
Targeted Mutation of Plakoglobin in Mice Reveals Essential 

Functions of Desmosomes in the Embryonic Heart 

Patricia Ruiz,* Volker Brinkmann,* Birgit Ledermann,* Martin Behrend, Christine Grund, II 
Christoph Thalhammer, ~ Frank Vogel,* Carmen Birchmeier,* Ursula Gtinthert,II Werner W. Franke ,  ¶ 

and Walter Birchmeier* 

*Max-Delbrtick-Center for Molecular Medicine, 13122 Berlin, Germany;*Sandoz Pharma, Preclinical Research, Basel, 
Switzerland; .~Franz-Volhard Clinic, Humboldt University, Berlin, Germany; IIBasel Institute for Immunology, Basel, 
Switzerland; ¶German Cancer Research Center, Heidelberg, Germany 

A b s t r a c t .  Plakoglobin (~-catenin), a member of the ar- 

madil lo family of proteins, is a constituent of the cyto- 

plasmic plaque of desmosomes, as well as of other ad- 

hering cell junctions, and is involved in anchorage of 

cytoskeletal filaments to specific cadherins. We have 

generated a null  mutation of the plakoglobin gene in 

mice. Homozygous - / -  mutant animals die between 

days 12-16 of embryogenesis due to defects in heart 

function. Often, heart ventricles burst and blood floods 

the pericard. This tissue instability correlates with the 

absence of desmosomes in heart, but not in epithelial 

organs. Instead, extended adherens junctions are 

formed in the heart, which contain desmosomal pro- 

teins, i.e., desmoplakin. Thus, plakoglobin is an essen- 

tial component of myocardiac desmosomes and seems 

to play a crucial role in the sorting out of desmosomal 

and adherens junction components, and consequently 

in the architecture of intercalated discs and the stabili- 

zation of heart tissue. 

p LAKOGLOBIN (-y-catenin) is the first member discov- 
ered of the armadillo family of proteins (Cowin et 
al., 1986; Franke et al., 1989), which are character- 

ized by domains composed of variable numbers of arm re- 
peats. These repeats, 42 amino acids in length, have been 
identified in the gene product of Drosophila armadillo, a 

segment polarity gene involved in wingless signaling (Pei- 
fer and Wieschaus, 1990; Peifer et al., 1994; Peifer, 1995). 
Other prominent members of this family are 13-catenin, 
a-importin, p120 cAs and the product of the adenomatous 
polyposis coli (APC) 1 gene; they have such different func- 
tions as control of development, cell-cell interactions, tu- 
mor progression, nuclear import, and signal transduction 
(Htilsken et al., 1994a; Kussel and Frasch, 1995; T6r6k et al., 
1995; Peifer, 1996). 

Plakoglobin consists of thirteen arm repeats flanked by 
unique NH 2- and COOH-terminal sequences, and is a con- 
stitutive component of plaques associated with diverse ad- 
hering junctions. These include (a) desmosomes, which 
anchor intermediate-sized filaments (IF), (b) various mi- 
crofilament anchoring junctions, such as the zonulae 
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1. Abbreviat ions  used in this paper: APC, adenomatous polyposis coli; IF, 

intermediate-sized filament. 

adhaerentes of epithelia and the belt plaques of endothe- 
lial adhering junctions, and (c) junctions without detect- 
able filaments, such as in lymphatic endothelia and gran- 
ule cells of cerebellar glomeruli (Franke et al., 1987; 
Garrod, 1993; Schmidt et al., 1994; Rose et al., 1995). Pla- 
koglobin exists in a regulated equilibrium betwee, n a dif- 
fusible cytosolic form and the plaque-assembled form, 
which is specifically bound to a defined domain in the 
COOH-terminal part of certain cadherins such as desmo- 
gleins, desmocollins, and classical cadherins (Cowin et al., 
1986; Korman et al., 1989; Knudsen and Wheelock, 1992; 
Troyanovsky et al., 1993; Kowalczyk et al., 1994; Mathur 
et al., 1994; Ptott et al., 1994; Troyanovsky et al., 1994; 
Htilsken et al., 1994b; Ozawa et al., 1995; Sacco et al., 1995; 
Chitaev et al., 1996). ~-Catenin, the closest relative of pla- 
koglobin, associates with classical cadherins only (e.g., 
E- N- and VE-cadherin) and mediates the interaction to 
the microfilament-associated component (x-catenin (Rubin- 
feld et al., 1993; Suet  al., 1993; Aberle et al., 1994; Kowal- 
czyk et al., 1994; N~ithke et al., 1994; Plottet al., 1994; Hiilsken 
et al., 1994b). The domains of plakoglobin and 13-catenin, 
which associate with cadherins and with the cytoskeleton- 
associated c~-catenin, have recently been mapped: while 
the central arm repeats interact with cadherins, the NH2- 
terminal region as well as the first arm repeat bind to et-cate- 
nin (Cowin et al., 1986; Aberle et al., 1994; Hoschuetzky et 
al., 1994; N~ithke et al., 1994; Htilsken et al., 1994b; Sacco 
et al., 1995; Chitaev et al., 1996; Witcher et al., 1996). Thus, 
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two distinct adhesion complexes can be defined in vitro, 
one containing E-cadherin, 13-, and et-catenin, and the 
other containing E-cadherin, plakoglobin, and et-catenin. 
Both, plakoglobin and 13-catenin can be tyrosine phosphor- 
ylated by several receptor and nonreceptor tyrosine ki- 
nases (Matsuyoshi et al., 1992; Behrens et al., 1993; Aberle 
et al., 1994; Hoschuetzky et al., 1994; Kanai et al., 1995). 
Plakoglobin and 13-catenin can also interact with the tumor 
suppressor gene product APC (Rubinfeld et al., 1993; Suet 
al., 1993; Htilsken et al., 1994b; Ozawa et al., 1995; Rubinfeld 
et al., 1995, 1996) and APC and the cadherins compete for 
binding to the arm repeats (Htilsken et al., 1994b; Rubin- 
feld et al., 1995). Recent gene ablations of 13-catenin, as 
well as of E-cadherin, have demonstrated the essential 
role of these molecules in the function of adherens junc- 
tions and in tissue formation (Larue et al., 1994; Haegel et 
al., 1995; Riethmacher et al., 1995). 

Desmosomes are intercellular junctions characteristic of 
epithelial cells, where they anchor IF of the cytokeratin 
type, as well as of myocardiac cells for which IF containing 
desmin are typical. Desmosomes contain cell type-specific 
isoforms of the desmosomal cadherins, i.e., the desmo- 
gleins Dsg 1-3 and the desmocollins Dsc 1-3 (Koch et al., 
1992; Buxton et al., 1993; for review see Garrod, 1993; 
Koch and Franke, 1994), the cytoplasmic domains of 
which contribute to plaque formation. 

The desmosomal cadherins are associated with plako- 
globin and form a plaque containing desmoplakin I (Franke 
et al., 1982; Cowin et al., 1986; Stappenbeck et al., 1993; 
Kowalczyk et al., 1994; Mathur et al., 1994; Troyanovsky 
et al., 1994) and certain cell type-specific accessory pro- 
teins such as desmoplakin II, plakophilins 1 and 2, and 
others (Schwarz et al., 1990; Garrod, 1993; Hatzfeld et al., 
1994; Schmidt et al., 1994). Plakoglobin is thus the only 
known member of the armadillo family, which can be a 
component of two distinct major types of intercellular 
junctions: adherens junctions and desmosomes. 

Drosophila armadillo, the plakoglobin and [3-catenin 
homologue, has been shown to function in cell adhesion 
and to play a role in the signaling of wingless: the secreted 
wingless protein mediates a signal to the cell surface recep- 
tor frizzled (Bhanot et al., 1996) as well as to the cytoplas- 
mic proteins dishevelled, zeste white-3, and armadillo (Pei- 
fer and Wieschaus, 1990; Noordermeer et al., 1994; Siegfried 
et al., 1994; Peifer et al., 1994; Peifer, 1995; Yanagawa et al., 
1995). When activated by wingless, armadillo translocates 
to the nucleus and affects gene expression (Peifer et al., 
1994; Peifer, 1995; see also Behrens et al., 1996). There is 
evidence that the wingless signaling pathway is conserved 
in vertebrates: in Xenopus, modulation of [3-catenin and 
plakoglobin expression affects dorsal mesoderm forma- 
tion, a process regulated by wnt/wingless (McMahon and 
Moon, 1989; Smith and Harland, 1991; Heasman et al., 
1994; He et al., 1995; Karnovsky and Klymkowsky, 1995; 
cf. also Bradley et al., 1993; Hinck et al., 1994; Yost et al., 
1996). It has also been demonstrated that 13-catenin and 
plakoglobin bind to the transcription factor lymphocyte 
enhancer binding factor-1 (LEF-1) and that this interac- 
tion modulates the function of LEF-1 (Behrens et al., 1996). 

Here, we describe the targeted mutation of the plako- 
globin gene in mice using homologous recombination and 
embryonic stem cell technology. We have found that dur- 

ing embryonal development, plakoglobin is an essential 
component of cardiac but not of epithelial desmosomes: its 
absence leads to embryonal death between days 12-16 of 
development due to defects in heart histology, stability, 
and function. In the hearts of mice lacking plakoglobin, 
desmosomes are no longer detected and the remaining 
junctional structures and their compositions are drastically 
altered, resulting in a different distribution of desmoplakin 
and desmoglein. Surprisingly, typical desmosomes are 
present in embryonal epithelia, from intestine to epider- 
mis, suggesting that in these structures the absence of pla- 
koglobin may be compensated by (an)other molecule(s), 
which link desmocollins and desmogleins to the cytoskele- 
ton. Thus, our study demonstrates an essential role for pla- 
koglobin in the assembly of intercalated discs, which prove 
to be key elements in the stabilization of heart tissue and 
consequently, heart function. 

Materials and Methods 

Plakoglobin Targeting Vector and Generation of  
Mutant Mice 

A plakoglobin genomic clone was isolated from a 129/Sv mouse genomic 
library (Stratagene, La Jolla, CA), and a targeting construct was assem- 

bled from a 11-kb genomic fragment. In this vector, a large part of exon 3, 
the following intronic sequences and the 5' region of exon 4 (encoding 

amino acids 70-160) were replaced by a neomycin gene cassette (neo) in- 

serted in the same transcriptional orientation. A herpes simplex virus thy- 

midine kinase gene cassette (HSV-TK) was inserted at the 3' end of the 
construct (Mansour et al., 1988). The linearized targeting vector was elec- 

troporated into murine E14.1 ES-cells, which were selected using G418 
and gancyclovir. 

Unique integration and appropriate recombination of the targeting 
construct were verified by Southern blotting: cells were treated at 55°C in 

lysis buffer (100 mM Tris-HC1 pH 8.5, 5 mM EDTA, 200 mM NaCI, 0.2% 
SDS) with 0.1 mg/ml proteinase K, and genomic DNA was precipitated. 

After digestion with XhoI and XbaI, the fragments were separated by 
electrophoresis on 0.8% agarose gels and transferred to Hybond-N + 
membranes (Amersham Corp., Arlington Heights, IL). 32p-labeled probes 

were made from genomic plakoglobin sequences used for constructing the 

targeting vector: after digestion with BspEI and XbaI (1.1 kb 3' external 

probe) and with BstEII and NdeI (1.3 kb internal probe), fragments were 
isolated and labeled using the multiprime labeling system (Amersham). 

Hybridizations were carried out at 65°C overnight in hybridization buffer 
(5 x SSC, 0.5% SDS, 5 x Denhardts'solution, 10% dextran sulfate, and 

0.1 mg/ml denatured sonicated herring sperm DNA), and the blots were 
exposed to X-ray film for 24 h. ES-cell clones harboring the desired inte- 

gration event were injected into C57BL/6 recipient blastocysts and these 

were transferred into pseudopregnant NMRI females to generate chi- 
meric mice (Mansour et al., 1988). Male offspring exhibiting extensive 

coat color chimerism were mated to C57BL/6 females, and genotypes 

were identified first by PCR and then by Southern blot analysis of DNA 
isolated from tails. The day of vaginal plug formation was considered as 
day 0.5 of gestation. 

For PCR genotyping, embryonic yolk sacs and mouse tails were di- 
gested with 0.1 mg/ml proteinase K at 55°C in lysis buffer, and genomic 

DNA was precipitated. PCR was carried out in 15-1xl aliquots containing 
2 }xl of DNA in PCR buffer, 2 mM of each nucleotide, 1.3 ixg/ml of each 

primer and l U of Taq polymerase (Roche, Perkin-Elmer, Norwalk, CT). 
The following primers were used: plakoglobin sense strand 5'-CGGC- 

CATCGTCCATCTCATC; plakoglobin antisense strand 5'-CCTCC- 
TTCTTGGACAGCTGG;  neo-sense strand 5 ' -CTTCTATCGCCTFCT- 

TGACG (to detect a 300-bp fragment in the wild-type and a 150-bp 
fragment in the mutant allele). Samples were amplified for 30 cycles (96°C 
for 5 s; 60°C for 20 s; 72°C for 60 s) using a Biometra thermocycler, and re- 
action products were visualized by ethidium bromide staining in 1.2% 
agarose gels. 

For Northern blot analysis, poly(A) ÷ RNA was isolated from 11.5-d- 
old mouse embryos. Tissues were immediately frozen in liquid nitrogen 
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and stored at -80°C. For RNA preparation, tissues were ground in a mor- 
tar under liquid nitrogen and the powdered tissue mixed with hot phenol 
(80°C) saturated with TNE (20 mM Tris-HCl pH 7.5, 1 mM EDTA, 100 
mM NaCI). Poly(A)+RNA was isolated from oligo-dT cellulose. After gel 
electrophoresis, blots were hybridized as outlined above with a 372-bp 
mouse plakoglobin cDNA (67-439 bp) or a 1.3-kb mouse actin cDNA. 

For immunoblot analysis, proteins from ll.5-d mouse embryos were re- 
solved on 10% SDS-PAGE. Blots were incubated with polyclonal anti- 
bodies directed against human plakoglobin amino acids 731-745 (El021; 
Aberle et al., 1994) and against [3-catenin (Htilsken et al., 1994b), followed 
by horseradish peroxidase-labeled secondary antibodies and chemilumi- 
nescence detection (ECL kit, Amersham, UK). 

Histology and Immunocytochemistry 

For histological analysis, embryos were fixed in 4% formaldehyde at 4°C, 
dehydrated in a graded EtOH series, and embedded in Technovit 7100 
(Heareus Kulzer, Wehrheim, FRG). 6-p~m sections were stained with hae- 
matoxilin-eosin and photographed using a Zeiss Axiophot light micro- 
scope. 

For analysis with the confocal microscope, frozen sections were fixed 
with acetone for 10 min and incubated with primary antibodies at 4°C in 
PBS containing 1% BSA. Antibody concentrations used were as follows: 
E1021, 1 tLg/ml (affinity-purified anti-plakoglobin antibody); anti-13-cate- 
nin antiserum, l:400 (see Hiilsken et al., 1994b); monoclonal anti-13-cate- 
nin (Transduction Labs); 1 /~g/ml; monoclonal anti-desmoplakin 1 and 2 
antibodies, undiluted cocktail of hyhridoma supernatants (Troyanovsky 
et al., 1993); anti-desmoglein 2 antiserum (Dsg2-I, 1:100). After washing, 
sections were incubated with either Texas red-conjugated goat anti- 
guinea pig or Cy3-conjugated goat anti-mouse antibodies, together with 
CyS-conjugated goat anti-rabbit antibodies (1:200; Jackson Immunore- 
search Labs Inc., West Grove, PA) and FITC-conjugated phalloidin (1: 
100; Sigma). Sections were mounted in Mowiol (Calbiochem-Novabio- 
chem Corp., La Jolla, CA) and analyzed using a confocal microscope (Leica 
TCS, Bensheim, FRG). 

Electron and Immunoelectron Microscopy 

For electron microscopy, tissue specimens were fixed in 2.5% glutaralde- 
hyde, postfixed with OsO4 and contrasted with tannic acid and uranyl ace- 
tate. Specimens were dehydrated in a graded ethanol series and embed- 
ded in Epon 812. Ultrathin sections were contrasted with lead citrate and 

analyzed, using a Zeiss electron microscope EM 10. 
Pre-embedding immunoelectron microscopy was essentially carried out 

as described by Rose et al. (1995): Before antibody incubation, frozen sec- 
tions mounted on coverslips were fixed with 2% formaldehyde in PBS for 
15 min followed by permeabilization with 0.1% saponin in PBS for 10 rain. 
Monoclonal antibodies against desmoplakin (DP 2.15, 2.17, 2.19; Progen 
Biotechnik, Heidelberg, FRG) were applied for 2 h and the secondary 
anti-mouse lgG coupled to "Nanogold" (Bio Trend, Cologne, FRG) for 4 h. 
After fixation with 2.5% glutaraldehyde and postfixation with 2% OsO4, 
the bound gold was enhanced using the silver-enhancement kit "HQ-Sil- 
vet" (Bio Trend) for 4 min in the dark. Dehydration and embedding was 
as previously described (Franke et al., 1987). 

Functional Analyses 

For measurement of the amplitude of heart contraction and heart rate, we 
used a high resolution echo-tracking device, a highly sensitive angiometer 
equipped with a noninvasive ultrasound beam (NIUS 02; see Girerd et al., 
1994). ll.5-d-old embryos were dissected from the uterus and placed in 
PBS on a rubber dish. Single embryos were evaluated 6-8 times over a pe- 
riod of 5 rain, and data are given as mean ~m (amplitude) and beats per 
minute, respectively. 

Results 

Generation of Plakoglobin Mutant Mice 

We generated a null mutation of the plakoglobin gene by 
homologous recombination in embryonic stem cells (Fig. 

Figure 1. Target ing  vector  and Southern,  Nor thern ,  and immunob lo t  analyses of  ES-cells  and embryos  for plakoglobin.  (a) Rest r ic t ion 

map  of  the  genomic  p lakoglobin  clone used for vector  const ruct ion (top) of  the target ing vector  used for gene ablat ion (middle), and of 

the ta rge ted  locus (bottom). Exons  3 and 4 are r ep resen ted  by boxes  (ex3 and ex4). The  1.1-kb long 3' external  p robe  used for Sou thern  

blot analysis is shown as a black bar  (probe). Arrows  indicate restr ict ion sites for XbaI  and Xhol .  (b) Sou thern  blot  analysis of  genomic  

D N A  after  restr ict ion digest  with XbaI  and XhoI  f rom ES-cells and 11.5-d-old embryos .  The  3' external  p robe  de tec ted  restr ict ion frag- 

ments  of  11 kb (wild-type allele) and 8 kb ( targeted  allele). (c) Nor t he rn  blot  analysis of  p o l y ( A ) + R N A  from l l .5 -d -o ld  embryos:  blots 

were  hybridized with mouse  plakoglobin (top) or actin e D N A  probes  (bottom). (d) Western  blot analysis of total proteins  from l l .5-d-old  

control  and - / -  embryos  (mouse  salivary gland carc inoma cells, CSG,  served as control) .  Plakoglobin was p robed  with ant ibody 

ElO21(top) and p-ca tenin  as a control  with a specific ant iserum (bottom). Molecular  mass  re ferences  are indicated in ki lodaltons (kD).  
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Table I. Viability of Embryos Resulting from 
Heterozygous Intercrosses* 

Stage Number of litters + /+  + / -  - / - *  

10.5 3 4 19 8 

11.5-12.5 34 73 161 43 (21) 

14.5-15.5 11 24 53 7 (13) 

Adult  18 30 70 0 

* Genntyping was performed by PCR. 
In parentheses, the numbers of dead bomozygous mutant embryos are shown. 

1 a). ES-cells carrying the mutant allele were injected into 
C57BL/6 blastocysts, chimeric mice were produced and 
heterozygous animals were bred. We found that only wild- 
type (+ /+ )  and heterozygous ( + / - ) ,  but not homozygous 
( - / - )  animals were born, indicating that plakoglobin - / -  
animals die during embryogenesis (Fig. 1 b and Table I). 
We therefore isolated embryos at different stages of devel- 
opment and observed that most plakoglobin - / -  embryos 
died between days 12 and 16 of gestation. To assess 
whether our strategy had resulted in fact in a null mutation 
of the plakoglobin gene, we conducted Northern and 
Western blot analysis on ll.5-d-old embryos. While wild- 
type and heterozygous embryos expressed both plakoglo- 
bin mRNA (Fig. 1 c) and protein (Fig. 1 d), neither were 
detected in homozygous mutant animals. 

Plakoglobin - / -  Mice Develop Heart Defects 
during Embryogenesis 

To determine the.cause of lethality in plakoglobin - / -  
mice, we closely examined embryos between days 10 and 
16 of development. Heterozygous animals could not be 
distinguished in overall morphology from wt animals. 
However, plakoglobin - / -  embryos were slightly growth- 
retarded at day 12 of gestation, and blood supply, particu- 
larly of liver and placenta, was reduced (Fig. 2, a and b). 
We also observed that the pericardial cavities of mutant 
embryos were frequently swollen and filled with blood 
(see arrow in Fig. 2 d). The hearts of these embryos were 
often found to be ruptured, although they were still beat- 

ing. Histological analysis revealed that heart rupture oc- 
curred in the ventricles (see short arrow in Fig. 2 ~ a blood 
clot in the pericard is marked with the long arrow). We 
also analyzed heart function in ll.5-d-old embryos, using a 
high resolution ultrasonic echo-tracking device: the ampli- 
tude of heart contraction was strongly reduced in plako- 
globin - / -  animals (28 _+ 8 ~m) when compared to the 
control animals (53 --- 15 ~m). Furthermore, the heart rate 
was increased (88 - 20 beats per min) when compared to 
the control animals (64 _+ 17 beats per min). We conclude 
from these observations that plakoglobin - / -  embryos 
die of defects in heart function at mid-gestation. 

Desmosomes Are Absent in the Intercalated Discs of  
Plakoglobin - / -  Mice 

Immunofluorescence microscopy showed extensive ex- 
pression of plakoglobin in the embryonic heart at day 10.5 
(Fig. 2, g and i; the absence of plakoglobin in the heart of 
homozygous mutant embryos is shown in Fig. 2 h). Ultra- 
structurally, cardiomyocytes at this stage contain well- 
organized sarcomeres anchored at the cytoplasmic plaques 

Figure 2. Phenotype of plakoglobin - / -  and control embryos at 
day 12 of gestation. External and histological appearance of wild- 
type (a, c, and e) and plakoglobin - / -  (b, d, and f) embryos. 
Note the reduced blood supply of plakoglobin - / -  embryos, 
compared with control littermates, particularly in liver and pla- 
centa (compare a and c with b and d). The white arrow in d and 
the large arrow in findicate blood flooding the pericardial cavity; 
the small arrow in fpoints to a rupture in the left heart ventricle 
in a plakoglobin - / -  embryo. (g) Immunofluorescence micros- 
copy showing plakoglobin (by anti-plakoglobin antibody stain- 
ing) in cryostat sections through heart tissue of a wild-type em- 
bryo and a homozygous plakoglobin - / -  mutant (h). (i) Shows a 
section through a whole embryo stained for plakoglobin, h and li 
(in c and d) indicate heart and liver, respectively; v and at (in e-i) 
indicate ventricle and atrium. 
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of adherens junctions, which were readily identified in the 
intercalated discs of heart tissue from wt and plakoglobin 
+ / -  embryos (arrows in Fig. 3 a). Note that desmosomes 
in the intercalated discs are not connected to sarcomerie 
fibrils (arrowhead in Fig. 3 a). The general morphology of 
cardiac structures was unaltered in plakoglobin - / -  em- 
bryos: atrial and ventricular chambers were present, en- 
docardial cushions and ventricular trabecules were well 
developed (Fig. 2, e and f). However, the morphology of 
the intercalated discs was grossly altered as they did not 
show differentiation of desmosomes and adherens junc- 
tions. Typical desmosomes were no longer detectable, and 
instead adherens junctions with particularly prominent 
plaques were seen (arrow in Fig. 3 b). Desmosomes were 
absent already at embryonal day 8.0, i.e., when the heart 
begins to beat, but mechanical stress is still low (not 
shown). Remarkably, in various epithelia of plakoglobin 
- / -  mice, as for example in epidermis and the gastrointes- 
tinal tract, desmosomes were readily detected and were 
similar in morphology to desmosomes of the same tissue in 
control animals (arrowheads in Fig. 3, c-f). 

Molecular Compostion of  Wild-Type and 
Mutant Junctions 

The molecular composition of the intercalated discs in 
control and mutant animals was examined by confocal la- 
ser scanning immunofluorescence and by immunoelectron 
microscopy. In hearts of control embryos, desmoplakin 
(yellow spots in Fig. 4 a) and desmoglein (yellow spots in 
Fig. 4 c) were largely segregated from [3-catenin (blue 
spots in Fig. 4, a and c), as expected for desmosomal and 
adherens junction proteins, respectively. Surprisingly, in 
plakoglobin - / -  embryos desmoplakin colocalized in 
many places with [3-catenin (pink color in Fig. 4 b; note the 
increased size of the junctions). Desmoglein was not clus- 
tered in these new desmoplakin- and [3-catenin-positive 
junctions of the heart, but the signal was rather weak and 
diffusely scattered over the cell surface (Fig. 4 d). We 
could not analyze the distribution of desmocollins yet, 
since our antibodies are directed against human and bo- 
vine, but not mouse tissues. In polarized epithelia such as 
in the gut, the adherens junction protein [3-catenin and the 
desmosomal protein desmoplakin were largely segregated 
in both control and plakoglobin - / -  embryos (data not 
shown). 

By immunoelectron microscopy of hearts of control ani- 
mals, we found the normal pattern of typically structured, 
desmoplakin-positive desmosomes of 0.2-0.6 ~m diame- 
ters (labeled D in Fig. 5, a-c) next to desmoplakin-nega- 
tive adherens junctions (arrows in Fig. 5 c) at which the 
sarcomeric actomyosin fibrils insert. By contrast, in hearts 
of plakoglobin - / -  mice typical desmosomes were absent 
and desmoplakin occurred in all plaque-bearing struc- 
tures, i.e., junctions resembling adherens junctions with 
myofibrillar bundles attached (arrows in Fig. 5, d-f). This 
new form of junctions varied in sizes, including some ex- 
tremely large ones with axes of up to 4.5 ~m (see Fig. 5 d). 

Additional Features of  Plakoglobin - / -  Mice 

At day 12 of embryogenesis, heart rupture occurs fre- 
quently and represents the primary defect found in plako- 

globin - / -  animals. As a consequence, blood flow to liver 
and placenta is not sufficiently maintained, resulting in a 
characteristic paleness of the embryos. When we exam- 
ined such embryos between days 13 and 14 of develop- 
ment by histological analysis, we found that the spongio- 
throphoblast of the placenta was reduced in size and 
poorly supplied with blood. At day 14, the liver paren- 
chyme showed initial signs of deterioration (e.g., nuclear 
fragmentation and swelling of mitochondria; data not 
shown). A few plakoglobin - / -  embryos were found to be 
alive at day 16-18 of gestation; these were swollen and 
covered with many edemas and showed a strong blood re- 
tention in kidney and liver (data not shown). 

Discussion 

We report here the functional analysis of plakoglobin 
(~/-catenin) in the mouse, which was achieved by the intro- 
duction of a null mutation into the gene. Plakoglobin was 
found to be essential for the segregation of desmosomes 
and adherens junctions during the formation of interca- 
lated discs in the embyonic heart. In the hearts of plako- 
globin - / -  mice, desmosomes are not present, instead 
extended adherens junctions develop, which contain des- 
mosomal proteins such as desmoplakin. Consequently, the 
architectural stability and function of the embryonic heart 
is impaired. In the absence of plakoglobin, ventricles rup- 
ture at midgestation and blood floods the pericardial cav- 
ity. Surprisingly, desmosomes in epithelial cells, for in- 
stance in skin and gut, do form appropriately in mutant 
mice. Our data demonstrate that functional heart desmo- 
somes and proper sorting of adherens junction proteins 
are required during the second half of gestation, when the 
embryo becomes dependent on its own blood circulation 
and therefore on a functional cardiovascular system. 

Absence of  Plakoglobin Results in Drastic Changes in 
the Architecture of Intercalated Discs 

The intercalated discs of the heart are extended regions of 
contact between cardiomyocytes in which different types 
of junctions occur side by side. These are, besides gap 
junctions, typical desmosomes which anchor desmin-con- 
taining IF and fascia adhaerentes at which the bundles of 
sarcomeric myofilaments attach. Distinct desmosomes 
have been observed already in very early stages of cardiac 
development of diverse vertebrate species, as well as in 
cardiomyocyte cultures" (Kartenbeck et al., 1983; Atherton 
et al., 1986; Kuruc and Franke, 1988; Shiozaki and Shi- 
mada, 1992; Viragh et al., 1993; Hertig et al., 1996). It has 
previously been shown that the myocardiac desmosomes 
contain desmoplakin I (Franke et al., 1982; Kartenbeck 
et al., 1983), plakoglobin (Cowin et al., 1986; Franke et al., 
1987), plakophilin 2 (Mertens et al., 1996), and the cad- 
herins desmoglein Dsg2 (Sch~ifer et al., 1994) and desmo- 
collin Dsc2 (Theis et aI., 1993; Legan et al., 1994; Lorimer 
et al., 1994; Nuber et al., 1995). By contrast, the fasciae 
adhaerentes contain N-cadherin in association with plako- 
globin, [3-catenin and c~-catenin, vinculin, and other actin- 
binding proteins (Tokuyasu et al., 1981; Kartenbeck et al., 
1983; Hertig et al., 1996). 
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Figure 3. Transmission electron microscopy of cardiac (a and b) and skin tissues (c and d) of l l .5-d embryos, and of small intestine (e 
and y") of 16-d embryos. In heterozygous plakoglobin + / -  animals (a, c, e), desmosomes (arrowheads) as well as adherens junctions (ar- 
rows) are abundant. Plakoglobin - / -  mice lack typical desmosomes in myocardium (b), but not in the epidermis (d) and gut 0O. Bar, 0.5 o.m. 
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Figure 4. Confocal laser immunofluorescence microscopy of desmoplakin, desmoglein and 13-catenin in heart tissue. In wt embryos, des- 
moplakin (a) and desmoglein (c) are largely separated (both in yellow) from [3-catenin (a and c, blue), resulting in distinct signals. In pla- 
koglobin - / -  embryos (b and d), desmoplakin (yellow) and [3-catenin (blue) are colocalized in numerous places appearing as pink sig- 
nals (b). Note the increased sizes of the extended junctions in the plakoglobin - / -  embryos. In contrast, desmoglein (d, yellow) is 
expressed, but diffusely distributed over the specimen and therefore not readily seen. F-actin appears in green, as detected by FITC- 
conjugated phalloidin. Inserts show the densitographs of the two independent photomultipliers. 

We demonstrate here that the absence of plakoglobin in 
fetal heart of mice does not only affect the desmosomal 
junction, but also results in several drastic changes of the 
architecture of the intercalated disc: (a) distinct desmo- 
somes are no longer seen; (b) the normal segregation of 
desmosomal and adherens junction constituents is lost, 
i.e., junctional molecules of both sets are mixed, resulting 
in the appearance of a novel, amalgama'ted junction char- 
acterized by the coexistence of desmoplakin with [3-cate- 
nin, which anchors the sarcomeric myofilament bundles; 
(c) the new "mixed type" adhering junction occurs in a 
wide range of sizes, including extremely large ones, that 
can be traced for up to 4.5 ~m; (d) the desmosomal cad- 
herin Dsg2 is no longer clustered and coassembled with 

desmoplakins into distinct junctional structures, but is 
rather diffusibly spread over the cell surface. Apparently, 
plakoglobin is thus not only essential for the formation of 
stable cardiac desmosomes, but is also critically involved 
in the segregation and/or sorting of the two sets of mole- 
cules into desmosomes on the one hand and fasciae 
adhaerentes on the other. Such a specific structure-forming 

and sorting function of plakoglobin has also been previ- 
ously indicated (Troyanovsky et al., 1993, 1994), since the 
plakoglobin-binding site in desmoglein and desmocollin 
chimeras is necessary to nucleate the formation of a 
plaque and to cluster desmoglein. Since desmosomes were 
already absent in the heart of plakoglobin deficient em- 
bryos at day 8.0 of development, it is likely that this heart- 
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Figure 5. Immunoelectron microscopy showing immunogold labeling for desmoplakin in intercalated discs of unfixed, freeze-sectioned 
myocardiac tissue of wt (a-c) and plakoglobin - / -  mice (d-j). Note that in the wt mice the desmosomes (D) display their typical ultra- 
structural organization and intense desmoplakin labeling. Higher resolution is presented in b, showing that the antibody-label is re- 
stricted to the plaque, whereas the membrane lipid bilayer structure (short arrows) and the mesoglea are free of label. By contrast, adhe- 
rens junctions (arrows in c and insert) interspersed between the desmosomes, which anchor the bundles of sarcomeric microfilaments, 
are not significantly labeled. The triangle in a denotes one of the less frequent junctions in hearts of wt animals positive for desmoplakin 
but lacking typical desmosomal morphology. In the embryos lacking plakoglobin, the organization of the plaques in the intercalated 
disks is grossly altered. Here, extended junctional regions are frequent, which are almost entirely covered by a dense cytoplasmic plaque 
intensely labeled for desmoplakin (d). In these mutants, desmoplakin-positive plaques are also seen at junctions with fascia adherens- 
like morphology that anchor sarcomeric myofilament bundles (in the left and in the right of e), as well as on tiny junctions not yet classi- 
fied (arrows in e and f), Bars: (b, insert in c) 0.2 p~m; (a, c-f) 0.5 ~m. 
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specific embryonal defect is not due to mechanical stress 

resulting in the modification of junctions, but due to an in- 

trinsic compositional difference of junctional complexes. 

While our results demonstrate the indispensability of pla- 

koglobin in myocardiac structure and function, as well as 

in the formation of myocardiac desmosomes, they do no 

yet allow the definitive conclusion that these two effects 
are interdependent. At present, it cannot be excluded that 

it actually may not be the absence of desmosomes, but 

rather the simultaneous loss of distinct fasciae adhaerentes, 
the appearance of a new "mixed" type of adhering junc- 

tion or the loss of other, nonjunctional plakoglobin func- 

tions, that is causal for the fatal heart defects. 

Difference between Heart and Epithelial Desmosomes 

The absence of plakoglobin in mutant animals signifi- 

cantly affects formation of desmosomes in the heart, but 

not in epithelial tissues as epidermis and gut. Recent evi- 

dence indicates that in heart, only a subset of desmosome- 

specific proteins is expressed, including desmoglein-2, 

desmocollin-2, and plakophilin 2, whereas in epidermal 

keratinocytes three desmogleins (Dsgl-3), three desmo- 

collins (Dscl-3), and plakophilin 1 have been described 
(see Garrod, 1993; Koch and Franke 1994; Schmidt et al., 

1994; Mertens et al., 1996). Plakophilin 1 (formerly re- 

ferred to as band-6 protein) is a recently characterized 

member of the armadillo family of proteins, which is ab- 

sent from cardiac desmosomes (Kapprell et al., 1988; 

Hatzfeld et al., 1994; Heid et al., 1994; Schmidt et al., 
1994). Its next relative is p120 cgs (Reynolds et al., 1994), a 

ubiquitous protein that binds to cadherins, but does not 
mediate interaction with et-catenin and with the actin cy- 

toskeleton (Daniel and Reynolds, 1995). Specific plako- 

philins or other related molecules may thus contribute to 

desmosomal formation in the mutant animals, compensat- 

ing for the absence of plakoglobin in epithelial desmo- 
somes. 

Previously, human skin blistering diseases such as Pem- 
phigus vulgaris and Pemphigus foliaceus were found to be 

caused by auto-antibodies against desmosomal cadherins, 

Dsg-1 and Dsg-3, respectively (Amagai et al., 1991; Stan- 

ley, 1995). Interestingly, rupture within the skin in these 

diseases occurs exactly in the cell layers in which Dsg-1 or 
Dsg-3 are most highly expressed. These data suggest a cru- 

cial role of desmosomes in the organization and stability of 

skin tissue. Hereditary human cardiomyopathies are char- 

acterized by impaired myocardial contractility and ventric- 

ular dilatation, and frequently affect myofibril function 

(Carter and Rubin, 1994). Mutations in genes coding for 

components of the cytoskeletal network, i.e., tropomyosin, 

myosin, and troponin, have been identified in hyper- 
trophic cardiomyopathy (Thierfelder et al., 1994; Marian 

and Roberts, 1995). The human plakoglobin gene is lo- 

cated on chromosome 17q21 (Aberle et al., 1995), a region 

not yet identified in human cardiomyopathy patients. 

However, alterations of desmosomes and other junctions 
within the intercalated discs have been reported in dam- 

aged myocardiac tissue as a result of toxic effects (Hull 
and Lockwood, 1986), in certain cardiomyopathies or in is- 

chaemia (for review see Bullock, 1986). It is therefore 

tempting to speculate that more subtle alterations of the 

plakoglobin gene than the null mutation reported here or 

other types of interferences with plakoglobin might impair 

heart function and play a role in human heart disease. 
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