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Among eukaryotes, four major phytoplankton lineages are respon-

sible for marine photosynthesis; prymnesiophytes, alveolates, stra-

menopiles, and prasinophytes. Contributions by individual taxa,

however, are not well known, and genomes have been analyzed

fromonly the latter two lineages. Tiny “picoplanktonic”members of

the prymnesiophyte lineage have long been inferred to be ecolog-

ically important but remain poorly characterized. Here, we examine

pico-prymnesiophyte evolutionary history and ecology using culti-

vation-independent methods. 18S rRNA gene analysis showed pico-

prymnesiophytes belonged to broadly distributed uncultivated

taxa. Therefore, we used targeted metagenomics to analyze uncul-

tured pico-prymnesiophytes sorted by flow cytometry from sub-

tropical North Atlantic waters. The data reveal a composite

nuclear-encoded gene repertoire with strong green-lineage affilia-

tions,which contrastswith the evolutionary history indicated by the

plastid genome. Measured pico-prymnesiophyte growth rates were

rapid in this region, resulting in primary production contributions

similar to the cyanobacterium Prochlorococcus. On average, pico-

prymnesiophytes formed 25% of global picophytoplankton bio-

mass, with differing contributions in five biogeographical provinces

spanning tropical to subpolar systems. Elements likely contributing

to success include high gene density and genes potentially involved

in defense and nutrient uptake. Our findings have implications

reaching beyond pico-prymnesiophytes, to the prasinophytes and

stramenopiles. For example, prevalence of putative Ni-containing

superoxide dismutases (SODs), instead of Fe-containing SODs,

seems to be a common adaptation among eukaryotic phytoplank-

ton for reducing Fe quotas in low-Fe modern oceans. Moreover,

highly mosaic gene repertoires, although compositionally distinct

for each major eukaryotic lineage, now seem to be an underlying

facet of successful marine phytoplankton.

comparative genomics | primary production | prymnesiophytes | marine

photosynthesis | haptophytes

Global primary production is partitioned equally among terres-
trial and marine ecosystems, each accounting for ≈50 gigatons

of carbon per year (1). The phytoplankton responsible for marine
primary production include the cyanobacteria, Prochlorococcus and
Synechococcus, andamultitudeof eukaryoticphytoplankton, suchas
diatoms, dinoflagellates, prasinophytes, and prymnesiophytes (2–4).
Most oceanic phytoplankton are “picoplanktonic” (<2–3 μm di-
ameter) andhavehigh surface area to volume ratios, an advantage in
open-ocean low-nutrient conditions (5–8). Despite the importance
of eukaryotic phytoplankton to carbon cycling only six genomes have
been sequenced and analyzed comparatively, all being from diatoms
and prasinophytes. These revealed greater differentiation than an-
ticipated on the basis of 18S rRNA gene analyses (9–11). The ob-
served genomic divergence is associated with major differences in
physiology and niche adaptation (10).
Pigment-based estimates indicate that prymnesiophytes, also

known as haptophytes, are broadly distributed and abundant.

Oceanic prymnesiophytes are thought to be small owing to high
levels of prymnesiophyte-indicative pigments in regions where
most Chl a (representing all phytoplankton combined) is in the
<2-μm size fraction (6, 12). Six picoplanktonic prymnesiophytes
exist in culture (6, 7) but prymnesiophyte 18S rDNA sequences
from <2–3-μm size-fractioned environmental samples typically
belong to uncultured taxa (6, 13–15). As a whole, this lineage
reportedly diverged from other major eukaryotic lineages early
on, 1.2 billion years ago (16), and their overall placement among
eukaryotes is uncertain (4, 16). They are extremely distant from
phytoplankton with published genomes. Thus, although infer-
ences exist regarding their importance and evolutionary history,
uncertainties surround even the most basic features of oceanic
pico-prymnesiophytes, such as cell size, biomass, growth rates, and
genomic composition.
One approach for gaining insights to uncultivated taxa is meta-

genomics. However, unicellular eukaryotes have larger genomes
and lower gene density than marine bacteria and archaea and are
less abundant, making efficient sequence recovery difficult by
seawater filtration. Parsing of eukaryotic data from diverse com-
munities is particularly problematic owing to the paucity of relevant
reference genomes. Selection of DNA from an uncultivated target
microbe(s) (e.g., by fosmid sequencing or using cells sorted by flow
cytometry) obviates bioinformatic parsing issues and has revealed
unique gene complements in uncultured prokaryotes (17, 18).
To address uncertainties regarding pico-prymnesiophyte ecol-

ogy, we integrated a suite of cultivation-independent methods.
Targeted metagenomics was developed to investigate diversity
and genomic features of uncultivated pico-prymnesiophytes.
Growth rates were measured and used to assess primary pro-
duction in the same region. Building on this contextual dataset,
biomass contributions were evaluated across provinces spanning
tropical to subpolar systems, providing a comprehensive view of
global importance and latitudinal variations.
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Results and Discussion

Eukaryote-Targeted Metagenomics Approach and Diversity Context.
Photosynthetic picoeukaryote populations were sorted by flow
cytometry (hereafter “sorted” or “the sort”) based on scatter and
autofluorescence characteristics from two subtropical North At-
lantic samples collected in the Florida Straits (Fig. 1, Fig. 2 Inset,
and SI Materials and Methods, Sections 1 and 2). Whole-genome
amplification (19) was performed on sorted target populations (SI
Materials andMethods, Section 3), providing unprecedented access
to pico-prymnesiophyte DNA.
The sorted pico-prymnesiophytes were distinct from cultured

taxa but closely related to environmental sequences from native
populations. 18S rDNA clone libraries built from the sort DNA
were analyzed within the context of <2–3 μm size-fractionated
clone libraries from the Florida Straits, the Sargasso Sea, the
Pacific Ocean (Fig. 2, SI Materials and Methods, Section 4, Fig.
S1A, and Table S1), and published data. Similar to other studies
(6, 13, 15), the vast majority of sequences were from uncultured
prymnesiophytes. The majority of prymnesiophyte sequences
from the Florida Straits Station 04 sort belonged to environ-
mental group 8 (111 clones, 99–100% identity; Fig. S1B), also
present in the easterly Station 08 sort. Lower levels of group 3
were detected in the Station 04 sort (7 clones, 99–100% identity),
along with sequences at the tip of the tree (e.g., group 15; SI
Materials and Methods, Section 5). Group 8 was also seen in the
Sargasso Sea (14) and on multiple dates in the Florida Straits
(Table S2). Group 8 had only 93% 18S rDNA identity to any
cultured organism (to Chrysochromulina), and phylogenetic place-
ment was unresolved (no bootstrap support).
The observed level of group 8 18S rDNA divergence has im-

portant implications for gene content. The diatoms Thalassiosira
pseudonana and Phaeodactylum tricornutum, with 90% 18S
rDNA identity, share only 30–40% of their genes and occupy
fundamentally different niches (10). Of the four picoeukaryote
genomes (all prasinophytes), two Micromonas isolates, with 97%
18S rDNA identity, have 69.5% DNA identity over aligned ge-
nome regions, sharing at most 90% of their protein-encoding
genes (11). Although an unpublished genome of the coccoli-
thophore Emiliania huxleyi is available, this prymnesiophyte is
larger than the pico-prymnesiophytes and expected to occupy
a distinct niche (8, 16). Furthermore, the soft-bodied prymne-
siophytes in the sort were distant from coccolithophores (Fig. 2),
a group known for their calcium carbonate plates (16).
Given the differences between the group 8–enriched sort

population and cultured taxa, we used targeted metagenomics to
discover genomic features of environmentally relevant pico-
prymnesiophytes. Station 04 sort DNA was sequenced by 454-FLX

and Sanger technologies (SI Materials and Methods, Section 5).
Genes were modeled on assembled scaffolds and then screened
phylogenetically using theE. huxleyi nuclear genome. For selection,
half the identifiable genes on a scaffold had to clade directly with
E. huxleyi, to the exclusion of gene sequences from all other taxa (SI
Materials and Methods, Section 6). This ensured that only prymne-
siophyte-derived scaffolds were further analyzed, because the stra-
menopile Pelagomonas fell partially in the same flow-cytometric
population (SI Materials and Methods, Section 5). Seventy-one per-
cent of genes on selected scaffolds were sistered byE. huxleyi genes,
demonstrating screening rigor; only this scaffold subset (2 MB of
assembly) was considered unambiguously pico-prymnesiophyte
derived and used for comparative analyses. Twenty-nine percent of
genes on pico-prymnesiophyte scaffolds seemed to be missing from
E. huxleyi, supporting their distance from coccolithophores.

Gene Density and Genome Size Predictions. Prymnesiophytes are
currently placed in the controversial eukaryotic Supergroup Chro-
malveolata along with stramenopiles (e.g., diatoms) and alveolates
(e.g., dinoflagellates) but separate from the Supergroup Arch-
aeplastida, which includes prasinophytes and all green-lineage
organisms (e.g., landplants).However, their genomecharacteristics
are unknown and phylogenetic placement uncertain. We found
high genedensity in the pico-prymnesiophytemetagenome (Fig. 3A
and SI Materials and Methods, Section 7), akin to pico-prasino-
phytes, which purportedly underwent genome streamlining to op-
timize life in oligotrophic niches (9, 11). GC content was 60%.
Genome size was calculated using multiple methods accommo-

dating the composite nature of the sorted pico-prymnesiophyte
population (SI Materials and Methods, Section 7). The first involved
a model linking the size distribution of euKaryotic Orthologous
Groups of proteins (KOG), allocation of functions across those
families and total gene content for 12 protistan reference genomes.
This rendered an average genome content of 12,711 (±1,145) genes
(Fig. S2A and B), such that the 1,624 pico-prymnesiophyte nuclear-
encoded genes identified constituted 13% of those in a
representative genome. Results were similar (11,600 total genes;
SIMaterials andMethods, Section 7) using amethod based on counts
of 132 near single-copy core genes in other eukaryotes. Diatom ge-
nome content is comparable, ≈10,000–14,000 genes (10), whereas
thepico-prasinophytes contain8,000 to just over10,000genes (9, 11).

Mosaic Gene Repertoires. Evolutionary and functional aspects of
chloroplast and nuclear genomes were analyzed using gene con-
tent. 16S rRNA genes revealed pico-prymnesiophyte chloroplast
genome scaffolds; the largest (scaffold C19847), containing 45
protein-encoding genes among others (Tables S3 and S4), seemed
to be from group 8 (SI Materials and Methods, Sections 5 and 6,
and Figs. S1B and S3A). Phylogenetic analysis of 22 concatenated
plastid genome-encoded genes conserved across all lineages
placed this pico-prymnesiophyte within the Chromalveolata, be-
tween cryptophytes and stramenopiles, and directly sistered by
E. huxleyi (SI Materials and Methods, Section 7, and Fig. S3B), the
only published prymnesiophyte plastid genome (20). This place-
ment corresponded to that for E. huxleyi in other plastid phylog-
enies (21), but with greater support. Nucleotide level comparison
of C19847 with E. huxleyi showed large-scale rearrangements akin
to the divergent diatoms (Fig. S3C). Gene-level synteny was rel-
atively conserved with E. huxleyi (Fig. S3D).
In contrast, global analysis of the 1,624 predicted pico-

prymnesiophyte nuclear-encoded genes revealed a distinctive evo-
lutionary signature relative to plastid genome-encoded elements.
Phylogenomic analyses of nuclear-encoded genes indicated that
these phytoplankton are evolutionarily situated between the green-
lineage and stramenopiles, with greater apparent affinity to the
former. The gene repertoire shared a higher degree of overlap with
prasinophytes (Fig. 3B). Even among pico-prymnesiophyte genes
with homologs in both prasinophytes and stramenopiles, similarity
was generally higher to prasinophytes. Of 352 phylogenetic trees
constructed herein that contained at least one green-lineage or-
ganism and one stramenopile, the genetic distance between the
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pico-prymnesiophyte and the formerwas shorter twice as often (Fig.
S4A). Across all trees, the mean relative genetic distance was 6.5%
shorter between pico-prymnesiophytes and Archaeplastida, com-
pared with stramenopiles, calling into question the current, largely
plastid genome-based, phylogenetic placement of this lineage.
More than 75%of pico-prymnesiophyte genes assigned toKOGs

were in the largest KOG families (top 20%), whereas for other
marine phytoplankton this percentage was lower (SI Materials and
Methods, Section 7). This high level of KOG redundancy reflected
the mosaic nature of pico-prymnesiophyte gene repertoires. The
functional KOG repertoire straddled prasinophytes and strameno-
piles, such that several expansions in the metagenome seemed to
be absent from one or both of these other lineages. Presence of
more than one pico-prymnesiophyte taxon in the sort does not ex-
plain this redundancy, because it would require disproportionate
sampling of the same KOGs, to the exclusion of others, from each
pico-prymnesiophyte genome. Families with multiple representa-
tives included nudix hydrolases and arylsulfatases, not found in
prasinophytes, but present in metazoa and bacteria (arylsulfatases
are also in stramenopiles) (Table S5). Polyketide synthases were
also found and present in prasinophytes and bacteria but missing
from diatoms.

The discontinuity in gene content could help explain puzzling
ambiguities in prymnesiophyte evolution. The chloroplast ge-
nome would drive the relationship toward a red-lineage sec-
ondary endosymbiosis (Chromalveolata; Fig. S3B), whereas the
nuclear genome retains features of a green host (Fig. 3B and Fig.
S4A). Of pico-prymnesiophyte genes that appeared more similar
to Archaeplastida than to stramenopiles, 55% were closer to
streptophytes, particularly early diverging plants, suggesting
a strong ancestral green-lineage influence in the prymnesiophyte
host organism’s gene pool; only 45% were closer to green algae
(Fig. S4B). Alternatively, like diatoms (22), prymnesiophytes
may have obtained green-lineage genes from an ancient cryptic
endosymbiont. Although the paucity of eukaryotic phytoplank-
ton genomes may influence results, nuclear-encoded marker
genes from larger cultured prymnesiophytes also show strong
green-lineage affiliations (3). We anticipate that E. huxleyi ge-
nome analysis will confirm that the mosaic gene repertoire
reported here is a lineage-wide characteristic.

Functional Gene Repertoire. Pico-prymnesiophyte nuclear-encoded
genes also showed differences in functional composition (Fig.
3C). Although all transcription factor families recovered were
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Fig. 2. Maximum-likelihood reconstruction of (blue lines) environmental and (black) cultured prymnesiophyte 18S rDNA sequences from two sorts and 25 size-

fractionated samples from discrete depths, dates, and locations (circles; Table S1) and previous publications (triangles) (SI Materials and Methods, Section 4). The

Station 04 sort (bluearrow)was in theGulf Streamcore.A single representativewas used for redundant sequenceswithin each library. Supported clades composed

of only environmental sequences were collapsed after tree buildingwhen of≥99% identity (blue groups 1–22; Table S2). Node support is shown for (black circles)

100% and (black triangles) ≥75% support. Uncultured prymnesiophytes have also been seen recently in the South Pacific (40).
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also in Archaeplastida and stramenopiles, higher proportions of
specific regulators were observed, such as chromatin remodeling
genes (Tables S5 and S6), which play roles in meiosis and “life-
style” changes. These included divergent SET-domain proteins
and SNF2/helicases as chromatin remodeling factors (23). Dis-
tinct SUV39 subfamily members (SET) identified were not found
in stramenopiles (Fig. S5A). This family is responsible for het-
erochromatin formation (23) and could enable control over in-
vasive entities like transposons and viruses.
Other features corresponded to life in modern oceans, for ex-

ample, a Ni-containing superoxide dismutase (Ni-SOD). SODs are
vital to photosynthetic organisms, scavenging toxic superoxide rad-
icals generated by multiple metabolic pathways including photo-
synthesis. Isoformsuse differentmetals at the active site, influencing
tracemetal requirements (24). Presence of sodN, which encodesNi-
SOD, corresponds with absence of Fe-SOD–encoding genes in
many marine bacterial genomes, and Ni-SOD seems to be more
prevalent in open-ocean strains (25). This results in replacement of
somecellularFedemandwithNi, a valuable adaptation considering
10-fold higher Ni concentrations in oceanic waters (25). We iden-
tified putative sodN genes in the pico-prymnesiophyte meta-
genome, the four pico-prasinophyte genomes (seealso ref. 9) andP.
tricornutum (Fig. S5B).T.pseudonanadidnot seem toencode sodN,
but rather a Fe-SOD, correlating with its coastal distribution and
higher iron quotas than P. tricornutum (26). Fe-SOD–encoding
genes were not found in the sodN-containing phytoplankton
genomes. Presence of putative sodN genes in oceanic phytoplank-
ton from threemajor eukaryotic lineages suggests that replacement
of Fe-SODwithNi-SODmay be a common adaptation to the lower
availability of iron in modern oceans than in past times (27).
Several domains involved in uptake of large substrates, such as

proteins and nucleic acids, as well as salvage of nucleosides, were
represented more highly in the pico-prymnesiophyte meta-
genome (Fig. 3C). These could facilitate uptake of otherwise in-
accessible nutrients. For example, a member of the amino acid/
polyamine/organocation superfamily is a likely transporter for the
nitrogen-rich guanine derivative xanthine, potentially important
under nitrogen-limiting conditions. A plant-like putative acid
phosphatase (Table S5), which likely cleaves intracellular ortho-
phosphoric-monoesters to phosphate, could also be involved in
nutrient scavenging, although this role is speculative. Overall,
features of the metagenome suggest adaptations associated with
survival in oligotrophic environments.

Environmental Importance. Increased stratification and lower nutri-
ent concentrations predicted under some climate-change scenarios
are hypothesized to create conditions favoring picophytoplankton
over larger species (11). However, questions remain regarding the
ecological importance of pico-prymnesiophytes in today’s condi-
tions, against which physiological stressors and future changes can
be assessed. To establish their roles, we developed a contextual
metadataset for the pico-prymnesiophyte metagenome, including
distributions at the subtropical North Atlantic sites (Fig. 2, Inset)
by FISH. Biomass contributions were compared with the overall
picophytoplankton community, specifically, other picoeukaryotes,
Synechococcus and Prochlorococcus (SI Materials and Methods,
Sections 2, 9, and 10).
Pico-prymnesiophyte contributions in the Sargasso Sea were

roughly equivalent at the surface and deep chlorophyll maximum
(DCM), representing 23% and 21% of picophytoplankton carbon,
respectively. Two pico-prymnesiophyte size classes were evident,
cells of 1.9 ± 0.4 × 2.1 ± 0.3 μm (n= 89) and 2.8 ± 0.6 × 3.4 ± 0.5
μm (n= 127) (Table S7). In the Florida Straits their contributions
were typically higher in surface waters, although more nutrients
were presumably available at the DCM (Fig. S6A). Here, 90% ±

9% and 87% ± 13% of prymnesiophytes were <3 μm, averaged
over 1 y, at the surface and DCM, respectively. The direct-count–
based biomass approach resulted in lower pico-prymnesiophyte
DCMcontributions than estimated byHPLC (Fig. S6B). However,
these methods gave similar surface trends, supporting the HPLC-
based inference that picoplanktonic taxa form most prymnesio-
phyte biomass in open-ocean surface waters (6, 12, 28).
Pico-prymnesiophyte specific growth rates showed that these tiny

eukaryotes can grow rapidly, amplifying contributions to primary
production. Rates were measured by the dilution method and di-
rect counts (SI Materials and Methods, Section 11), which render
growth rates close to in situ cell cycle–based rates for taxa amenable
to the latter analysis (29, 30). Pico-prymnesiophyte growth rates
in the Sargasso Sea were high at 15 m (1.12 d−1, r2 = 0.87, P <

0.07) and lower at 70 m (0.29 d−1, r2 = 0.73, P < 0.07). Pro-
chlorococcus grew more slowly (0.63 d−1, r2 = 0.54, P < 0.01) than
pico-prymnesiophytes at the surface, but faster (0.60 d−1, r2 =
0.61, P < 0.001) at depth. Because the pico-prymnesiophyte data
constitute the first specific growth rates reported, for experimental
validation, we compared Prochlorococcus growth rates with pre-
vious direct count-based rates from the same region and time of
year, which were similar (0.52 d−1) (30).

Fig. 3. Characteristics of the pico-prymnesiophyte metagenome. (A) Gene density histograms as the proportion of nucleotides in genes over all chromosomes

within an incrementally sampled sliding window in prasinophytes and photosynthetic (diatoms and Aureococcus) and nonphotosynthetic (Phytophthora) stra-

menopiles. Average gene density on pico-prymnesiophyte scaffolds was 74% (magenta line). (B) Venn diagram of pico-prymnesiophyte genes in relation to

prasinophyte (green,Micromonas andOstreococcus), diatom (beige), and Phytophthora (yellow) genes by BLASTP (e-value≤1.0e−9). Numbers indicate gene counts

in each Venn group (magenta letters), whereas pie charts show relative best BLAST proportions for overlapping groups. Some pico-prymnesiophyte genes (blue

text) were not found in the other lineages. (C) Comparison of functional profiles of pico-prymnesiophyte–specific genes with those fromeach Venn group by high-

level GeneOntology (GO)molecular functions. Relative proportions are shown for each GO functionwithin a Venn group such that each column represents 100%.
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Wecombined biomass with specific growth andmortality rates to
estimate primary production. Despite lower pico-prymnesiophyte
abundance, their combined greater cellular biomass and faster
growth led to primary production levels comparable to Prochloro-
coccus at 15 m (1.1 and 1.8 μg C L−1 d−1, respectively; SI Materials
andMethods, Section 11). Pico-prymnesiophyte primary production
was almost 4-fold higher than that of all other picoeukaryotes
(0.27 μg C L−1 d−1). Total primary production at the Bermuda
Atlantic Time-series Study (BATS; Fig. 2, Inset) in mid-May, be-
fore our experiments, and just afterward, in mid-June, was 7.81 and
0.96 μg C L−1 d−1, respectively, at 20 m (31). Seasonal stratification
developed during this period, leading to lower production by mid-
June. Over a decade, BATS total primary production occasionally
ranged up to 6 μg C L−1 d−1 at 20 m, but was typically 2–4 μg C L−1

d−1 each June; the pico-prymnesiophyte value constitutes 25–50%
of that. Likewise, a flow cytometrically defined picoeukaryote
population (73%± 2%prymnesiophyte cells, over 20 stations), was
recently shown to perform 25% ± 9% of primary production in the
North East Atlantic, ranging up to 38% (32). Plastid-16S rRNA
genes were evaluated at one station in that study and showed un-
cultured prymnesiophyte taxa, as found herein.

Global Contributions and Latitudinal Gradients. Our results, taken
with those from the North East Atlantic (32), point to significant
pico-prymnesiophyte contributions in the subtropical North At-
lantic. However, variations between oceans and latitudinal gra-
dients translate to major biotic differences, and the respective
communities will likely respond to change differently. To assess
global surface biomass contributions by pico-prymnesiophytes we
counted and sized cells in five biogeographical provinces, specifi-
cally subpolar (high-latitudes) and subtropical-temperate (mid-
latitudes) systems, aswell as the tropics (low latitudes) (SIMaterials
and Methods, Sections 1, 2, 9, and 10, and Table S8).
Globally, pico-prymnesiophytes averaged 2.6 ± 1.8 μg C L−1

when the areal extent of each provincewas accounted for (Table 1).
This amounted to ≈50% of that of Prochlorococcus (4.7 ± 2.1 μg C
L−1), which was less evenly distributed and nearly absent from cold
waters. The considerable biomass of pico-prymnesiophytes was
again in part due to larger cell size than other picophytoplankton
(6), and their contributions were less obvious by abundance alone
(Table S8); Prochlorococcus, for instance, is orders of magnitude
more abundant in low- and mid-latitudes but is also much smaller.
Biomass showed a strong latitudinal signal. In high latitudes,

pico-prymnesiophytes dominated, comprising 50–56% of pico-
phytoplankton biomass (Fig. 4, Table 1, and Table S8). Relative
contributions in mid-latitudes were modified by variations in other
groups. Pico-prymnesiophyte biomass per liter was maximal in the
northern subpolar province, but themassive extent of the Southern
Ocean, relatively unimpeded by land, rendered their greatest
contributions to global biomass in the southern subpolar province.
Pico-prymnesiophyte contributions were lowest in the tropics

(1.8 μg C L−1), comprising approximately one fifth (21%) of Pro-
chlorococcus biomass (Table 1). These in situ observations were at
odds with a recent report suggesting that pico-prymnesiophytes
are more important than Prochlorococcus in low latitudes, based
on an algorithm relating satellite surface Chl to prymnesiophyte

pigments and their contribution to total Chl (15). Validation (of
ref. 15) would result in major reevaluation of tropical systems
where the streamlined genome, small size, and low nutrient quotas
of Prochlorococcus seem highly advantageous given extended pe-
riods of stratification (see, e.g., ref. 17). The significant discrepancy
with our results may stem from issues surrounding the algorithm-
based approach used in ref. 15, such as (i) the fact that other lin-
eages can contain the prymnesiophyte-indicative marker pigment
(28, 33) (SI Materials and Methods, Section 8), (ii) a variable re-
lationship between a specific pigment content and surface Chl, or
(iii) not partitioning contributions by organism size and the fact
that HPLC samples are not size-fractionated. Furthermore, our
tropical surface direct-count–based Prochlorococcus biomass data
corresponded well with that from HPLC (28, 34), which, for Pro-
chlorococcus, is less prone to such caveats.
Pico-prymnesiophytes seem to be highly successful and show

signs of optimization to open-ocean conditions. Features within
the metagenome remain difficult to relate to niche differentia-
tion given 37% genes of unknown function, similar to many
genomes. This lack of functional understanding is perhaps the
greatest impediment to connecting genomes to organism physi-
ology and response. The research herein positions us to explore
the function of such genes in situ.

Conclusions

Soft-bodied prymnesiophytes survived the K/T boundary mass
extinctions (16), indicating that taxa akin to those analyzed herein
were resilient to perturbation. Surface water warming has now
been correlated with increases of picophytoplankton in the Arctic
Ocean (35) and will presumably impact lower latitudes. However,
the success of small prymnesiophytes and their contributions in
future times are linked to evolutionary history and geneticmakeup,
as well as the rate and extent of perturbations experienced.
Our results, showing genomic features of pico-prymnesiophytes,

their rapid growth and significant global contributions, provide

Table 1. Average surface biomass of picophytoplankton groups in five biogeographical provinces

Biomass (μg C L−1)

Latitude

Ocean area

(× 1012 m2) Samples (n) Prochlorococcus Synechococcus

“Non-prym”

picoeukaryotes Pico-prymnesiophytes

60°–45°N 13.22 8 0.1 (0.1) 2.4 (1.1) 3.0 (1.7) 7.0 (4.7)

45°–20°N 47.18 24 3.7 (3.0) 0.5 (0.5) 1.0 (2.7) 2.0 (1.5)

20°N–20°S 122.60 59 8.4 (2.8) 1.0 (1.1) 1.8 (1.7) 1.8 (0.9)

20°–45°S 75.35 19 3.1 (2.0) 0.4 (0.6) 3.7 (1.4) 1.8 (0.9)

45°–65°S 48.69 11 0.3 (0.4) 1.1 (1.9) 3.9 (2.8) 5.5 (4.9)

Area varies over latitudinal zones owing to the influence of land masses; sample number is also shown, with values from sites sampled seasonally averaged

and counted here as 1 sample (Table S8). Values in parenthesis reflect SDs.
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Fig. 4. Global surface biomass contributions of prymnesiophytes as percent-

age of total picophytoplankton carbon, represented by bubble size (scaling at

lower right). Sea surface temperature represents 1° increments averaged

monthly over 18 y; note differences in the five biogeographical provinces.
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several key advancements. Although pico-prymnesiophytes are
clearly diverse, aspects of composition, potential streamlining, and
functional attributes revealed by targeted metagenomics provide
insights into their evolutionary success. Together with data on
prasinophytes and stramenopiles (10, 11), our analysis of the pico-
prymnesiophyte metagenome indicates that mixed-lineage gene
repertoires are a transcendent property of successful phytoplank-
ton in modern oceans, not a rare feature. These mosaic gene
repertoires seem to be compositionally distinct for each lineage,
influenced by disparate sources of the tree of life, or differential
gene loss from an ancestor, and presumably factors driving niche
differentiation. Furthermore, the complexity of marine microbial
communities makes it difficult to determine taxa critical to eco-
system processes and global biogeochemical models; our work
highlights the need to prioritize pico-prymnesiophytes. Finally, it
opens the door for research on the physiology and response
capabilities of uncultivated members of this ancient primary
producer lineage.

Materials and Methods

Methods details are in SI Materials and Methods. Samples were from the

North, Equatorial, and South Atlantic, the North, Equatorial, and West Pa-

cific, and the Indian Ocean(s). 18S rDNA clone libraries (14) were constructed

from subtropical Atlantic and North West Pacific size-fractionated samples,

or from cells sorted by flow cytometry.

Approximately 300 cells from target populations in the subtropical North

Atlantic were sorted by flow cytometry. DNA from two populations was

amplified bymultiple displacement amplification (19) and used for PCR-based

clone libraries and, for one sample, metagenomic sequencing. Metagenomic

data were assembled in a two-step high-stringency process and only scaffolds

resulting from the second stage considered further. Scaffolds were screened

by phylogenomic methods using predicted genes and a database containing,

among others, 46 eukaryotic genomes including 10 phytoplankton and 2

additional protistan stramenopile genomes. Comparative gene analyses with

E. huxleyi are prohibited and were not performed. Pico-prymnesiophyte

predicted proteins were characterized by profiling and genome-size estimate

methods. Chloroplast scaffolds were manually selected and annotated.

Microscopy was used with a prymnesiophyte-specific FISH probe (36) to

count and size cells. For some cruises identification was by chloroplast ar-

rangement, flagellar characteristics, and occasional presence of a hapto-

nema; no significant difference (t test, P = 0.43) was detected for Atlantic data

from 25° to 35° N (FISH: 500 ± 61mL−1, n = 26; characteristics-based: 593 ± 108

mL−1, n = 12). Other picophytoplankton groups were enumerated by flow

cytometry (37). Biovolume was calculated from cell size for pico-prymnesio-

phytes and biomass determined using an established biovolume-based car-

bon conversion factor, also used for other picophytoplankton groups (38)

(Table S7). Dilution experiments were according to (28, 30) and counts by FISH

and flow cytometry. HPLC data were analyzed according to ref. 39.
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