecule-drug conjugates (SMDC) are a drug delivery system without using
nanocontainers and nanocarriers [281]. Typically, SMDCs consist of an anticancer agent
coupled to a targeting ligand via a linker capable of being cleaved under various stimuli
(See Section 4 for details) [282]. Besides the binding ability to the cellular target, the spacer
also increases the hydrophilicity of the conjugate [281,283]. Antibodies [284,285]) and
aptamers [286], peptides [287,288] and low molecular weight compounds [289,290] can act
as a targeting ligand. Although SMDCs do not exhibit an EPR effect and, therefore, do not
passively accumulate in solid tumors, they nevertheless passively perfuse the cancer mass
more thoroughly and faster than nanoparticles [282]. When creating SMDCs, it should be
taken into account that they have a short half-life compared to nanoparticles [291]. Various
SMDCs have been developed and are being used successfully in cancer therapy [292].

Various small interfering RNA (siRNA) conjugates are also used for cancer gene
therapy [293,294]. Chemical modification of siRNAs (at the 2′ position, at the ribose ring, or
using nucleotide phosphorothioate) improves their stability, increases cell specificity, and
reduces off-target effects [295]. siRNA conjugates show efficient RNA interference both
in vitro and in vivo [296].

4. Stimuli-Responsive Drug Release

To be delivered to the desired area of the body, an active substance is either encapsu-
lated in the delivery system or covalently associated with it. There are two main mecha-
nisms of drug release: firstly, as a result of endocytosis or fusion with the cell membrane
(in the case of lipid delivery systems), and, secondly, under the influence of stimuli [297].
These stimuli can be internal and thus inherent to the affected area of the body, such as
changes in enzyme levels, pH, and temperature; or external, such as a magnetic field,
ultrasound, and light [298].

4.1. Enzyme-Sensitive Release

The expression pattern of enzymatic proteins in the tumor may be altered in some
types of cancer [299]. There are two main approaches to controlling the release of a drug
from delivery systems under the action of enzymes [300]:

• The drug is conjugated to the delivery system with a linker cleaved by an enzyme that
is overexpressed in the tumor environment.

• Enzyme cleavage sites are embedded into the envelope of the scaffolds, thereby
destroying the envelope near or inside the tumor and releasing the encapsulated drug.

Several materials sensitive to various enzymes have been obtained to date [300]. For
example, an octapeptide sensitive to metalloproteinase has been developed and used as
a linker [301]. Other enzymes that have been used for drug release include phospholi-
pase [302], α-amylase [303], glucose oxidase [304], and cancer-associated proteases [305].

4.2. pH-Sensitive Release

Due to changes in the metabolic environment, the extracellular pH is usually lower in
tumors (≈6.5) than in blood and normal tissues (≈7.4) [306]. The pH level in tumor tissue
is not uniform; intracellular pH is similar in tumor and normal tissues, and extracellular pH
is more acidic [307]. This difference in pH means that a cellular transmembrane gradient is
formed between normal tissue and tumor tissue. Exploiting this gradient allows drugs to
be directly delivered into the cytosol of cancer cells, which are weak electrolytes with the
corresponding pKa [307]. A weakly acidic drug in protonated form can freely penetrate
through a cell membrane, reach a region with a more basic pH, and then become trapped
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inside the cell, leading to a significant difference in drug concentration between normal
and tumor tissues.

There are two main approaches to using pH as a stimulus for drug release. The first
approach is to introduce various chemical bonds, which are hydrolyzed and destroyed
under conditions of acidic pH, into the delivery system. Most often, bonds are introduced
into the delivery system of drugs, as presented in Table 1.

The second approach exploits the ability of different polymers to be protonated/depro-
tonated at different pH levels. At physiological pH, such polymers remain deproto-
nated/deionized, but under acidic conditions, the polymers are protonated or change
their charge, causing structural transformation or disintegration in the delivery system and
the subsequent release of the encapsulated drugs [16]. Conjugation of urocanic acid with
various polymers makes it possible to give them pH-dependent properties [308,309].

Table 1. List of pH-labile bonds.

Acid Labile Bond Transformation Scheme Ref.

Hydrazone

Cancers 2022, 14, x FOR PEER REVIEW 12 of 30 
 

 

 Enzyme cleavage sites are embedded into the envelope of the scaffolds, thereby de-

stroying the envelope near or inside the tumor and releasing the encapsulated drug. 

Several materials sensitive to various enzymes have been obtained to date [300]. For 

example, an octapeptide sensitive to metalloproteinase has been developed and used as a 

linker [301]. Other enzymes that have been used for drug release include phospholipase 

[302], α-amylase [303], glucose oxidase [304], and cancer-associated proteases [305]. 

4.2. pH-Sensitive Release 

Due to changes in the metabolic environment, the extracellular pH is usually lower 

in tumors (≈6.5) than in blood and normal tissues (≈7.4) [306]. The pH level in tumor tissue 

is not uniform; intracellular pH is similar in tumor and normal tissues, and extracellular 

pH is more acidic [307]. This difference in pH means that a cellular transmembrane gra-

dient is formed between normal tissue and tumor tissue. Exploiting this gradient allows 

drugs to be directly delivered into the cytosol of cancer cells, which are weak electrolytes 

with the corresponding pKa [307]. A weakly acidic drug in protonated form can freely 

penetrate through a cell membrane, reach a region with a more basic pH, and then become 

trapped inside the cell, leading to a significant difference in drug concentration between 

normal and tumor tissues. 

There are two main approaches to using pH as a stimulus for drug release. The first 

approach is to introduce various chemical bonds, which are hydrolyzed and destroyed 

under conditions of acidic pH, into the delivery system. Most often, bonds are introduced 

into the delivery system of drugs, as presented in Table 1. 

The second approach exploits the ability of different polymers to be proto-

nated/deprotonated at different pH levels. At physiological pH, such polymers remain 

deprotonated/deionized, but under acidic conditions, the polymers are protonated or 

change their charge, causing structural transformation or disintegration in the delivery 

system and the subsequent release of the encapsulated drugs [16]. Conjugation of urocanic 

acid with various polymers makes it possible to give them pH-dependent properties 

[308,309]. 

Table 1. List of pH-labile bonds. 

Acid Labile Bond Transformation Scheme Ref. 

Hydrazone 

 

[310,311] 

Oxime 

 

[312] 

Imine 

 

[313,314] 

[310,311]

Oxime

Cancers 2022, 14, x FOR PEER REVIEW 12 of 30 
 

 

 Enzyme cleavage sites are embedded into the envelope of the scaffolds, thereby de-

stroying the envelope near or inside the tumor and releasing the encapsulated drug. 

Several materials sensitive to various enzymes have been obtained to date [300]. For 

example, an octapeptide sensitive to metalloproteinase has been developed and used as a 

linker [301]. Other enzymes that have been used for drug release include phospholipase 

[302], α-amylase [303], glucose oxidase [304], and cancer-associated proteases [305]. 

4.2. pH-Sensitive Release 

Due to changes in the metabolic environment, the extracellular pH is usually lower 

in tumors (≈6.5) than in blood and normal tissues (≈7.4) [306]. The pH level in tumor tissue 

is not uniform; intracellular pH is similar in tumor and normal tissues, and extracellular 

pH is more acidic [307]. This difference in pH means that a cellular transmembrane gra-

dient is formed between normal tissue and tumor tissue. Exploiting this gradient allows 

drugs to be directly delivered into the cytosol of cancer cells, which are weak electrolytes 

with the corresponding pKa [307]. A weakly acidic drug in protonated form can freely 

penetrate through a cell membrane, reach a region with a more basic pH, and then become 

trapped inside the cell, leading to a significant difference in drug concentration between 

normal and tumor tissues. 

There are two main approaches to using pH as a stimulus for drug release. The first 

approach is to introduce various chemical bonds, which are hydrolyzed and destroyed 

under conditions of acidic pH, into the delivery system. Most often, bonds are introduced 

into the delivery system of drugs, as presented in Table 1. 

The second approach exploits the ability of different polymers to be proto-

nated/deprotonated at different pH levels. At physiological pH, such polymers remain 

deprotonated/deionized, but under acidic conditions, the polymers are protonated or 

change their charge, causing structural transformation or disintegration in the delivery 

system and the subsequent release of the encapsulated drugs [16]. Conjugation of urocanic 

acid with various polymers makes it possible to give them pH-dependent properties 

[308,309]. 

Table 1. List of pH-labile bonds. 

Acid Labile Bond Transformation Scheme Ref. 

Hydrazone 

 

[310,311] 

Oxime 

 

[312] 

Imine 

 

[313,314] 

[312]

Imine

Cancers 2022, 14, x FOR PEER REVIEW 12 of 30 
 

 

 Enzyme cleavage sites are embedded into the envelope of the scaffolds, thereby de-

stroying the envelope near or inside the tumor and releasing the encapsulated drug. 

Several materials sensitive to various enzymes have been obtained to date [300]. For 

example, an octapeptide sensitive to metalloproteinase has been developed and used as a 

linker [301]. Other enzymes that have been used for drug release include phospholipase 

[302], α-amylase [303], glucose oxidase [304], and cancer-associated proteases [305]. 

4.2. pH-Sensitive Release 

Due to changes in the metabolic environment, the extracellular pH is usually lower 

in tumors (≈6.5) than in blood and normal tissues (≈7.4) [306]. The pH level in tumor tissue 

is not uniform; intracellular pH is similar in tumor and normal tissues, and extracellular 

pH is more acidic [307]. This difference in pH means that a cellular transmembrane gra-

dient is formed between normal tissue and tumor tissue. Exploiting this gradient allows 

drugs to be directly delivered into the cytosol of cancer cells, which are weak electrolytes 

with the corresponding pKa [307]. A weakly acidic drug in protonated form can freely 

penetrate through a cell membrane, reach a region with a more basic pH, and then become 

trapped inside the cell, leading to a significant difference in drug concentration between 

normal and tumor tissues. 

There are two main approaches to using pH as a stimulus for drug release. The first 

approach is to introduce various chemical bonds, which are hydrolyzed and destroyed 

under conditions of acidic pH, into the delivery system. Most often, bonds are introduced 

into the delivery system of drugs, as presented in Table 1. 

The second approach exploits the ability of different polymers to be proto-

nated/deprotonated at different pH levels. At physiological pH, such polymers remain 

deprotonated/deionized, but under acidic conditions, the polymers are protonated or 

change their charge, causing structural transformation or disintegration in the delivery 

system and the subsequent release of the encapsulated drugs [16]. Conjugation of urocanic 

acid with various polymers makes it possible to give them pH-dependent properties 

[308,309]. 

Table 1. List of pH-labile bonds. 

Acid Labile Bond Transformation Scheme Ref. 

Hydrazone 

 

[310,311] 

Oxime 

 

[312] 

Imine 

 

[313,314] [313,314]

Acetal/ketal

Cancers 2022, 14, x FOR PEER REVIEW 13 of 30 
 

 

Acetal/ketal 

 

[315,316] 

Orthoester 

 

[317] 

Amide 

 

[318] 

4.3. Temperature-Sensitive Release 

Mild hyperthermia plays a pivotal role in changing the tumor microenvironment by 

increasing blood-flow velocity, oxygenation, and vascular permeability [319]. It has been 

shown that most delivery systems, up to 400 nm in diameter, can extravasate from the 

tumor environment into tumor cells when heated to 42 °C in vitro [320]. Moreover, the 

inclusion of thermosensitive fragments in a delivery system changes their properties in 

areas with elevated temperatures, leading to the release of the encapsulated drug. At a 

specific temperature, lipid carrier systems that contain lysolipids or oligoglycerol undergo 

a gel-liquid phase transition involving the release of the active substance [321]. Several 

thermosensitive polymers have been developed with a lower critical solution temperature 

(LCST) of about 40 °C. Below this temperature, the polymers are soluble in water but be-

come insoluble in water above this temperature. Such polymers are used in anticancer-

molecule delivery systems [320]. Table 2 lists some characteristic polymers used for tem-

perature-sensitive release from delivery systems and indicates their LCST [322]. Hyper-

thermia in the environment of a tumor can also be caused externally, for example, by ap-

plying an alternating magnetic field around the tumor, causing magnetic nanoparticles to 

heat up and creating hyperthermia in the area. Furthermore, in an alternating magnetic 

field, the magnetic nanoparticles themselves have a strong cytotoxic effect on cancer cells 

[239,323]. The creation of hyperthermia in the desired area can also be achieved using a 

laser; photothermal inducing agents can be included in the structure of delivery systems 

and absorb emitted light and convert it into local heat [324]. The most commonly used 

photothermal material is gold nanoparticles [325,326]. 

Table 2. The LCST of polymers in an aqueous solution. 

Polymer LCST, °С Ref. 

 

Poly(N-isopropylacrylamide), PNIPAAm 

≈32 [327] 

[315,316]

Orthoester

Cancers 2022, 14, x FOR PEER REVIEW 13 of 30 
 

 

Acetal/ketal 

 

[315,316] 

Orthoester 

 

[317] 

Amide 

 

[318] 

4.3. Temperature-Sensitive Release 

Mild hyperthermia plays a pivotal role in changing the tumor microenvironment by 

increasing blood-flow velocity, oxygenation, and vascular permeability [319]. It has been 

shown that most delivery systems, up to 400 nm in diameter, can extravasate from the 

tumor environment into tumor cells when heated to 42 °C in vitro [320]. Moreover, the 

inclusion of thermosensitive fragments in a delivery system changes their properties in 

areas with elevated temperatures, leading to the release of the encapsulated drug. At a 

specific temperature, lipid carrier systems that contain lysolipids or oligoglycerol undergo 

a gel-liquid phase transition involving the release of the active substance [321]. Several 

thermosensitive polymers have been developed with a lower critical solution temperature 

(LCST) of about 40 °C. Below this temperature, the polymers are soluble in water but be-

come insoluble in water above this temperature. Such polymers are used in anticancer-

molecule delivery systems [320]. Table 2 lists some characteristic polymers used for tem-

perature-sensitive release from delivery systems and indicates their LCST [322]. Hyper-

thermia in the environment of a tumor can also be caused externally, for example, by ap-

plying an alternating magnetic field around the tumor, causing magnetic nanoparticles to 

heat up and creating hyperthermia in the area. Furthermore, in an alternating magnetic 

field, the magnetic nanoparticles themselves have a strong cytotoxic effect on cancer cells 

[239,323]. The creation of hyperthermia in the desired area can also be achieved using a 

laser; photothermal inducing agents can be included in the structure of delivery systems 

and absorb emitted light and convert it into local heat [324]. The most commonly used 

photothermal material is gold nanoparticles [325,326]. 

Table 2. The LCST of polymers in an aqueous solution. 

Polymer LCST, °С Ref. 

 

Poly(N-isopropylacrylamide), PNIPAAm 

≈32 [327] 

[317]

Amide

Cancers 2022, 14, x FOR PEER REVIEW 13 of 30 
 

 

Acetal/ketal 

 

[315,316] 

Orthoester 

 

[317] 

Amide 

 

[318] 

4.3. Temperature-Sensitive Release 

Mild hyperthermia plays a pivotal role in changing the tumor microenvironment by 

increasing blood-flow velocity, oxygenation, and vascular permeability [319]. It has been 

shown that most delivery systems, up to 400 nm in diameter, can extravasate from the 

tumor environment into tumor cells when heated to 42 °C in vitro [320]. Moreover, the 

inclusion of thermosensitive fragments in a delivery system changes their properties in 

areas with elevated temperatures, leading to the release of the encapsulated drug. At a 

specific temperature, lipid carrier systems that contain lysolipids or oligoglycerol undergo 

a gel-liquid phase transition involving the release of the active substance [321]. Several 

thermosensitive polymers have been developed with a lower critical solution temperature 

(LCST) of about 40 °C. Below this temperature, the polymers are soluble in water but be-

come insoluble in water above this temperature. Such polymers are used in anticancer-

molecule delivery systems [320]. Table 2 lists some characteristic polymers used for tem-

perature-sensitive release from delivery systems and indicates their LCST [322]. Hyper-

thermia in the environment of a tumor can also be caused externally, for example, by ap-

plying an alternating magnetic field around the tumor, causing magnetic nanoparticles to 

heat up and creating hyperthermia in the area. Furthermore, in an alternating magnetic 

field, the magnetic nanoparticles themselves have a strong cytotoxic effect on cancer cells 

[239,323]. The creation of hyperthermia in the desired area can also be achieved using a 

laser; photothermal inducing agents can be included in the structure of delivery systems 

and absorb emitted light and convert it into local heat [324]. The most commonly used 

photothermal material is gold nanoparticles [325,326]. 

Table 2. The LCST of polymers in an aqueous solution. 

Polymer LCST, °С Ref. 

 

Poly(N-isopropylacrylamide), PNIPAAm 

≈32 [327] 

[318]

4.3. Temperature-Sensitive Release

Mild hyperthermia plays a pivotal role in changing the tumor microenvironment
by increasing blood-flow velocity, oxygenation, and vascular permeability [319]. It has
been shown that most delivery systems, up to 400 nm in diameter, can extravasate from
the tumor environment into tumor cells when heated to 42 ◦C in vitro [320]. Moreover,
the inclusion of thermosensitive fragments in a delivery system changes their properties
in areas with elevated temperatures, leading to the release of the encapsulated drug.
At a specific temperature, lipid carrier systems that contain lysolipids or oligoglycerol
undergo a gel-liquid phase transition involving the release of the active substance [321].
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Several thermosensitive polymers have been developed with a lower critical solution
temperature (LCST) of about 40 ◦C. Below this temperature, the polymers are soluble in
water but become insoluble in water above this temperature. Such polymers are used in
anticancer-molecule delivery systems [320]. Table 2 lists some characteristic polymers used
for temperature-sensitive release from delivery systems and indicates their LCST [322].
Hyperthermia in the environment of a tumor can also be caused externally, for example, by
applying an alternating magnetic field around the tumor, causing magnetic nanoparticles
to heat up and creating hyperthermia in the area. Furthermore, in an alternating magnetic
field, the magnetic nanoparticles themselves have a strong cytotoxic effect on cancer
cells [239,323]. The creation of hyperthermia in the desired area can also be achieved using
a laser; photothermal inducing agents can be included in the structure of delivery systems
and absorb emitted light and convert it into local heat [324]. The most commonly used
photothermal material is gold nanoparticles [325,326].

Table 2. The LCST of polymers in an aqueous solution.

Polymer LCST, ◦C Ref.
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4.4. Other Stimuli

The redox environment of tumor cells is changed by an increased level of glutathione
(GSH) usually 4 times higher than in normal cells [331]. Glutathione regulates the reducing
environment of the cell by forming and destroying disulfide bonds via reaction with
the excess of reactive oxygen species (ROS) [332,333]. Redox-sensitive delivery systems
usually contain disulfide, diselenide, or succinimide-thioether bonds [334–337]. Under the
influence of glutathione, these bonds are reduced and destroyed (Table 3).
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Some studies have shown, indicating oncogenic transformation compared to normal
cells, that cancer cells constantly generate high levels of intracellular ROS, such as hydrogen
peroxide, hydroxyl radical, and superoxide anion [338]. Some ROS-sensitive transport
systems have also been developed to exploit this abnormal biochemical change [339,340],
and all of the delivery systems that have been developed contain ROS-sensitive linkers.
In essence, the linkers are based on the organic compounds of chalcogens (S, Se, Te),
such as thioesters [341,342], thioketals [343], diselenides [344], monoselenides [345], and
tellurides [346]. Under the action of ROS, the two-stage oxidation of thioesters, monose-
lenides, and tellurides occurs, first to the oxidation state of +4 and then to +6. Accordingly,
delivery systems that contain these groups undergo a phase transition from hydropho-
bic compounds to more hydrophilic ones [347]. Linkers that contain other ROS-sensitive
groups are oxidized with bond cleavage (Table 3). As in the case of pH-sensitive release,
delivery systems with ROS-sensitive bonds release their drugs either via a phase transition
or the breaking of a chemical bond.

It has been shown that monosulfides and monoselenides are only ROS-sensitive
linkers despite disulfides and diselenides being redox- and ROS-sensitive linkers [348,349].
Arylboronic ethers are widely used as the ROS-sensitive linker as, under the action of
hydrogen peroxide, arylboronic esters are oxidized to boronic acid and phenol, and the
bond in the para-position of the aryl ring is destroyed [350].

Table 3. List of labile groups sensitive to GSH and ROS.
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5. Conclusions

Over recent decades, tremendous progress has been made in the field of targeted
delivery in cancer therapy. Several targeted-delivery drugs have been approved and
included in clinical practice. Delivery systems can target different parts of a tumor using
specific targeting fragments and avoid the problems associated with multidrug resistance.
With detailed studies of the physiological differences between normal and diseased tissues,
it is possible to develop target-specific drug delivery systems able to respond to local stimuli.
However, some aspects require a more detailed study. In fact, a deeper understanding of
the EPR effect, of the interactions between nanoparticles and cells, of tumor targeting, and
of the metastatic microenvironment is certainly needed. Moreover, further insights into
the biodistribution, pharmacokinetics, toxicity, and role of delivery systems in therapeutic
protocols are essential if they are to become part of standard-treatment algorithms. Adverse
immunological reactions also require careful consideration when using targeted delivery.
Only once studies into these factors are complete will it be possible to unleash the full
potential of cytostatic drug-delivery systems in cancer therapy.
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