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Alzheimer’s disease (AD) is the most common neurodegenerative disease presenting major health and economic

challenges that continue to grow. Mechanisms of disease are poorly understood but significant data point to

metabolic defects that might contribute to disease pathogenesis. The Alzheimer Disease Metabolomics

Consortium (ADMC) in partnership with Alzheimer Disease Neuroimaging Initiative (ADNI) is creating a

comprehensive biochemical database for AD. Using targeted and non- targeted metabolomics and lipidomics

platforms we are mapping metabolic pathway and network failures across the trajectory of disease. In this report

we present quantitative metabolomics data generated on serum from 199 control, 356 mild cognitive

impairment and 175 AD subjects enrolled in ADNI1 using AbsoluteIDQ-p180 platform, along with the pipeline for

data preprocessing and medication classification for confound correction. The dataset presented here is the first

of eight metabolomics datasets being generated for broad biochemical investigation of the AD metabolome. We

expect that these collective metabolomics datasets will provide valuable resources for researchers to identify

novel molecular mechanisms contributing to AD pathogenesis and disease phenotypes.
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Design Type(s) clinical history design • observation design

Measurement Type(s) Metabolomics

Technology Type(s) mass spectrometry assay

Factor Type(s) diagnosis

Sample Characteristic(s) Homo sapiens • blood serum

Background & Summary
Alzheimer’s disease is a degenerative brain disorder and the most common cause of dementia, presenting
as the most common neurodegenerative disease in the United States1,2. It is characterized by a decline in
memory, language, problem-solving and other cognitive skills that affects a person’s ability to perform
everyday activities3. Data suggests that pathophysiological changes associated with AD begin decades
before the emergence of clinical symptoms4,5. AD is becoming an increasing health burden in the United
States and globally due to population aging6.

The disease is defined by the presence of tau neurofibrillary tangles and Aβ plaques, but coincident
pathologies like Lewy body disease, vascular pathology and TDP-43 (transactive response DNA-binding
protein 43) deposits are commonly found in AD patients. Current symptomatic therapeutic treatments
have modest effects and do not modify the disease course. Researchers hope to develop therapies
targeting specific genetic, molecular, and cellular mechanisms so that the actual underlying cause of the
disease can be slowed or prevented but currently our understanding of disease mechanisms remains
limited. While the majority of AD clinical trials to date have focused on Aβ treatments, other therapeutic
approaches are necessary. Understanding biochemical trajectory of disease and metabolic changes related
to Aβ and Tau pathology and cognitive decline is essential to advance our understanding of AD etiology
as well as for developing novel approaches for drug development.

Recent advances in analytical chemistry led to the emergence of a new field called metabolomics.
Metabolomics allows simultaneous measurement of 100’s to 1,000’s of metabolites for mapping
perturbations in interconnected pathways and in metabolic networks enabling a systems approach to the
study of AD7,8. An emerging body of evidence data supports the potential of metabolomics to provide
added information for the prediction of AD and has identified a number of potentially important
biochemical pathways in AD9–15. Though promising, in many cases to this point cohorts are quite small
with little replication, and therefore do not allow the effects of confounds such as medications to be
addressed. Larger and more comprehensive cohorts are needed to provide the statistical power to detect
and develop robust predictive metabolomics models, while also accounting for confounding effects
related to medication intake, gender and aging. The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
unites researchers around the globe to define the progression of Alzheimer’s disease. ADNI researchers
collect, validate and utilize data such as MRI and PET images, genetics, cognitive tests, CSF and blood
biomarkers from thousands of subjects as predictors for the disease16,17. The Alzheimer’s Disease
Metabolomics Consortium (ADMC) has the goal of building a comprehensive metabolomics database for
AD in partnership with ADNI. This will be a national resource for the Alzheimer’s community that
enables interrogation of global metabolic changes within a pathway and network context and where
metabolomics data can be used to compliment and inform genomics and imaging data. Eight targeted
and non-targeted metabolomics platforms that have their own strengths and limitations are being used to
profile thousands of ADNI subjects.

For this dataset, we used a targeted, widely utilized and cross-validated metabolomics platform
AbsoluteIDQ®-p180 (Biocrates AG) to profile baseline serum samples from ADNI1 cohort where vast
data exist on each patient including cognitive decline and imaging changes over many years, information
on CSF markers, genetics and other omics data. The goal of this data generation is to aid in the discovery
of metabolic failures correlated with disease and progression and biomarkers for a range of important
physiological processes in AD. We describe a foundation for automated curation of metabolomics data,
including R scripts for removing analytes with poor precision or with significant missing values, and
samples that have missing clinical data or are metabolic outliers. We address approaches within this
cohort for dealing with confounds that impact metabolomics data and findings including medications,
broadly applicable to pharmacometabolomic investigations18–20.

Methods
Alzheimer’s disease neuroimaging initiative (ADNI) cohort
Clinical and demographic data used for this study were obtained through the ADNI data repository
(http://adni.loni.ucla.edu/). Written informed consent was obtained for all participants and prior
Institutional Review Board approval was obtained at each participating institution. All demographic
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information, neuropsychological and clinical assessment data, and diagnostic information used in this
study are available from the ADNI clinical data repository (http://adni.loni.ucla.edu/). Information about
ADNI can be found in Petersen et al.16 and at http://www.adni-info.org/16. Key clinical and demographic
variables for the ADNI1 participants as of May 2016 are summarized in Table 1 and available through
Synapse (see Table 2). Note that ADNI data collection is ongoing, so variables on LONI may have been
updated since that subset was downloaded. We have included this snapshot in order to enable analytic
reproducibility despite a dynamic source of truth.

Serum collection and sample management
Morning fasting blood samples from the baseline visit were included in the study (all but 69 were fasting).
Samples were collected in two bar-coded 10 ml red-top plastic Vacutainer blood tubes, blood was allowed
to clot for 30 min followed by a 15 min centrifugation at 3,000 rpm (1,500 rcf) as described in the ADNI
standard operating procedures (www.adni-info.org). Then the serum was transferred into a bar-coded 13
ml polypropylene transfer tube and capped and allowed to freeze in dry ice. Samples were shipped
overnight to the ADNI biomarker core laboratory at the University of Pennsylvania Medical Center.
Samples were thawed once in the core facility and aliquoted to 0.5 ml samples, then subsequently
aliquoted once more for individual laboratory analyses. A 20 μl sample aliquot was delivered to the Duke
Proteomics and Metabolomics Shared Resource for analysis with the p180 platform.

Metabolomics analysis and QC using the AbsoluteIDQ p180 kit
Sample preparation. Samples were prepared and analyzed in the Duke Proteomics and Metabolomics
Shared Resource using the AbsoluteIDQ p180 kit (Biocrates Life Sciences AG, Innsbruck, Austria) in
accordance with the user manual. In brief, after the addition of 10 μl of the supplied internal standard
solution to each well on a filterspot of the 96-well extraction plate, 10 μl of each serum sample, quality
control (QC) samples, blank, zero sample, or calibration standard were added to the appropriate wells
(Fig. 1). The plate was then dried under a gentle stream of nitrogen. The samples were derivatized with
phenyl isothiocyanate (PITC) for the amino acids and biogenic amines, and dried again. Sample extract
elution was performed with 5 mM ammonium acetate in methanol. Sample extracts were diluted with
either 40% methanol in water for the UPLC-MS/MS analysis (15:1) or kit running solvent (Biocrates Life
Sciences AG) for flow injection analysis (FIA)-MS/MS (20:1).

Quality control samples. The analysis of the samples using the AbsoluteIDQ p180 kit was performed
using four specific sets of quality controls. First, low/mid/high level QC samples provided by Biocrates
Life Sciences AG were prepared and analyzed on each plate as recommended by the manufacturer. These
QC samples were used for a technical validation of each kit plate. Second, to allow appropriate inter-plate
abundance scaling based specifically on this cohort of samples, we generated a Study Pool QC (SPQC) by
combining approximately 10 μl from the first 76 samples for analysis. This sample was frozen in aliquots
of 25 ul then prepared and analyzed twice on each plate. Third, there were 20 blinded analytical
duplicates obtained from the same serum draw scattered throughout the study in a manner blinded to the
investigators until data was sent to the ADNI informatics core for unblinding. The commonly used
reference materials NIST SRM-1950 plasma (n= 3 per plate) and GoldenWest serum pool (n= 1 per
plate) were also analyzed on each plate to allow cross-comparison against other sample cohorts in the
future.

Figure 1a shows the preparation layout for the 96-well plates as utilized in this study. In total, eleven
plates were prepared in order to analyze 831 serum samples. The blank, zero sample, calibration
standards, and Low/Mid/High QC samples provided with the kit were arranged as recommended by
Biocrates. In order to improve the ability to compare results with other metabolomics studies and reduce
plate-to-plate batch effects, six additional wells were used for the additional QC samples as described
above: two wells for the study pool QC (SPQC), one well for the GoldenWest Pooled Serum Standard21,
and three wells for the NIST SRM-1950 Standard Reference Plasma. The remaining 76 wells were used

CN (n= 229) MCI (n= 397) AD (n= 193) P-value

Age (years) 75.5 (72.2–78.4) 75.1 (70.1–80.4) 75.8 (70.8–80.5) 0.29

Gender (% male) 47.8% 35.4% 47.6% 0.0019

APOE ε4 (%) 26.5% 53.3% 66.1% o0.0001

MMSE 29.0 (29.0–30.0) 27.0 (26.0–28.0) 23.0 (22.0–25.0) o0.0001

ADAS-Cog13 9.33 (6.0–12.3) 18.3 (14.7–23.0) 28.5 (23.7–34.0) o0.0001

Table 1. Demographics and clinical data of studied ADNI subjects, as determined at baseline. AD,
Alzheimer’s disease; ADAS-Cog 13, Alzheimer's Disease Assessment Scale cognitive scale, 13-item version;

APOE ε4, Apolipoprotein E; CN. cognitive normal; MCI, mild cognitive impairment; MMSE, Mini-Mental

State Examination. P-values are based on Chi-square test for APOE status and Kruskal-Wallace for all other

variables. P-values were not corrected for multiple testing.
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File Name Description Type Location URL

Top Level Project Page Synapse Portal page for AMP-AD ADNI
project

Portal AMPAD
Knowledge
Portal /
Synapse

https://www.
synapse.org/#!
Synapse:
syn5592519

Primary Metabolomics Files

ADMC Duke Biocrates P180 Kit Flow
injection analysis

FIA ‘Level 0’ data Data LONI http://dx.doi.org/
10.7303/
syn7440354.1

ADMC Duke Biocrates P180 Kit Flow
injection analysis Dictionary

Data dictionary for p180 FIA Data Dict LONI http://dx.doi.org/
10.7303/
syn7477315.1

ADMC Duke Biocrates P180 Kit Ultra
Performance Liquid Chromatography

UPLC ‘Level 0’ data Data LONI http://dx.doi.org/
10.7303/
syn7440355.1

ADMC Duke Biocrates P180 Kit Ultra
Performance Liquid Chromatography
Dictionary

Data dictionary for p180 UPLC Data Dict LONI http://dx.doi.org/
10.7303/
syn7477316.1

P180FIALODvalues.csv QC data for lower limit of detection Data AMPAD
Knowledge
Portal /
Synapse

http://dx.doi.org/
10.7303/
syn9775685.1

P180UPLCLODvalues.csv QC data for lower limit of detection Data AMPAD
Knowledge
Portal /
Synapse

http://dx.doi.org/
10.7303/
syn9775688.1

ADMC Duke Biocrates P180 Kit Ultra
Performance Liquid Chromatography
Methods

Methods description for p180 Methods LONI http://dx.doi.org/
10.7303/
syn7477319.1

Supplemental Metabolomics Files

ADMC About the Metabolomics Data High level information about AD
Metabolomics Consortium Data

Methods AMPAD
Knowledge
Portal /
Synapse

https://www.
synapse.org/#!
Synapse:
syn8532154

ADMC_supplement.zip Original MetIDQ software output files in.xlsx
format, NIST and QC output from MetIDQ

Supplementary Data LONI On LONI under
‘ADMC
Supplementary
Materials’

ADMCDUKEP180FIA.LEVEL5.csv Post-processed ‘Level 5’ file FIA Data LONI http://dx.doi.org/
10.7303/
syn7440356.1

ADMCDUKEP180UPLC.LEVEL5.csv Post-processed ‘Level 5’ file UPLC Data LONI http://dx.doi.org/
10.7303/
syn7440357.1

ADNI_P180_LEVEL0_to_LEVEL1.R etc. Data processing R scripts Scripts AMPAD
Knowledge
Portal /
Synapse

http://dx.doi.org/
10.7303/
syn7354353

Clinical and Medication files

ADNI_All_Clinical_Data_16May2016.csv Clinical variables (a subset of ADNI's complete
list) snapshot from May, 2016

Data LONI http://dx.doi.org/
10.7303/
syn7477271.1

Fasting Status.txt Fasting status of participants at time of blood
draw

Data AMPAD
Knowledge
Portal /
Synapse

http://dx.doi.org/
10.7303/
syn9774830.1

ADNI Key Clinical Variables Subset Data
Dictionary.xlsx

Data dictionary for a key subset of variables in
ADNI_All_Clinical_Data_16May2016.csv (for
full version see ‘Data Dictionary [ADNI1,
GO,2] (DATADIC.csv)’ on LONI)

Data dict AMPAD
Knowledge
Portal /
Synapse

http://dx.doi.org/
10.7303/
syn9758900.1

RECCMEDS.csv Original medication data- all cohorts, all
timepoints. NOT versioned.

Data LONI http://dx.doi.org/
10.7303/
syn7829508.1

Medication mapping pipeline files Scripts and config files for medication concept
mapping and classification

Scripts AMPAD
Knowledge
Portal /
Synapse

http://dx.doi.org/
10.7303/
syn7477310

ADMCADNI1SCPATIENTD
RUGCLASSES.csv

Results file mapping participants to classes of
drugs taken at baseline

Supplementary Data LONI http://dx.doi.org/
10.7303/
syn7440367.1

Table 2. Names, types, descriptions, and locations of primary data and additional files included in

this dataset. DOIs below point to objects in Synapse with direct links to files on LONI where applicable. All

LONI data can also be accessed through http://adni.loni.usc.edu/data-samples/access-data/. Researchers may

apply for data access at https://ida.loni.usc.edu/collaboration/access/appLicense.jsp.
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for cohort samples. The analysis order of each plate is summarized in Fig. 1b, and was arranged to
maximize quantitative accuracy and precision within a plate and limit the potential for batch effects. The
analysis order included running the standard curve twice, once at the beginning and end of the samples
(LC-MS/MS only). For both LC-MS/MS and FIA-MS/MS analysis, the Biocrates QC’s and Goldenwest
Serum QC were prepared once but injected in technical triplicate, once before, in the middle (after 38
samples) and at the end of the sample set. The SPQC samples (n= 2) were each analyzed once, with one
analysis before and one after all samples on the plate. The NIST SRM-1950 plasma (n= 3) were also
analyzed once each at the beginning, middle, and end of the cohort samples. Bracketing the standard
curves and nesting the analytical samples between the QCs offers the best chance of observing any system
drift and assuring optimal instrument performance across the sample set.

Quantitative UPLC-MS/MS and FIA-MS/MS analysis. Mass spectrometry analysis was performed
based on Standard Operating Procedures (SOP #8114) provided by Biocrates for the AbsoluteIDQ p180
kit. Chromatographic separation of amino acids and biogenic amines was performed using an ACQUITY
UPLC System (Waters Corporation) using an ACQUITY 2.1 mm×50mm 1.7 μm BEH C18 column
fitted with an ACQUITY BEH C18 1.7 μm VanGuard guard column, and quantified by calibration curve
plotting ratio of analyte to internal standard versus standard concentration, fitted using a linear
regression with 1/x weighting. All amino acids and biogenic amines utilize either deuterated or 13C stable-
isotope labeled internal standard of the exact analyte or closely-eluting compound of similar class.
Acylcarnitines, sphingolipids, and glycerophospholipids were analyzed by flow injection analysis tandem
mass spectrometry (FIA-MS/MS) and quantified by internal standard calibration; eight separate internal
standards are used to quantify the various acylcarnitines, while a single internal standard is used for each
of the other lipid classes. Thus, FIA-MS/MS analytes are reported as semi-quantitative values except
where a stable-isotope labeled internal standard of that exact analyte was used. Samples for both UPLC
and FIA analyzed using a Xevo TQ-S mass spectrometer (Waters Corporation) using positive
electrospray ionization operating in the Multiple Reaction Monitoring (MRM) mode. MRM transitions
(compound-specific precursor to product ion transitions) for each analyte and internal standard were
collected over a scheduled retention time window using tune files and acquisition methods provided in
the AbsoluteIDQ p180 kit. The UPLC data were imported into TargetLynx (Waters Corporation) for
peak integration, calibration and concentration calculations. The UPLC data from TargetLynx and FIA
data were analyzed using Biocrates’ MetIDQ v5.4.8 software. The kit data are reported in detail in the
Supplementary Information on LONI, along with a color-coded key denoting samples that were below
the limit of detection (oLOD), below the lowest calibration standard (oLLOQ), or quantified based on
a ratio to a class-based internal standard (semi-quantitative). The data generated for the study samples,

Figure 1. Plate layout for participant and quality control samples. (a) 96-well plate layout used for sample

preparation and data collection for the Absolute IDQ p180 metabolomics analysis. Each of the eleven plates

(n= 833 study samples) analyzed in the study used the same lot of calibrators, Biocrates QCs, study pool QC

(SPQC), GoldenWest Serum and NIST SRM-1950 plasma. (b) Analysis order for each plate, showing how the

calibration curve and QC samples bracket the actual sample analyses in order to decrease the likelihood of

intraplate bias. LC-MS/MS and FIA-MS/MS use the same analysis order, but FIA-MS/MS excludes the

calibration curve.
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SPQC samples, as well as NIST-SRM 1950 from each plate can be downloaded at http://adni.loni.usc.edu/
data-samples/access-data/ (See below).

Treatment of isobaric lipids. The p180 kit quantifies individual lipid species the ‘sum lipid
composition’ level; that is, the quantity of the lipid reported as PC (36:3) (for example) is the sum of all
possible phosphatidylcholine lipids in the sample which have a total of 36 carbons and 3 double bonds.
Additionally, analyzed glycerophospholipids are differentiated according to the presence of ester and
ether bonds in the glycerol moiety. Typically, the annotation ‘aa’ in lipid nomenclature indicates that both
fatty acids at the sn-1 and sn-2 position are bound to the glycerol backbone via ester bonds, whereas ‘ae’
donates that fatty acid in the sn-1 or sn-2 position is bound via an ether bond. Total number of carbon
atoms and double bonds present in lipid fatty acid chains are denoted as ‘C x:y’ where x indicates the
number of carbons and y the number of double bonds. For the specific glycerophospholipid class
sphingomyelins (SM), only the fatty acid bound to glycerol backbone at the sn-2 position are indicated
under the standard assumption that sphingosine (d18:1) is bound at the sn-1 position. The FIA-MS/MS
analysis with the Biocrates p180 kit is performed using mass spectrometry precursor/product transitions
(‘MRMs’) with lipid species-specific precursor ions and class-specific fragment ions, to report quantitative
values for a number of lipids at the sum lipid composition level.

Due to the relatively low mass resolution of triple quadrupole MS instruments, the detected flow-
injection based MRM signal is a sum of several isobaric lipids within the same class. For example,
according to the LIPID MAPS database (www.lipidmaps.org), the signal of PC aa C36:6 can arise from at
least 15 different lipid species that have different fatty acid composition (e.g., PC 16:1/20:5 versus PC
18:4/18:2), various positioning of fatty acids sn-1 and sn-2 position (e.g., PC 18:4/18:2 versus PC
18:2/18:4) and different double bond positions in those fatty acid chains (e.g., PC(18:4(6Z,9Z,12Z,15Z)/
18:2(9Z,12Z)) versus PC(18:4(9E,11E,13E,15E)/18:2(9Z,12Z))). The Biocrates MetIDQ software applies
an isotopologue correction for the obtained lipid data in order to increase accuracy, but due to limitations
of FIA-MS/MS data on triple quadrupoles, this correction is incomplete for some lipids22. To assist with
clarity in the interpretation of the results reported herein using the p180 kit, we have included a list of
measured lipids. Their common names and possible isobars and isomers are summarized in
Supplementary Table 1: The list of lipids measured with the AbsoluteIDQ p180 kit. Within this table,
possible isobars are given within ±0.5 Da range due to the typical conditions under which triple
quadrupole mass spectrometers are operated for the kit, and the isobars are reported as sum
compositions23. The position of acyl chains (sn-1, sn-2) and double bonds are not indicated for the
possible isomers. The possible isotopologue interferences are indicated in cursive. For each isomer,
examples of LIPID MAPS Structure Database (http://www.lipidmaps.org/data/databases.html) entries are
listed, where applicable. The table comprises examples of possible isobars and isomers to the best of our
current knowledge, but does not prioritize the subspecies based on likelihood of existence or relative
abundance in any particular biological system.

Data processing
Statistical preprocessing was performed using the open-source, statistical software, R v3.2.4 (www.r-
project.org), with scripts available for download at http://dx.doi.org/10.7303/syn7354353. The processing
included the steps briefly described herein, and graphically depicted as a flowchart in Fig. 2.

In the first step we excluded four samples due to erroneous inclusion in the cohort (thawed during
shipment), and the values of each analyte were scaled across the different plates using the Study Pool QC
(SPQC) duplicates analyzed twice on each plate. Given SPQC duplicates, the correction factor for each
analyte in a specific plate was obtained by dividing its global average by its average within the plate to
adjust for the batch effects, yielding the Intermediate Data Level 2.

The second set of steps include filtering of analytes based on quality metrics. We applied two criteria
to filter individual metabolites as part of our data quality control (QC) evaluation process based on the 20
blinded ADNI duplicates: 1) a coefficient of variation (CV) o20% across plates, and 2) an intraclass
correlation coefficient (ICC) >0.65. ICC compared the two measurements for each of the blinded
duplicates. Additionally, analytes with >40% of measurements below the lower limit of detection
(oLOD) were excluded from the analysis. Combined, these three steps allow only the most robust
analytes from the panel through to the Level 3 data matrix, and reduced the total number of analytes
reported in the dataset from 182 analytes (Intermediate Data—Level 2) to 138 analytes (Intermediate
Data—Level 3). The QC Results for all analytes including LOD percentage, CV of the blinded replicates,
and ICC values are reported in the Supplementary Table 2 (FIA-MS/MS) and 3 (UPLC-MS/MS).

The steps between Level 3 and Level 4 in the pipeline (Fig. 2) perform missing value replacement and
allow for exclusion of samples due to other missing data that may vary from study to study. Remaining
samples with values reported as ‘oLOD’ were imputed using LOD/2 value for each specific analyte. Also,
there were 73 samples determined to be pre-analytical outliers for one or more of the following reasons
which were flagged and removed from the dataset. These included a total of 69 samples identified as non-
fasting, 2 samples lacking corresponding body mass index (BMI) values, and 1 for which no baseline
medication record was reported. After these steps, the Intermediate Data—Level 4 contained n= 754
samples (734 subjects) and n= 138 analytes.
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The last steps in the statistical pretreatment pipeline serve to combine replicate measurements to give
one value per biological sample, filter out any statistical outlier subjects, and perform log-transformation
if necessary. To obtain a single value for the 20 subjects with blinded duplicates we calculated the average
of the duplicates for each subject and reported this single value. We checked for the presence of outlier
subjects by performing principal components analysis, and evaluating the subject distance from the
centroid in the K-dimensional space based on principal components that explained >90% cumulative
variance. Subjects located more than 7 s.d. from the mean were flagged as outliers. This procedure
identified two additional samples that were excluded from the final data matrix. Finally, log2
transformation was performed for those analytes which show P-value for D’Agostino o0.05 and
Skewness test >2. The final preprocessed data matrix (Final Data Matrix—Fig. 2, Level 5) contained data
for 732 subjects and 138 analytes.

It should be noted that the statistical curation process described above is very stringent, leaving behind
only the most robust analytes but in the process potentially excluding some good measurements. One
weakness in our pipeline is that by filtering on intraclass correlation coefficient (ICC) it is possible that we

Figure 2. Workflow description for data curation and scaling of the p180 metabolomics analysis of the

ADNI1 cohort. The use of Levels (shown at left) breaks the workflow into discrete steps which can be applied

to multiple metabolomics data types. The workflow executed in R is described on the right. *Subjects flagged

for exclusion in Level 4 are not physically excluded from the table until Level 5.
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filtered out some robust measurements which simply had very narrow biological measurement range over
the blinded samples, precluding the observation of a correlational trend. Examples of this potentially
include histamine (17.2% missing values, 5.4% CV, 0.09 ICC) and methionine (0% missing values, 8.1%
CV, 0.65 ICC), which almost certainly would have been left in the dataset using many commonly-used
and less stringent filtering criteria. To address this shortcoming, future studies are being designed with at
least three measurements of each blinded replicate sample and triplicate preps of the SPQC on each plate
instead of the NIST SRM-1950, to allow more robust filtering based on imprecision across a wider
dynamic range. Metabolites excluded from the analysis suggested here may also be recovered when
reanalyzing data in the context of comparative data from other cohorts.

Collection and curation of medication data
Many classes of medications have been shown to affect metabolism and change levels of certain
metabolites18–20,24. It is thus necessary to take drug information into account as a potential confounder
for metabolomics analysis. In order to convert free text medication information into computable drug
data, we applied a pipeline described previously25. In brief, as shown in Fig. 3, we employed the National
Library of Medicine’s (NLM) RxNorm API (application programming interface) to match drug names
extracted from patient medication information containing lexical variations and misspellings to
standardized drug concept identifiers. Corresponding concept identifiers are returned along with
confidence scores. Low scoring terms were reviewed manually and adjusted as appropriate.

We mapped all versions of a drug, whether brand name or generic, to its respective ingredients, then
mapped those ingredients to corresponding drug classes. A subset of drug categories were selected from 3
standardized drug classification systems (NDF-RT, ATC, and MeSH) based on input from experts in
Alzheimer’s disease and metabolomics (see Table 3 (available online only)). Criteria for selection of
classes to be included in analysis were classes of drugs known to impact metabolomics pathways and/or
those likely to be taken by a cognitively impaired population. In this way, each patient was assigned a
Boolean flag for whether or not he or she was taking any drug in each respective class. Binary variables
can then be used to address potential confounding in subsequent association analyses. The code for this
pipeline, including R scripts and API configuration files, is available in Synapse: http://dx.doi.org/
10.7303/syn7477310. The final table showing which ADNI1 participants were taking which classes of
drugs at their first visit is available at http://dx.doi.org/10.7303/syn7440367.1.

Important note. The method described here is the first in a series of iterative approaches to tackle the
complex challenge of medications as confounding variables in metabolomic profiling. Medication
terminology and software tools continue to evolve. We recommend that those performing future analyses
related to medication effects revisit this site and the ADNI data repository for updated curation of
medication data.

Data Records
The primary access site for this dataset is through Sage Bionetworks’ Synapse platform (Data Citation 1).
ADNI’s data use agreement prohibits redistribution of ADNI data outside of LONI, so actual data files are
hosted by the University of Southern California’s Laboratory of Neuroimaging (LONI). The scripts used
for data processing and medication mapping, however, reside in the Synapse platform. Core data files
along with associated metadata files, scripts, and Supplementary Files are listed in Table 2. Note that
ADNI requires registration to access the data. Researchers may apply for data access at https://ida.loni.
usc.edu/collaboration/access/appLicense.jsp.

R Scripts for data processing can be found at http://dx.doi.org/10.7303/syn7354353. Input files (Fig. 2,
Level 0) are found in (Data Citation 2) and (Data Citation 3) for FIA and UPLC respectively. Processed

Figure 3. Overview of drug mapping from free text data to medication classes. Drug names are parsed and

passed to the RxNorm API to determine approximate string matches. Low scoring matches are reviewed

manually. Once the drug, whether brand name or generic, has been mapped to an RxNorm ingredient,

corresponding classes are ascertained.
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data (Fig. 2, Level 5) are available at (Data Citation 4) and (Data Citation 5) for FIA and UPLC
respectively. The latest version of clinical annotation data is in (Data Citation 6).

Also included in Supplementary Information on LONI (http://adni.loni.usc.edu/data-samples/access-
data/) are the original Excel format exports from the MetIDQ software (Biocrates, Inc). These files
include information on calibration ranges, limits of quantification and detection for the assays, and QC
sample measurements. They use the original blinded identifiers.

Similarly, the code for the medication mapping pipeline and a link to the current medications file on
LONI is available through (Data Citation 7). The medications file must be downloaded and placed in the
same directory as the medication mapping R scripts in order to reproduce the medication mapping
workflow. The output table showing which patients were taking which classes of drugs is available at
(Data Citation 8). Note that, as described in the readme file that accompanies these scripts, manual
intervention was used at three points in the pipeline: running RxMix using two different configuration
files, and expert review of medication name mapping to accept, reject, or correct results for low-scoring
matches.

Technical Validation
AbsoluteIDQ® p180 kit has been fully validated according to European Medicine Agency Guideline on
bioanalytical method validation, and this kit has been utilized in over 200 peer-reviewed publications
including a number in dementia and AD9,13,26. A recent ring trial showed that inter-laboratory precision
was o20% for 82% of the analytes measured with the kit, and 83% of the analytes were accurate within
o20%27. Additionally, each analyzed kit plate includes an automated technical validation to approve the
validity of the run and to provide verification of the actual performance of the applied quantitative
procedure including instrumental analysis. Interplate technical validation of each analyzed kit plate was
performed using MetIDQ software based on results obtained and defined acceptance criteria for blank,
zero samples, calibration standards and curves, low/medium/high level QC samples and measured signal
intensity of internal standards over the plate. Technical validation for the Xevo TQS was performed
according to the following criteria. For the Blank samples the signal intensity for all metabolites and
internal standards had to be smaller than a defined minimum value. Signal intensities obtained for zero
sample were used for the calculation of plate specific limit of detection (LOD) for FIA-MS/MS analysis.
LOD value was defined as concentration that corresponded to three times level of the blank sample. A
specific standard measurement (calibrators) was considered valid when calculated concentration was
within +/− 30% range of the target concentration. For a specific analyte a minimum of 75% of all
calibration standards had to be valid. Biocrates-provided QC samples were human plasma pool spiked
with analytes at known concentrations at three different levels. The valid measured concentration range
was set for each analyte separately and was within +/− 45% of a target concentration. For a specific
analyte a minimum of 67% of all QCs had to be valid as well as a minimum of 50% of all QCs of a certain
level had to be valid. Additionally signal intensity for internal standards had to be within valid minimum
and maximum intensity value defined by kit manufacturer. All measured plates fulfilled the above
described criteria hence confirming the quality and accuracy of the obtained quantitative metabolomics
data according to manufacturer recommendations.

To ensure the quality and reproducibility of the quality control and analysis performed prior to data
release, independent analysts completed the computational workflow, and achieved reproducibility out to
three significant digits across all calculations.

Usage Notes
Details on how to apply for data access and usage rules can be found at the ADNI website: http://adni.
loni.usc.edu/data-samples/access-data/. In brief, users agree to keep the data secure and not to attempt to
re-identify research participants. Users also agree to acknowledge ADNI and the ADMC in any derivative
publications as follows:

1. On the by-line of the manuscript, after the named authors, include the phrase ‘for the Alzheimer’s
Disease Neuroimaging Initiative*’ with the asterisk referring to the following statement and list of
names: *Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the
ADNI contributed to the design and implementation of ADNI and/or provided data but did not
participate in analysis or writing of this report. A complete listing of ADNI investigators can be found
at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

2. On the by-line of the manuscript, after the named authors, include the phrase ‘for the Alzheimer’s
Disease Metabolomics Consortium**’ with the double asterisk referring to the following statement and
list of names: **Data used in preparation of this article were generated by the Alzheimer’s Disease
Metabolomics Consortium (ADMC). As such, the investigators within the ADMC provided data but
did not participate in analysis or writing of this report. A complete listing of ADMC investigators can
be found at: https://sites.duke.edu/adnimetab/admc-team-directory/

3. The results published here are in whole or in part based on data obtained from the AMPAD
Knowledge POrtal accessed at doi:10.7303/syn2580853
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Access to scripts and other files described herein that are available through the https://www.synapse.
org/#!Synapse:syn2580853/wiki/409840 AMPAD Knowledge Portal hosted on the Sage Bionetworks
Synapse informatics data sharing platform, requires adherence to the terms of use described at http://
docs.synapse.org/articles/governance.html. Users are required to sign an oath (http://docs.synapse.org/
assets/other/oath.html) stating they will not re-identify participants, redistribute the data, or use for
advertising and that they will keep data secure, protect privacy, support open access, report any breaches,
credit participants, and follow privacy laws.

Because they are managed by different entities, users must register for separate user accounts for LONI
(where data are stored) and https://www.synapse.org/#!Synapse:syn2580853/wiki/409840 AMPAD
Knowledge Portal on Synapse (repository for scripts and additional information) respectively.
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