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Abstract

Background: Targeted next-generation sequencing (NGS) enables rapid identification of common and rare

genetic variation. The detection of variants contributing to therapeutic drug response or adverse effects is

essential for implementation of individualized pharmacotherapy. Successful application of short-read based

NGS to pharmacogenes with high sequence homology, nearby pseudogenes and complex structure has been

previously shown despite anticipated technical challenges. However, little is known regarding the utility of

such panels to detect copy number variation (CNV) in the highly polymorphic cytochrome P450 (CYP) 2D6

gene, or to identify the promoter (TA)7 TAA repeat polymorphism UDP glucuronosyltransferase (UGT) 1A1*28.

Here we developed and validated PGxSeq, a targeted exome panel for pharmacogenes pertinent to drug

disposition and/or response.

Methods: A panel of capture probes was generated to assess 422 kb of total coding region in 100 pharmacogenes.

NGS was carried out in 235 subjects, and sequencing performance and accuracy of variant discovery validated in

clinically relevant pharmacogenes. CYP2D6 CNV was determined using the bioinformatics tool CNV caller (VarSeq).

Identified SNVs were assessed in terms of population allele frequency and predicted functional effects through in silico

algorithms.

Results: Adequate performance of the PGxSeq panel was demonstrated with a depth-of-coverage (DOC) ≥ 20×

for at least 94% of the target sequence. We showed accurate detection of 39 clinically relevant gene variants

compared to standard genotyping techniques (99.9% concordance), including CYP2D6 CNV and UGT1A1*28.

Allele frequency of rare or novel variants and predicted function in 235 subjects mirrored findings from large

genomic datasets. A large proportion of patients (78%, 183 out of 235) were identified as homozygous

carriers of at least one variant necessitating altered pharmacotherapy.

Conclusions: PGxSeq can serve as a comprehensive, rapid, and reliable approach for the detection of

common and novel SNVs in pharmacogenes benefiting the emerging field of precision medicine.

Keywords: Targeted exome sequencing, Next generation sequencing, Pharmacogenes, Copy number variation,

In silico prediction
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Background
Rapid identification of genetic variation contributing to

therapeutic drug response or adverse effects is essential for

implementation of individualized pharmacotherapy [1].

Many gene-drug associations are now recognized as clinic-

ally relevant, particularly those involving genes encoding

drug metabolizing enzymes, membrane transporters, and

certain drug targets, which together are often referred to as

pharmacogenes [2]. Clinical guidelines have been developed

for drugs with the strongest level of evidence of utility for

pharmacogenetic testing in patients. For instance, the Clin-

ical Pharmacogenetics Implementation Consortium (CPIC),

an international expert group, documents the available evi-

dence and provides recommendations for clinicians on

genotype-based drug therapy [3]. CPIC guidelines have now

been reported for more than 35 drugs including the anti-

coagulant warfarin [4, 5], the antiplatelet agent clopidogrel

[6, 7], the cholesterol- lowering medication simvastatin [8],

chemotherapeutics such as thiopurines (azathioprine and

mercaptopurine) [9, 10], tamoxifen [11], and fluoropyrimi-

dines [12], as well as the antiretroviral therapeutics abacavir

[13] and atazanavir [14]. As well, many pharmacogenetic

biomarkers have been incorporated in drug labels by the US

Food and Drug Administration [15] and the European Med-

icines Agency [16].

Earlier research evaluated common functional vari-

ation in pharmacogenes, while more recent large-scale

whole genome or exome sequencing studies revealed

that humans harbor a large number of rare, potentially

deleterious variants in many of the same genes [17–20].

Specifically, the analysis of sequencing data for 146 phar-

macogenes combining about 7500 individuals of the Ex-

ome Sequencing Project (ESP) [21] and the 1000

Genomes Project (1000G) [22] indicated that more than

90% of all recorded single nucleotide variants (SNVs)

were rare with a minor allele frequency (MAF) below

1%, and that 30–40% of the predicted functional variabil-

ity was associated with these rare variants [17]. Recent

studies also support that rare SNVs in drug processing

or drug target genes significantly contribute to interpati-

ent differences in drug disposition and response beyond

established common genetic predictors as shown for

cytochrome P450 (CYP) 2C9 and warfarin dose require-

ment [23, 24] and solute carrier organic anion trans-

porter (SLCO) 1B1 and methotrexate clearance and

toxicity [25].

Next-generation sequencing (NGS) refers to rapid,

high-throughput technologies that enable massively paral-

lel DNA sequencing of entire human genomes, exomes or

coding exons of select genes [26]. Targeted exome NGS

capture panels are gaining popularity for pharmacogenetic

testing due to their time- and cost-effectiveness, and abil-

ity to simultaneously detect common and rare genetic

variation [27, 28]. Despite anticipated technical challenges

for the application of short-read based NGS to genes with

high sequence homology, nearby pseudogenes and com-

plex structure [29–31], these limitations might be over-

come through careful probe design (i.e. target enrichment

[32]) combined with advanced bioinformatics approaches

as suggested by previous reports [27, 28, 33]. However, lit-

tle is currently known regarding the utility of such panels

to detect copy number variation (CNV) in the highly poly-

morphic CYP2D6 gene, or to identify the promoter (TA)7
TAA repeat polymorphism UDP glucuronosyl-transferase

(UGT) 1A1*28, two common polymorphisms known to

affect enzymatic activity and alter dose requirements for

substrate drugs [34, 35]. Therefore, we created a

NGS-based exome capture panel (PGxSeq) capable of de-

tecting clinically established as well as novel genetic vari-

ation with potential implications in drug disposition and

response. We applied our PGxSeq panel to 1) evaluate the

sequencing performance achieved with the utilized target-

enrichment strategy, 2) determine the accuracy of variant

discovery in clinically relevant pharmacogenes compared to

traditional genotyping methods including CYP2D6 CNV

and UGT1A1*28, and 3) evaluate the identified variation

with respect to population allele frequencies and predicted

functional effects.

Methods

Sample collection

Genomic DNA (gDNA) was obtained from venous blood

samples of 246 Caucasian subjects (220 adult and 26

pediatric patients) following written informed consent.

Studies were approved by the Research Ethics Board of

Western University, London, Canada. A flow diagram of

the sample and subsequent data processing can be found

in Fig. 1.

Gene selection, capture probe design and enrichment

method

We used the Nextera Rapid Capture Custom Enrichment

Kit (Illumina, San Diego, CA) for the enrichment of cod-

ing regions of 100 genes encoding major cytochrome

P450 (CYP) enzymes, phase II conjugation enzymes, drug

transporters of the solute carrier (SLC) and ATP binding

cassette (ABC) families as well as regulatory proteins of

relevance to variability in drug ADME (absorption, distri-

bution, metabolism, excretion) and response including re-

gions encompassing 14 known functional promoter or

intronic SNVs such as UGT1A1*28, CYP3A5*3, and

CYP2D6*41 (Additional file 1: Table S1 and S2).

A total of 10,207 capture probes (80 bp) were custom-

designed using the Illumina Design Studio (Illumina,

San Diego, CA) comprising 722 kilobases (kb) of se-

quence per sample (Genomic coordinates in Additional

file 1: Table S1). Exons of all coding isoforms were targeted

for selected genes including 300 bp intronic (flanking each
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exon) and 250 bp of 5′ and 3′ untranslated regions (UTR).

Known functional non-coding variants were separately tar-

geted if not captured otherwise (Additional file 1: Table S2).

Chromosomal coordinates were obtained from University

of California Santa Cruz (UCSC) genome browser using the

GRCh37/hg19 human genome assembly. DNA library prep-

aration and subsequent target-capture sequencing was con-

ducted at the London Regional Genomics Center, London,

Ontario, as previously described [36]. Briefly, DNA samples

were processed in 13 runs in batches of 12 or 24 samples

(referred to as sequencing cluster). After serial dilutions,

DNA was adjusted to a final concentration of 5.0 ± 1 ng/μl

using the Qubit DNA kit (Invitrogen, Eugene, OR). DNA

was enzymatically fragmented, polymerase chain reaction

(PCR)-amplified with individual sample barcodes, equimolar

pooled, hybridized to the biotinylated capture probes,

pooled using streptavidin beads, and PCR-amplified again to

select the final target sequence. Resulting libraries were

quantified, and loaded on to a standard flow-cell on the Illu-

mina MiSeq Sequencer (Illumina, San Diego, CA) using 2 ×

300 bp or 2 × 150 bp paired-end chemistry.

Base calling, sequence alignment and variant detection

Prior to the alignment of reads to the reference genome,

sequencing performance metrics were assessed (Fig. 1).

Paired-end sequenced reads were separated according to

sample-specific barcodes and sequencing data down-

loaded as FASTQ files that were further assessed with the

quality control tool, FastQC [37], including read count,

base quality across reads (also Phred score, Q; describes

the probability of a sequencing error as a measure of base

call accuracy), and guanine and cytosine (GC) content per

sequence [38].

Alignment of sequencing reads and variant calling were

performed using the CLC Bio Genomics Workbench 9.0

(CLC Bio, Aarhus, Denmark) through a custom auto-

mated workflow. FASTQ files were imported and mapped

to the reference human genome (GRCh37/hg19 build).

Using default algorithms (i.e. Local Realignment and Re-

move Duplicate Mapped Reads), initial read mapping was

further optimized around insertion-deletion mutations

(indels) and PCR duplicates removed.

Depth-of-coverage (DOC; also coverage) was defined

as the number of reads mapped to a genomic position

following alignment of sequenced reads and removal of

duplicate reads. Reads that were non-specific matches

(mapped to more than one location of hg19 reference

genome) or missing the paired read were excluded from

this calculation. For every subject, a Coverage Summary

Report along with a base-by-base Coverage Table were

exported. Coverage analysis was restricted to coding re-

gions including 10 bp before and after each exon, and

250 bp of 3′ and 5’UTR. To detect samples with sub-

stantial regions of low coverage, we expressed coverage

as percentage of the 422 kb target sequence with a DOC

≥1×, ≥ 10×, ≥ 20×, and ≥ 30× (Table 1). Subjects with

more than 20% of their target sequence below 10× were

excluded from variant analysis. Coverage was also

assessed at the gene level and by sequencing cluster (n =

12 or 24).

To further ensure accuracy of variant and genotype call-

ing, quality-based variant detection tools were employed

with the following parameters: diploid organism, probability

Fig. 1 PGxSeq sample and data processing workflow (n = 246). Eleven subjects were excluded from variant analysis due to low read count (†; n =

1) and high GC content (‡; n = 10). All clip art depicted in this Figure has been created by the authors
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of non-reference allele ≥95% (versus sequencing error), ≥

10-fold coverage (10×), ≥ 20% read frequency, and ≥ 30 per

base quality score at the variant location. Resulting se-

quence variation reports were exported in variant call for-

mat (VCF) for downstream annotation.

UGT1A1*28 carrier status was separately determined

by manually assessing the number of TA repeats in the

NGS sequence of individual reads mapped to the pro-

moter region (n = 235). Each subject’s promoter region

was interpreted as the percentage of mapped reads with

six TA (TA)6 repeats, with subject values clustering into

three separate groups in a histogram (Fig. 4a). We evalu-

ated concordance of UGT1A1*28 genotype determined

by NGS with a previously reported TaqMan assay [39] in

a subgroup of 81 subjects.

CYP2D6 whole gene CNV was determined from NGS

data using the bioinformatics tool CNV caller, an applica-

tion within the VarSeq v1.3.4 variant annotation software

(Golden Helix, Bozeman, MT), as previously described by

Iacocca et al. [40]. VarSeq CNV caller identifies probable

CNV carriers through coverage analysis, by normalizing

the coverage across the CYP2D6 gene for samples of inter-

est compared to a reference control group (2 gene copies).

CNV analysis was restricted to samples processed in the

24- sequencing cluster runs (n = 183) to minimize con-

founding of sample preparation on coverage. First, we de-

termined the CYP2D6 CNV status in 48 samples using a

TaqMan CNV assay (Hs04502391_cn), from which 30

subjects with 2 CYP2D6 copies were selected for our ref-

erence control group. CNV status for the remaining sub-

jects was then determined using this reference group.

Only subjects that were found to be positive for a CNV

(deletion or duplication) were further confirmed among

the remaining 135 subjects using the TaqMan CNV assay.

Variant annotation and in silico functional assessment

Functional annotation of SNVs was carried out using

ANNOVAR [41] through in silico prediction algorithms

such as Combined Annotation Dependent Depletion

(CADD) [42], Sorting Intolerant from Tolerant (SIFT)

[43], and PolyPhen-2 [44], and variant frequency among

different populations was determined utilizing large gen-

omic databases (Reference Sequence [RefSeq], Single Nu-

cleotide Polymorphism database build 150 [dbSNP150],

1000 Genomes, Exome Aggregation Consortium [ExAC])

obtained October 17, 2018. SNVs with a CADD Phred

score (scaled) greater than 20 [42], a SIFT score of less

than 0.05 [43], or a PolyPhen-2 score of greater than 0.85

[44] were considered as potentially functional variants (al-

tering protein function), and herein defined as deleterious.

Variants were classified as 1) non-synonymous (coding

variants resulting in amino acid change), 2) synonymous

(coding variants without amino acid changes), 3) frame-

shift deletion or insertion (in-del), 4) splicing (2 nucleo-

tides within an intron-exon boundary), 5) stop gain or loss,

or 6) functional intronic or promoter variants. Coding var-

iants were further grouped by MAF reported in the ExAC

database as common (MAF ≥ 5%), low frequency (1% ≤

MAF > 5%), or the combined category of rare (MAF < 1%)

and novel (absent from ExAC and dbSNP build 150 data-

bases). In silico functional assessment was restricted to

protein-coding genetic variation and gain or loss of a stop

codon.

Concordance assessment

To assess concordance of clinically actionable NGS variant

data, orthogonal genotyping was performed using TaqMan

allelic discrimination for 39 clinically relevant SNVs includ-

ing UGT1A1*28 and CYP2D6 CNV. SNVs were chosen ac-

cording to the level of evidence as defined by the

Pharmacogenomics Knowledge Base or PharmGKB (http://

www.pharmgkb.org/clinicalAnnotations accessed October

17, 2018) including 21 Level 1A SNVs with published

prescribing recommendations for genotype-based dose

adjustment or drug avoidance. Rare NGS variants were

confirmed retrospectively by Sanger sequencing within 4

highly polymorphic pharmacogenes, namely ABCB1,

CYP2D6, SLCO1B1, and SLCO1B3. PCR conditions and se-

quencing primers as well as TaqMan assay IDs are listed in

Additional file 1: Table S3 and Table S4, respectively.

Table 1 PGxSeq performance by sequencing cluster

12-plex 24-plex

Subjects, n 52 183

Average reads (duplicates removed), per sample 1.01 M 0.54 M

DOC, mean (median) 213-fold ª (207-fold) ª 87.2-fold ª (84-fold) ª

Bases with mean DOC ≥1×, % 98.7 b 98.6 b

Bases with mean DOC ≥10×, % 98.0 b 96.8 b

Bases with mean DOC ≥20×, % 97.4 b 94.3 b

Bases with mean DOC ≥30×, % 96.8 b 90.9 b

DOC depth of coverage

ª Calculated across the 422 kb target sequence including all subjects each group
b Represented as group mean for the percent base pairs (from 422 kb target sequence) with a DOC ≥1×, ≥ 10×, ≥ 20×, or ≥ 30 ×

Gulilat et al. BMC Medical Genomics           (2019) 12:81 Page 4 of 17

http://www.pharmgkb.org/clinicalAnnotations
http://www.pharmgkb.org/clinicalAnnotations


Results
Sequencing performance

Prior to alignment to the reference genome, sequencing

data for all 246 subjects was assessed for read count, base

quality, and GC distribution (Fig. 1 and Additional file 2:

Figures S1-S3). The total number of sequenced reads per

subject was dependent on sequencing cluster size, and one

subject was identified to have very low read count (< 1 k

reads) (Additional file 2: Figure S1). The majority of reads

showed an average base quality score above 30 (Phred

scale) among the 13 sequencing runs performed

(Additional file 2: Figure S2). The average GC content of

reads (per subject) was 45.6 ± 2.0% (mean ± SD). GC con-

tent distribution deviated greatly in 9 subjects compared to

the remaining cohort (Additional file 2: Figure S3). After

alignment of reads to the reference genome, we assessed

coverage across the target sequence, and identified 11 sub-

jects with greater than 20% of their target sequence ≤10×

read depth, including those with high GC content. Overall,

we observed a negative correlation between the low cover-

age and high GC content (Additional file 2: Figure S3 B). In

order to avoid false negative variant calling as previously re-

ported [38], 11 subjects with low reads and/or high GC

content were removed from further analysis.

Accordingly, NGS data of 235 subjects were included

for subsequent coverage analysis, and assessed by se-

quencing cluster (n = 12 or 24) (Table 1). As expected,

samples in the smaller cluster had a greater mean DOC

per subject compared to those sequenced in the larger

24 DNA sample cluster (Table 1). Overall, the propor-

tion of bases with a read depth ≤ 10× was very small (2–

3.2%). On a gene-by-gene basis, on average, 98 of the

100 genes on our panel had a median DOC ≥50×, with

≥80% of the target region within these genes having

DOC ≥30× representing deep sequencing (Fig. 2). We

observed overall high coverage across clinically relevant

pharmacogenes including regions of PharmGKB Level

1A/1B variants (http://www.pharmgkb.org/clinicalAnno-

tations) (Fig. 3). Among all genes, the glutathione

S-transferase (GST) M1 gene showed the lowest cover-

age per subject and large intersubject variability (min-

max; 0–310×). For carboxylesterase 1 (CES1), there was

lack of coverage for exons 12 to 14, resulting in a high

proportion of targeted regions < 30×, followed by car-

bonyl reductase 3 (CBR3) (Additional file 2: Figure S4).

Accuracy of variant detection

Genotyping with TaqMan assays was utilized to validate 39

clinically relevant variants across 215 subjects (9 variants

per subject, on average) detected with NGS data (Table 2).

We observed 99.9% concordance between NGS-derived

and TaqMan-derived genotypes confirming heterozygous

and homozygous carrier status. While we did not detect

any false positive results (a variant was detected by NGS

but not confirmed by TaqMan genotyping; specificity of

100%, 95% CI, 100–100%), a false negative NGS result was

observed in two heterozygous carriers for DPYD

rs67376798 and CYP2D6*10 rs1065852 (no variant de-

tected by NGS but observed by TaqMan genotyping; sensi-

tivity of 99.7%, 95% CI, 99.2–100%). However, subsequent

assessment of individual reads revealed a variant in both

subjects that was previously not called due to the low

coverage in the SNV region, since the threshold for

variant detection was not met (DOC ≥10x). Using

Sanger sequencing, we were able to retrospectively

confirm five rare coding variants that were identified by

NGS in ABCB1, CYP2D6, SLCO1B1, and SLCO1B3

(Additional file 1: Table S5).

UGT1A1*28 polymorphism detection using NGS data

was carried out manually in 235 individuals. Each subject’s

Fig. 2 Depth-of-coverage (DOC) assessment by gene according to size of sequence cluster (n = 12 or 24). † For UGT1A4, UGT1A6, UGT1A8, and

UGT1A9, the first exon was included to calculate DOC while shared exons were assessed only once with UGT1A1. Data are shown as average (±

SD) median gene coverage per subject
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Fig. 3 Depth-of-coverage (DOC) across the targeted sequence of 11 clinically relevant genes (n = 24; Sequencing Run 1 and 2). PharmGKB level

1A/1B variants (http://www.pharmgkb.org/clinicalAnnotations) are represented by rs number and genomic position by vertical lines (red). Data are

presented as mean (±SD). PharmGKB, Pharmacogenomics Knowledge Base
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promoter region was expressed as the percentage of reads

with six TA repeats, which clustered into 3 separate groups

according to their frequency distribution (Fig. 4a), and

UGT1A1*28 genotype (*1/*1, *1/*28, *28/*28) confirmed by

TaqMan genotyping in a subset of 81 subjects (Fig. 4b;

Table 2).

CYP2D6 whole gene CNV analysis was performed in

all subjects processed in the 24 sample sequencing

Table 2 Concordance rate (%) between PGxSeq sequencing data compared to TaqMan-derived genotypes for clinically important

SNVs as defined by PharmGKB

PharmGKB Gene Allele Nucleotide
change

Effect dbSNP Allele frequency TaqMan Concordanceª FP FN

Level of
evidence

150 Study 1000G ExAC Patients genotyped (N) (%) (%) (%)

(n = 235) EUR EUR WT HET HOM

1A CYP2C19 *17 C > T promoter rs12248560 0.23 0.23 NR 23 11 1 100 0 0

1A CYP2C19 *2 G > A p.P227P rs4244285 0.14 0.15 0.15 25 11 0 100 0 0

1A CYP2C19 *3 G > A p.Y212X rs4986893 ND 0 1.80E-04 50 0 0 100 0 NA

1A CYP2C9 *2 C > T p.R144C rs1799853 0.13 0.12 0.13 72 23 3 100 0 0

1A CYP2C9 *3 A > C p.I359L rs1057910 0.06 0.06 0.07 87 13 0 100 0 0

1A CYP2D6 *10 C > T p.P34P rs1065852 0.21 0.2 0.25 30 19 3 98.1 0 1.9

1A CYP2D6 *4 G > A splice rs3892097 0.19 0.19 0.17 52 26 6 100 0 0

1A CYP2D6 *3A A > del p.R208fs rs35742686 0.03 0.02 0.02 50 2 0 100 0 0

1A CYP2D6 *41 G > A intronic rs28371725 0.12 0.09 0.09 38 14 0 100 0 0

1A CYP3A5 *3 A > G splice rs776746 0.93 0.95 NR 1 9 27 100 0 0

1A CYP4F2 *3 C > T p.V433 M rs2108622 0.30 0.27 0.29 23 17 0 100 0 0

1A DPYD *13 T > G p.I560S rs55886062 2.1E-03 1.3E-03 6.18E-04 97 1 0 100 0 0

1A DPYD *2A G > A splice rs3918290 0.02 0.01 0.01 100 1 0 100 0 0

1A DPYD A > T p.D949V rs67376798 0.02 2.2E-03 4.09E-03 80 8 0 98.9 0 1.1

1A SLCO1B1 *5 T > C p.V174A rs4149056 0.18 0.17 0.16 67 31 4 100 0 0

1A TPMT *2 G > C p.A80P rs1800462 2.1E-03 6.00E-03 1.97E-03 51 1 0 100 0 0

1A TPMT *3B G > A p.A154T rs1800460 0.04 0.03 0.04 41 10 0 100 0 0

1A TPMT *4 G > A splice rs1800584 ND NR 3.01E-05 51 0 0 100 0 NA

1A TPMT *3C A > G p.Y240C rs1142345 0.04 0.03 0.04 41 10 0 100 0 0

1A UGT1A1 *28 (TA)6 > (TA)7 promoter rs3064744 0.32 0.29 NR 36 40 5 100 0 0

1A VKORC1 G > A intergenic rs9923231 0.40 0.40 NR 19 15 6 100 0 0

1B CYP2B6 *9 G > T p.Q172H rs3745274 0.21 0.23 0.24 22 9 0 100 0 0

2A ABCB1 C > T p.I1145I rs1045642 0.48 0.47 0.47 18 61 26 100 0 0

2A CYP2D6 *9 AAG > del p.K281del rs5030656 0.02 0.02 0.03 48 4 0 100 0 0

2A SLCO1B1 *1B A > G p.N130D rs2306283 0.41 0.40 0.41 40 46 15 100 0 0

2B ABCG2 C > A p.Q141K rs2231142 0.12 0.10 0.10 87 20 1 100 0 0

3 ABCC2 G > A p.V417I rs2273697 0.19 0.20 0.20 45 19 4 100 0 0

3 ABCG2 G > A p.V12 M rs2231137 0.04 0.06 0.05 81 9 0 100 0 0

3 CYP2B6 C > T p.R487C rs3211371 0.12 0.10 0.12 23 8 0 100 0 0

3 CYP3A4 *22 C > T intronic rs35599367 0.05 0.05 NR 36 8 0 100 0 0

3 DPYD HapB3 G > A p.E412E rs56038477 0.03 0.02 0.02 73 11 0 100 0 0

3 SLCO2B1 G > A p.R290Q rs12422149 0.06 0.10 0.11 62 6 0 100 0 0

ª Percentage of total tested DNA samples with NGS-determined genotypes concordant with TaqMan results. False positive was defined as TaqMan determined

“homozygous wildtype” and NGS determined “variant carrier”. False negative was defined as TaqMan determined “variant carrier” and NGS determined

“homozygous wildtype”. PharmGKB definition for levels of evidence can be found at https://www.pharmgkb.org/page/clinAnnLevels. Nucleotide change presented

as the change on the coding strand. Abbreviations: dbSNP 150 Single Nucleotide Polymorphism database build 150, ExAC Exome Aggregation Consortium

European dataset, FP false positive, FN false negative, HET heterozygous genotype, HOM homozygous genotype, ND not detected in our patient database, NA not

applicable as no variant carriers were found, NR, not reported in, 1000G EUR, or ExAC database, 1000G EUR 1000 Genomes Project European dataset, PharmGKB

Pharmacogenomics Knowledge Base
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A

B

Fig. 4 Determination of UGT1A1*28 (TA)7 promoter repeat by next-generation sequencing (NGS). a Schematics of manual assessment of aligned

reads within the UGT1A1 promoter region, and multimodal frequency distribution pattern of UGT1A1*28 genotype. b Confirmation of NGS

determined UGT1A1*28 genotype by TaqMan assay
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A

B

Fig. 5 Next-generation sequencing (NGS)-based detection of CYP2D6 copy number variation. a Representative NGS output for a

duplication of the whole CYP2D6 gene (Subject PGAR1622 with CYP2D6*1/*1 genotype; refer to Table 2 for more detail). b Representative

NGS output for a heterozygous deletion of the whole CYP2D6 gene (Subject PGST217 with CYP2D6*1/*5 genotype; refer to Table 2 for

more detail). Different regions of the output are as follows: (i) Exon map of the CYP2D6 gene. (ii) PGxSeq probe target regions. (iii) Called

CNV state per probe target region, determined by ratio and z-score metrics. (iv) Normalized ratio metric computed for each NGS probe

target region in CYP2D6; sample coverage compared to reference controls (N = 30). (v) Z-score metric: number of standard deviations the

depth of coverage is from the reference control mean coverage
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cluster (n = 183). A representative sample output for a

subject with a CYP2D6 duplication and deletion is

shown in Fig. 5. We detected a gene deletion (heterozy-

gous form) and duplication in 2.5 and 3.3% of subjects,

respectively, which were confirmed by TaqMan CNV

assay (Table 3). Notably, CYP2D6 genotype revealed du-

plications of *4 and/or *41 alleles in three out of 6 pa-

tients resulting in a predicted intermediate metabolizer

phenotype for CYP2D6. In addition, gene deletion oc-

curred in combination with *3 and *4 alleles, resulting in

a predicted poor metabolizer status in four out of 9

patients.

Analysis of variants in pharmacogenes

Genetic variation was assessed in 235 Caucasian study

subjects (Additional file 1: Table S6), and SNVs presented

in Fig. 6 according to functional effect, number of variants

per gene, and reported MAF in ExAC (if exonic), the latter

capturing NGS exome data of 60,706 individuals [45]. A

total of 1093 unique SNVs were identified, consisting of

605 non-synonymous (55.4%), 417 synonymous (38.1%), 7

splice-site (0.6%), 14 stop gain or loss (1.4%), and 35

insertion-deletions (18 frameshift, 17 non-frameshift;

3.2%), as well as 15 known non-coding SNVs (1.4%) (Fig.

6a). The majority of variants (72%) were only present in

heterozygous form. Among exonic variants (Fig. 6b),

26.3% of SNVs were common (ExAC MAF > 5%), 14.2%

occurred at a low frequency (ExAC MAF ≥1 and ≤ 5),

whereas 59.5% were either rare or novel (ExAC MAF < 1%

or absent from ExAC or dbSNP150). MAFs in this study

largely mirrored those reported in much larger data sets

of subjects with European descent (ExAC, 1000G)

(Additional file 2: Figure S5). According to gene family or

drug-related function, the CYP gene families had the most

variants per targeted base pairs, followed by the ABC and

UGT family, then SLC family, while nuclear receptors were

the least variable (Fig. 6c). Individually, among Phase I en-

zymes, CYP2D6 had the highest total number of exonic

SNVs (54) and the highest number of rare or novel vari-

ants from our gene panel (Fig. 6d), whereas UGT1A4 and

N-acetyltransferase 1 (NAT1) had the most SNVs among

Phase II enzymes. Within the SLC family, organic cation

transporter 1 (SLC22A1) showed the highest number of

SNVs as well as rare or novel SNVs among all SLC genes

sequenced. Among transporter genes of the ABC family,

ABCC2 had the highest number of the SNVs with 33 vari-

ants. No variants were detected for CYP3A7 and SLC51B,

despite adequate coverage achieved across both coding

sequences.

In silico assessment of variants in pharmacogenes

Potential functional effects of the identified non- synonym-

ous variants were assessed with CADD, PolyPhen- 2, and

SIFT. Our results showed marked differences between the

Table 3 NGS-based detection of CYP2D6 whole gene copy number variation (CNV) in 183 subjects. For more detail on the

detection, refer to Fig. 5

Subject ID CYP2D6 copy number detection CYP2D6
genotype

Phenotype
prediction

NGS TaqMana

Coverage
ratio

Z-score Gene copy number Ratio Gene copy number

PGAR844 0.55 −3.16 1 0.44 1 *1/*5 IM

PGAR867 0.51 −3.36 1 0.44 1 *1/*5 IM

PGON198 0.50 −2.96 1 0.53 1 *4/*5 PM

PGST66 0.43 −3.54 1 0.45 1 *3/*5 PM

PGST140 0.48 −3.39 1 0.43 1 *1/*5 IM

PGST217 0.45 −3.55 1 0.45 1 *1/*5 IM

PGST52 0.54 −2.74 1 0.45 1 *1/*5 IM

PGAR1070 0.47 −3.33 1 0.48 1 *4/*5 PM

PGAR1132 0.46 −3.79 1 0.49 1 *4/*5 PM

PGAR1622 1.44 3.59 > 2 1.40 > 2 *1/*1 UM

PGON142 1.30 3.20 > 2 1.48 > 2 *1/*1 UM

PGON287 1.62 4.04 > 2 1.90 > 2 *41/*4 IM

PGST38 1.32 1.91 > 2 1.38 > 2 *1/*4 IM

PGON194 1.29 2.25 > 2 1.98 > 2 *1/*4 IM

PGST223 1.60 3.25 > 2 1.86 > 2 *1/*1 UM

PM poor metabolizer, IM intermediate metabolizer, UM ultrarapid metabolizer
a Validation by TaqMan CNV assay in subjects that were identified with CNV (n = 15), and 48 subjects initially characterized to select a reference control

group (n = 30)
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prediction scores derived from these algorithms (Fig. 7a).

However, the proportion of rare (MAF < 1%) or novel vari-

ants that were categorized as possibly deleterious was

greater than the proportion of common (≥ 5%) or low fre-

quency (≥ 1–5%) variants for all 3 tools (CADD: p = 0.0002,

PolyPhen-2: p = < 0.0001, and SIFT: p = 0.0002) (Additional

file 2: Figure S6). The majority of pharmacogenes (96 out of

100) harbored at least one variant with a CADD score > 20

(median, 5) (Fig. 7b). On average, 14.8% (9.3–21.3%,

min-max) of the coding (exonic) variants detected across

the 100 pharmacogenes per subject were predicted as dele-

terious (CADD score > 20). Although the majority of these

variants were observed in heterozygous form (Additional

file 2: Figure S7), all 235 subjects had ≥1 deleterious vari-

ant(s) in the homozygous form, with a median of 4 (1–12,

min-max) SNVs per subject. Finally, we assessed prediction

(See figure on previous page.)

Fig. 6 Assessment of genetic variation determined by PGxSeq in 235 subjects. According to functional effect (a), allele frequency reported in

ExAC database (b), number of exonic variants per target region (c), and gene (d). ‡ For UGT1A4, UGT1A6, UGT1A8, and UGT1A9, only SNVs located

within the first exon were counted while shared exons were assessed only once with UGT1A1. ExAC, Exome Aggregation Consortium; MAF, minor

allele frequency

A

B

Fig. 7 In silico assessment of non-synonymous variation in pharmacogenes identified by PGxSeq (N = 235). a Frequency distribution of

variants according to SIFT, PolyPhen-2, and CADD scores separated by minor allele frequency reported in the ExAC database. Shaded

regions represent the proportion of potentially functional variants (or deleterious), defined as a scaled CADD score > 20 [42], a SIFT

score < 0.05 [43], or a PolyPhen-2 score > 0.85 [44]. b Box and whisker plots of scaled CADD scores separated by gene; whiskers represent

10-90th percentile with purple symbol (■) representing the median. ABC, ATP binding cassette; CADD, Combined Annotation Dependent

Depletion; ExAC, Exome Aggregation Consortium; MAF, minor allele frequency; SIFT, Sorting Intolerant from Tolerant; SLC, solute carrier
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scores among 12 CYP genes that account for the majority

of reported drug oxidation reactions (Additional file 1:

Figure S8); on average, 11% of SNVs (10 - 90th percentile,

4.1–20.0%) with a CADD > 20 among individuals were

located within these genes.

Variation in genes of clinical relevance

Among 11 clinically relevant genes for which prescribing

guidelines for specific gene-drug combinations have been

published (cpicpgx.org/genes-drugs/), there are 31

PharmGKB Level 1A and 1B variants categorized as hav-

ing strong evidence for influencing drug efficacy/response

and/or prescribing recommendations (Fig. 3). We identi-

fied 24 out of these 31 variants in our cohort, with 183 pa-

tients (78%) harbouring at least one PharmGKB level 1A/

1B homozygous variant (Additional file 2: Figure S9).

Discussion
As genotype-guided pharmacotherapies advance into the

clinical setting, targeted NGS technologies provide great

utility by simultaneously detecting common as well as rare

genetic variation of potential relevance to adverse or de-

sired drug response in patients. In this study, we established

and validated a comprehensive targeted PGxSeq exome

panel for most clinically important pharmacogenetic loci.

Our findings demonstrate excellent concordance for the

detection of clinically relevant variants compared to stand-

ard pharmacogenetic assays including the UGT1A1*28 pro-

moter (TA)7 TAA repeat and CYP2D6 copy number

variation. Moreover, adequate read depth along the target

regions and a strong correlation of allelic frequencies for

rare and novel variants in this population compared to lar-

ger genetic datasets suggests accurate and reliable results,

while confirming the high prevalence of such potentially

functional variation within pharmacogenes.

Compared to traditional genotyping or sequencing strat-

egies, the applied targeted exome sequencing strategy

enabled accurate genotyping for common, previously estab-

lished functional variation across exonic and intergenic re-

gions in clinically important pharmacogenes as well as the

comprehensive discovery of novel rare SNVs with fast and

adequate performance. Available bioinformatics tools fur-

ther allowed customized utilization of sequencing data at a

small or large scale, i.e. the assessment of individual geno-

types and genes of interest or a more exhaustive pharmaco-

genetic analysis. Importantly, the majority of patients (78%)

harbored one or more homozygous PharmGKB Level 1A or

1B variant(s) with recommendations to adjust dose or for al-

ternative therapies confirming recent findings from the

eMerge-PGx study comprising extensive sequencing data

from 5000 patients for 82 pharmacogenes [46]. Moreover,

60% of the observed SNVs were rare (536 variants; 2.3 per

patient) or novel (105 variants; 4.4 per 10 patients), the

latter absent in more than 60,000 individuals [45]; a similar

frequency of 73% has been previously reported in a

whole-genome sequencing study of 231 pharmacogenes

[20]. Accordingly, a significant portion of novel variation

will likely be missed when utilizing more cost-effective,

array-based genotyping platforms such as DMET+ (1936

SNVs in 231 pharmacogenes; Affymetrix, CA, USA) or the

genome-wide Infinium Global Screening Array-24 (665,608

SNVs; Illumina, CA, USA). Moreover, the capacity of asses-

sing CNV in pharmacogenes is an additional advantage of

this NGS panel. Overall, the multitude of other, newly dis-

covered candidate variants among pharmacogenes in this

study highlights the need for comprehensive sequencing ap-

proaches to determine the likely more complex genotype of

a patient, while high-throughput experimental strategies are

warranted to screen and confirm effects of previously unre-

ported genetic variation on protein activity.

While NGS is thought to be best suited for the detection

of SNV, most recent reports highlight its utility for the

identification of genomic structural variants as demon-

strated for GSTs [27], the LDL receptor (LDLR) [40], the

PCSK9 enzyme (PCSK9) [47], and various genes under-

lying retinal dystrophies [48], among others. Our findings

demonstrate that a read-depth based approach can be suc-

cessfully applied for the identification of CNV in CYP2D6,

a gene notorious for its complex genomic architecture

and pseudogene homology [30, 49]. CYP2D6 gene dele-

tion (*5 allele) and multiplication are commonly observed

among various ethnicities (2–3% in Caucasians) [11],

resulting in reduced (or lack of) and increased enzymatic

activity, respectively. Previously, CYP2D6 CNV has been

assessed in 61 adult [33] as well as 98 pediatric patients

[50] utilizing whole-genome sequencing data, while tar-

geted NGS pharmacogene panels have not reported such

results [27, 28]. While previous approaches evaluating

whole-genome sequences have failed to predict CYP2D6

CNV in several subjects [33, 50], we were able to confirm

concordance in all assessed patients using the bioinfor-

matics tool VarSeq CNV caller. Accuracy of these results

is further supported by frequencies observed in this study

that are in close agreement with the literature with 3.3%

for CYP2D6 duplication (*1xN and *4xN), and 2.5% for

CYP2D6 deletion (*1/*5, *3/*5 and *4/*5). Our findings

clearly indicate that information regarding CYP2D6 geno-

type and CNV is critical for accurate CYP2D6 phenotype

prediction, exemplified by duplication of non-functional

alleles such as *4. Known to metabolize about 25% of

commonly prescribed drugs [51], CYP2D6 genotype is

implicated as a pharmacogenomic biomarker in drug

labelling in about 25% of medications currently listed by

the FDA (http://www.fda.gov/Drugs/ScienceResearch/

ucm572698.htm), and genotype-based prescribing guide-

lines have been previously published for tamoxifen [11],

codeine [52], and tricyclic antidepressants [53].
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To our knowledge, this is the first study reporting the

utility of NGS data to identify UGT1A1*28 allele status.

However, for this purpose, manual assessment of the

(TA)n repeat in sequencing reads within the UGT1A1

promoter region was required for each subject. Additional

bioinformatics tools are warranted to automate variant

calling of UGT1A1*28 to enable high-throughput analysis

in large patient numbers. UGT1A1*28 has been reported

to lower glucuronidation rate of the active metabolite of

irinotecan, SN-38, likely associated with higher toxicity

[54, 55], and is currently part of prescribing guidelines for

atazanavir [14].

A significant number of pharmacogenetic variants de-

tected in our validation cohort was either rare or novel

(60%), and more than half (55%) resulted in amino acid

changes, supporting previous observations in larger data-

sets [17, 46, 56, 57]. While the proportion of SNVs with

predicted effects on protein function differed among ap-

plied in silico tools, differences in scoring have been previ-

ously observed and are not surprising given the way these

algorithms were derived [27]. SIFT leverages the evolution-

ary conservation of amino acids [43], PolyPhen-2 uses

pathogenicity information [44], while CADD is the most re-

cent algorithm integrating conservation metrics, regulatory

information, and protein-level effect among others [42].

Moreover, a higher false negative rate may apply for pre-

dicting rare gain-of-function compared to loss-of-function

variants using SIFT and PolyPhen [58], while algorithms

such as CADD may be more comparable [59]. A recent

study suggests that the in silico algorithms used here pre-

dict altered enzymatic or transporter function with about

80% accuracy compared to in vitro assessment [27]. Among

207 to 275 possibly deleterious variants predicted in this

study, rare or novel SNVs were more likely to have func-

tional effects than common or low frequency variants

(Additional file 2: Figure S6), and accounted for 41–51% of

all deleterious SNVs. These findings are similar to a recent

report evaluating NGS data from thousands of individuals

in 146 pharmacogenes, where 30 to 40% of rare variation

was predicted to be functional [17]. Moreover, we found

that nearly all patients (221 of 235) carried at least one dele-

terious allele (CADD score > 20) in 12 CYP genes with key

roles in drug metabolism [56, 60]; these potentially clinic-

ally relevant findings need to be followed up.

Genetic profiling using any short-fragment sequen-

cing platform is a widely recognized challenge for NGS

of pharmacogenes [30, 61], and requires sufficient rep-

resentation of mapped sequenced reads in the region of

interest to ensure accuracy. As expected, many mem-

bers of the CYP, SULT and UGT gene families were re-

ported as harboring 250-bp sequence fragments that

map to more than one place in the genome due to their

sequence similarity, with regions that are up to 100%

identical (i.e. pseudogenes) predicted of being the most

problematic [29]. An estimated 1.8% of our 422 kb tar-

get sequence (69 exons in 19 genes) was found to be

susceptible to potential mismapping. Although our

hybridization-based enrichment strategy achieved a me-

dian read coverage above 50x for most genes (98 of

100), the results also indicate that the median or mean

value alone may not always correctly indicate evenly

sufficient read coverage across the targeted region. Spe-

cifically, for CES1 the average median per subject was

DOC ≥100x was observed, however 30.2% of its tar-

geted bases (Exon 12–14) showed a DOC <30x indicat-

ing areas prone to higher false negative rates (Fig. 2,

Additional file 2: Figure S3); a 95–100% sequence simi-

larity has been previously reported for CES1 exons 12–

14 [29]. Accordingly, high homology regions may bene-

fit from longer capture probes for hybridization-based

target enrichment to ensure appropriate capture and/or

sequence read mapping. Moreover, DOC for GSTM1

were the lowest among all genes of our panel. A previ-

ous report in a Korean population sample showed indi-

viduals with GST gene deletion (GST*0) lacked

coverage when assessed with NGS, while the number of

gene copies correlated the mean number of sequenced

read depth [27]. Deletions of GSTs are also prevalent

among Europeans (MAF ~ 0.5 [62]), and we noted 57

and 17% of our study group had near zero coverage for

GSTM1 and GSTT1, respectively, likely representing

GST*0 carrier status (Additional file 2: Figure S10).

Our findings highlight the need for monitoring targeted

regions for low sequence coverage, absent data or am-

biguous calls to reduce false negative or positive find-

ings by defining test panel limitations in agreement

with current clinical laboratory standards for NGS [63].

While we show the potential application of targeted ex-

ome sequencing as a comprehensive pharmacogenetic pro-

filing tool, there are some limitations. Validation of

concordance was limited to variants in 39 loci in 16 genes

in our relatively small, mostly Caucasian sample, in contrast

to previously reported multi-center studies that assessed

hundreds of SNVs in larger populations [27, 28] including

commercially available DNA control samples [27, 63].

However, despite the small sample size, the herein observed

variation compared well to findings from larger data sets.

Moreover, our gene panel is largely restricted to pharmaco-

genes of relevance to drug disposition, while a recent report

indicates the increasing relevance of drug target genes [64].

Lastly, in contrast to whole-genome sequencing, our tar-

geted exome panel is unable to detect pharmacogenomic

variants in 3′- and 5′-untranslated as well as intronic re-

gions that may be of relevance.

Conclusions
Next-generation sequencing platforms are starting to

impact upon many clinical fields, especially cancer and
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pediatrics. Bringing these technologies to clinical pharma-

cogenetics represents a timely and logical convergence, es-

pecially given the history of applied genetic concepts and

molecular methods within the discipline. Through com-

prehensive validation of performance and accuracy, results

from our study and others demonstrate the utility of tar-

geted exome sequencing panels as sensitive and reliable

sequencing platforms for pharmacogenes, including

CYP2D6 CNV [27, 28]. But despite the relative ease of the

sequencing process, the time and effort required for

post-sequencing computational and bioinformatics data

analyses are significant due to the technical and interpretive

complexity of NGS and the biology of some pharmacoge-

netic gene targets. Moreover, as new variants are discovered

using these high-throughput detection methods, the need

for standards in attributing pathogenicity together with

development of tools for high-throughput functional

assessment and clinical validation are required before imple-

menting findings to aid therapeutic decision-making.
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