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Abstract

Discriminating infected from healthy cells is the first step to understanding the mechanisms and ecological implications of
viral infection. We have developed a method for detecting, sorting, and performing molecular analysis of individual, infected
cells of the important microalga Emiliania huxleyi, based on known physiological responses to viral infection. Of three
fluorescent dyes tested, FM 1-43 (for detecting membrane blebbing) gave the most unequivocal and earliest separation of
cells. Furthermore, we were able to amplify the genomes of single infected cells using Multiple Displacement Amplification.
This novel method to reliably discriminate infected from healthy cells in cultures will allow researchers to answer numerous
questions regarding the mechanisms and implications of viral infection of E. huxleyi. The method may be transferable to
other virus-host systems.
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Introduction

Viral infection greatly influences the biogeochemistry and

genetic variability that sustain marine phytoplankton communities

by accelerating the lysis of bacteria and phytoplankton and serving

as vectors for horizontal gene transfer [1]. However, the inability

to separately investigate infected and healthy phytoplankton cells

in the environment limits our understanding of the ecological and

biogeochemical implications of viral infection. Subtle changes in

infected cells of a particular phytoplankton species are almost

impossible to detect from bulk measurements using standard mass

filtering [2] and subsequent biogeochemical or molecular analysis.

This is particularly true when the species of interest is not do-

minant and/or when infected cells only represent a small fraction

of the community. These limitations evidence the need for a

method that allows discriminating and isolating infected phyto-

plankton cells from environmental samples.

Previous studies have shown that viral infection of the marine

microalga Emiliania huxleyi leads to intracellular accumulation of

reactive oxygen species (ROS) [3] and plasma membrane

patchiness (blebbing) due to increased production of a dense lipid

excreted to the cell surface [4]. Here, we took advantage of these

physiological responses to develop a method for distinguishing

single infected cells within a phytoplankton culture using flow

cytometry prior to high throughput physical separation, whole

genome amplification and molecular analysis. We chose the E.

huxleyi host-virus system because of its wide distribution, high

abundance and importance in the ocean’s biogeochemistry [5,6],

as well as the ease with which the host can be grown and the virus

propagated in the laboratory. Additionally, recurring vast E. huxleyi

blooms have been reported to be terminated by viral infection

[7,8,9] and extensive sequence information is available for E.

huxleyi strain CCMP 1516 (http://genome.jgi-psf.org/Emihu1/

Emihu1.home.html) and E. huxleyi-specific virus strain EhV-86

[10], facilitating molecular analysis.

We tested and compared three flow cytometric assays for the

discrimination of healthy and infected cells: 1) lipid dye FM 1-43

for detection of membrane blebbing [4]; 2) CM-H2DCFDA for

detection of accumulated intracellular ROS [3]; 3) DNA dye

SYBR Green I for detection of increased total DNA in infected

cells as virus progeny accumulates intracellularly prior to lysis (as

reported for Chlorella NC64A [11]). We then judged the suitability

of the sorted cells for whole genome multiple displacement

amplification (MDA) to generate sufficient good quality genomic

DNA for downstream molecular analysis. MDA amplicons were

screened by PCR using generic and specific primers for E. huxleyi

and E. huxleyi-specific viruses (EhVs) respectively.

Results

In an initial experiment we compared the efficacy of three

fluorescence probes for discriminating infected from healthy E.

huxleyi strain CCMP 1516 cells at different times during the

infection process (2 h, 6 h, 20 h, 24 h, 42 h and 48 h post-

inoculation, PI). At each PI time point three aliquots from both a

virus-free and a virus-added culture were each labeled with either

fluorescent dye FM 1-43, CM-H2DCFDA or SYBR Green I. A

fourth aliquot received no stain. In the virus-free aliquots all the

cells were uniformly labeled and appeared as a single group

(Fig. 1). FM 1-43 was found to be the most suitable dye for our

host-virus system, allowing the most distinctive discrimination

between cell subpopulations in the virus-added culture (one
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Figure 1. Representative flow cytometry plots showing E. huxleyi cells, inoculated and non-inoculated with viruses (20 hours PI) (A)
without fluorescence dye, or stained with the fluorescence dyes (B) lipid-specific dye FM 1-43, (C) CM-H2DCFDA for detection of
accumulated Reactive Oxygen Species in cells and (D) DNA dye SYBR Green I. Infected and non-infected cells were discriminated on the
basis of their red autofluorescence (610 nm) or the green fluorescence (522 nm) of SYBR Green I and CM-H2DCFDA versus side scatter, green dye
fluorescence or orange lipid dye FM 1-43 fluorescence (488 nm).
doi:10.1371/journal.pone.0022520.g001
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subpopulation with high-orange fluorescence as that in the virus-

free culture and a second with low-orange fluorescence) compared

to CM-H2DCFDA and SYBR Green I (Figs. 1B-D). Further-

more, distinctive subpopulations were resolved with FM 1-43 from

6 hours PI while the other two fluorescent dyes distinguished cell

subpopulations (based on acquired green fluorescence) only from

20 hours PI (Figs. S1, S2, S3). In the absence of fluorescence

dyes the cells’ red autofluorescence and low green fluorescence

levels did not change throughout the 48 h sampling period both in

the virus-free and the virus-added cultures (Fig. S4).

In an independent experiment analogous to the previous one,

we mixed FM 1-43 dye-labeled aliquots from virus-free and virus-

added E. huxleyi cultures (1:1 ratio) at 20 h PI and sorted 84 single

cells with high- and 84 single cells with low-orange fluorescence

(red and green clusters, respectively, in Fig. 1B) into a 384-well

plate. Additionally, we included 22 blank wells (no-drop deposi-

tion) and 1 positive sorting control well (50 cells in a single well)

from each cell subpopulation. After sorting, MDA and real-time

PCR screening with both MCP [12] and GPA [13] primers (to

detect virus and host respectively) were performed on each well.

Close to 100% of the MDA reactions in wells containing single

cells were operationally-defined successful, i.e. critical amplifica-

tion point (Cp), the time necessary to reach half of the maximum

accumulated fluorescence for each sample, was less than 12 hours.

In general, low-orange fluorescence cells were MDA-amplified

faster than high-orange fluorescence cells (Table 1 and Fig. S5).

Cp mean for multiple-cell wells was approximately 4:30 hours and

Cp mean for blank wells was 14:35 hours, indicating the overall

effectiveness of the sorting process, the suitability of the MDA

reaction conditions and the lack of DNA contamination in the

blanks and the MDA reagents (Fig. S5).

MCP and GPA PCR reactions yielded amplicons for the

multiple-cell wells and did not yield products for any of the blank

wells or the few MDA reactions with Cp$12 hours (data not

shown), indicating the suitability of the reaction and the lack of

contamination across wells. Ninety seven percent of the MDA

products from single sorts with Cp,8 hours from the low-orange

fluorescence cells yielded an EhV-MCP amplicon indicating that

those single sorted cells were indeed infected with EhV-86. In

contrast, we could only amplify the MCP fragment from approx-

imately 17% of MDA amplicons with Cp,8 hours from high-

orange fluorescence cells (Table 1). E. huxleyi-specific GPA

reactions were overall more successful on high-orange fluorescence

cells compared to infected cells and on MDA products with

Cp.8 hours (Table 1).

Although FM 1-43 dye was chosen in preference to CM-

H2DCFDA and SYBR Green I dyes for our host-virus system, we

also proved in a separate test that MDA amplification and PCR

efficiencies did not depend on whether the cells had been dye-

labeled prior to sorting or on the type of dye utilized (File S1).

Discussion

The method we describe here allows the unequivocal iden-

tification, isolation, and whole genome amplification of single E.

huxleyi infected cells from a culture. A sensible starting point when

developing a new technique is to investigate manageable com-

ponents of the oceanic microbial ecosystem, ideally those that are

quantitatively significant; hence, our choice of E. huxleyi. Yet, it is

possible that this method can be used on a range of microalgae or

other host species infected by viruses.

Certain changes in the host physiology can be used as indicators

of viral infection. For instance, decreased photosynthetic efficiency

of infected hosts has been measured as changes in fluorescence

quenching [14,15,16]. The decline of autofluorescence can

sometimes be detected and quantified by flow cytometry but it is

not always evident, especially at early stages of infection. Our

results show that in the absence of fluorescent dye, the red

autofluorescence of both healthy and infected E. huxleyi cells

remained undistinguishable for at least the first 24 h of study (Fig.
S4) evidencing the need for a different approach to discriminate

healthy from infected cells at earlier stages of infection when

the host’s genetic material is still intact [17]. Accumulation of

intracellular ROS and membrane and cytoplasmic blebbing are

indicators of programmed cell death induced by environmental

factors such as excessive ultraviolet radiation, nutrient limitation,

oxidative stress or viral infection [18]. Viruses have been suggested

to be the ultimate cause of phytoplankton loss for which the

death apparatus might be seen as a product of host and virus

coevolution, with each trying to control it [19]. In this study we

took advantage of those known physiological changes observed in

E. huxleyi in response to viral infection, and found that membrane

blebbing as detected with the fluorescent dye FM 1-43 [4] was

most suitable for early discrimination of infected cells.

FM 1-43 revealed two cell populations distinguished by the level

of orange fluorescence. Low-orange fluorescence cells, infected

with EhV-86, had on average lower MDA Cp values than high-

orange fluorescence cells, of which only 20% yielded EhV-MCP

amplicons. These amplicons could be due to the presence of non-

infectious EhV particles nonspecifically attached to some of the

high-orange fluorescence cells or it could be that those high-

orange fluorescence cells were indeed infected, but at such early

stage of infection that membrane blebbing was not yet evident.

Infected E. huxleyi cells exhibit plasma membrane patchiness only

Table 1. Summary of MDA and PCR results (with MCP and GPA primers, for virus and host respectively) for single sorted cells with
addition of fluorescence dye FM 1-43.

Sorted population MDAa PCRb

MCP GPA

Cp,8 12.Cp$8 Cp,8 12.Cp$8 Cp,8 12.Cp$8

High-orange fluorescence 62% 36% 17% 3% 36% 70%

Low-orange fluorescence 89% 8% 97% 0% 24% 50%

MDA reactions with Cp.12 hours did not yield any PCR products and therefore are not included in this table.
aResults are presented as percentage of wells containing single-sorted cells. Time for MDA amplification was determined from the critical amplification point (Cp, in
hours).

bResults are presented as percentage of positive PCR reactions for each group of MDA reactions, i.e. Cp,8 or 12.Cp$8.
doi:10.1371/journal.pone.0022520.t001
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after approximately 2 h PI [4]. The EhV genome is an easier

template than the E. huxleyi genome, which with its many repeats,

GC-rich regions and extensive secondary structure, is a difficult

template for amplification (http://genome.jgi-psf.org/Emihu1/

Emihu1.home.html). This likely explains the lower MDA Cp

values for low-orange fluorescence (infected) cells compared to

high-orange fluorescence cells (mostly non-infected). On the con-

trary, the higher success of E. huxleyi-specific GPA reactions on

high-orange, compared to low-orange fluorescence cells (Table 1)

could be explained by the fact that in infected cells (low orange

fluorescence signal): 1) the EhV genomes are preferentially

amplified by MDA; 2) most of the host genome has already been

degraded for the production of new virions hindering amplifica-

tion of the GPA fragment [17]. However, this may not be the case

for other host-virus systems with different viral infection strategies

and different genome composition and structures.

This novel method for targeted sorting of infected E. huxleyi cells

is a powerful tool that opens a range of new opportunities for the

investigation of viral infection of this microalgae and possibly of

other host-virus systems. The availability of genomic data from

single microalgae infected cells can, for instance, help discern the

factors that determine virus specificity and host susceptibility as

well as gene transfer and co-evolution by facilitating the search for

common shared patterns among the genomes of individual host

cells and their viruses. Probably the most important improvement

that this method offers is the ability to detect and genetically

analyze individual infected cells without the need to maintain the

host-virus system in the laboratory. Naturally occurring blooms of

E. huxleyi are frequently terminated by viral infection [7,8,9]

and therefore the majority of sorted cells that exhibit membrane

blebbing or elevated intracellular ROS or total DNA content are

likely to be infected. Moreover, results obtained this way from

environmental samples will be more ecologically relevant than

those from manipulated laboratory conditions which often do not

reflect true ecological conditions.

Materials and Methods

Host culture
Non-axenic clonal Emiliania huxleyi strain CCMP 1516 (3–5 mm)

was obtained from the Provasoli-Guillard Center for the Cultiva-

tion of Marine Phytoplankton (CCMP, Maine, USA; http://

ccmp.bigelow.org/). The cultures were maintained at 15uC and

kept at mid-exponential growth phase (approx. 1–26106 cells

ml21) by periodically transferring 5–10% (v/v) culture in fresh f/2-

Si seawater medium [20]. Light (250 mmoL photons m22 s21) was

supplied by fluorescence tubes under a light-dark cycle of 16:8h.

Cell concentrations were calculated by flow cytometry as described

by Marie et al. [21] using a FACScan flow cytometer (Becton

Dickinson, Franklin Lakes, NJ), equipped with an air-cooled laser

providing 50 mW at 488 nm and with standard filter set-up.

Deionised water was used as sheath fluid.

Virus pathogen
E. huxleyi-virus (EhV) strain EhV-86 [12] was obtained from

the Plymouth Virus Collection (UK). Fresh working solutions of

EhV-86 lysate were produced prior to performing an experiment.

Briefly, 1 ml lysate was added to 50 ml of an exponentially

growing culture of E. huxleyi strain CCMP 1516. Once clearing of

the host culture was observed, the lysate was passed through a

0.2 mm syringe filter (Sartorius AG, Germany) and the filtrate

containing virus was stored at 4uC. Virus concentration was

calculated by flow cytometry using SYBR Green I as described by

Brussaard [22].

Fluorescent cell labeling
1 ml E. huxleyi culture aliquots (concentration was adjusted to

approx. 1.46105 cells ml,1) were placed into microcentrifuge

Eppendorf tubes and labeled with either fluorescent dye N-(3-

riethylammoniumpropyl)-4-[4-(dibutylamino)styryl] pyridinium

dibromide (FM 1-43, Invitrogen Co., Carlsbad, CA, USA), 5-(and-

6)-chloromethyl-29,79-dichlorodihydrofluorescein diacetate (CM-

H2DCFDA, Molecular Probes Inc., Eugene, OR, USA) or SYBR

Green I (Molecular Probes Inc., Eugene, OR, USA). The cells

were incubated with 10 mM (final concentration) FM 1-43 [4],

5 mM (final concentration) CM-H2DCFDA [3] or SYBR Green I

(56105 dilution of commercial stock) for 30 min, 60 min or

15 min, respectively, in the dark at 15uC. In an initial experiment,

an E. huxleyi culture aliquot was incubated for 10 minutes with

100 mM H2O2 to artificially elevate the intracellular ROS con-

centration prior to addition of CM-H2DCFDA dye, as a control to

verify the effectiveness of the CM-H2DCFDA labeling. H2O2 is

the most stable of the ROS and is capable of rapid diffusion across

cell membranes [23]. Labeled E. huxleyi cells were discriminated

by flow cytometry on the basis of their red autofluorescence at

610 nm versus side scatter, the green fluorescence of the CM-

H2DCFDA and SYBR Green I dyes at 522 nm or the orange

fluorescence of the FM 1-43 dye at 488 nm, accordingly.

Fluorescence-activated cell sorting
Prior to cell sorting, samples were diluted 10-fold with sterile-

filtered seawater and pre-screened through a 70 um mesh-size cell

strainer (BD). Sorting was done with a MoFloTM (Beckman

Coulter) flow cytometer using a 488 nm argon laser for excitation,

a 70 mm nozzle orifice and a CyCloneTM robotic arm for droplet

deposition into microplates. The ‘‘single 1 drop’’ mode was used

for maximal sort purity, which ensures the absence of non-target

particles within the target cell drop and the drops immediately

surrounding the cell.Extreme care was taken to prevent sample

contamination by any non-target DNA. Instruments and reagents

were decontaminated as previously described [24]. Cell sorting

was performed in a HEPA-filtered environment. The cytometer

was triggered on side scatter, the sort gates were based on red

autofluorescence and side scatter for not-labelled cultures, on red

autofluorescence versus orange fluorescence for FM 1-43-labelled

cells, on red autofluorescence or green fluorescence versus side

scatter for CM-H2DCFDA-labelled and on red autofluorescence

versus side scatter or green fluorescence for SYBR Green I-

labelled cells. Cells from the virus-free aliquots and from the not-

labelled virus-added aliquot were sorted by setting a gate that

included the entire population. For virus-added cultures labeled

with FM 1-43, the sorting gates included cells with either reduced

or normal orange fluorescence, compared to the virus-free culture.

In the case of virus-added cultures labeled with CM-H2-DCFDA

or SYBR Green I, we set a double-gate criterion for cells with

increased green fluorescence and relatively low red fluorescence

and side scatter signal. Cells were deposited into 384-well plates

containing 0.6 mL per well of 16 TE buffer (10 mM Tris-HCl,

1 mM EDTA, pH 8.0) and stored at 280uC until further pro-

cessing. Sorted plates included single cells, blanks (no doplet

deposition), and positive sorting controls (multiple cells into one well).

MDA reaction
Sorted cells were lysed and their DNA was denatured using cold

KOH [25]. The genomic DNA was amplified using real-time

multiple displacement amplification (MDA) [25,26] in 10 mL final

volume reactions. The MDA reactions contained 2 U/uL Repli-

phi polymerase (Epicentre Biotechnologies, Madison, WI, USA),

1x reaction buffer (Epicentre Biotechnologies, Madison, WI,
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USA), 0.4 mM each dNTP (Epicentre Biotechnologies, Madison,

WI, USA), 2 mM DTT (Epicentre Biotechnologies, Madison, WI,

USA), 50 mM phosphorylated random hexamers (IDT) and 1 mM

SYTO-9 (Invitrogen Co., Carlsbad, CA, USA). The MDA

reactions were conducted at 30uC for 16 h followed by a poly-

merase denaturation step at 65uC for 15 min. Successful reactions

were determined based on the real-time kinetics (increase in

SYTO-9 fluorescence signal) and the melting curves measured

with a FLUOstar Omega (BMG) plate reader. Time for ampli-

fication was determined using an in-house algorithm developed to

calculate the critical amplification point (Cp), described as the time

necessary to reach half of the maximum accumulated fluorescence

for each sample. The Cp is inversely correlated to the amount of

DNA template [27]. The amplified genomic DNA was stored at

280uC until further use for PCR screening.

PCR screening of MDA products
The MDA products were diluted 50-fold in sterile TE buffer

and 1 ml or 0.5 mL aliquots of the dilute products served as

template in 50 ml standard or 5 mL real-time PCR reactions,

respectively. Previously described primers (Table S1) were used to

amplify genes encoding the Major Capsid Protein (MCP) in EhVs

[12], a calcium binding protein (GPA) in E. huxleyi [13], universal

eukaryotic 18S rRNA (primers Euk1A [28] and Euk516R [29])

and prokaryotic and plastid 16S rRNA (primers 27F and 1492R)

[30]. The PCR reactions contained 1U Taq DNA polymerase

(Promega), 1 6PCR reaction buffer (Promega), 0.25 mM dNTPs,

1.5–2.5 mM MgCl2 and 10 pmol of each primer. PCR products

from standard reactions were resolved by standard gel electro-

phoresis, labeled with GelRedTM DNA label (1–26104 dilution

of commercial stock) (Phenix Research, Candler, NC, USA).

Reaction kinetics and amplicon melting curves served as proxies

detecting amplification of target genes in real-time PCRs. Stan-

dard PCRs were performed in an iCycler thermal cycler (Life

Science Research, Hercules, CA, USA). Real-time PCRs were

performed using LightCycler 480 SYBR Green I Master mix (Roche

Applied Science, Indianapolis, IN, USA) in a LightCyclerH 480 II

real time thermal cycler (Roche Applied Science, Indianapolis, IN,

USA). Single cell sorting, whole genome amplification and real-time

PCR screens were performed at the Bigelow Laboratory Single Cell

Genomics Center (www.bigelow.org/scgc).

Supporting Information

Figure S1 Representative biparametric flow cytometry plots

showing a postinfection time series of E. huxleyi cells labeled with

the lipid-specific fluorescence dye FM 1-43, (A) non-inoculated

(virus-free) control culture, all cells are in a single cluster (red) with

acquired high-orange fluorescence and (B) culture inoculated with

EhV-86 viruses (virus-added). A cell subpopulation with low-

orange fluorescence (green cluster) developed in time in the virus-

added culture. Infected and non-infected cells were discriminated

on the basis of their red autofluorescence (610 nm) versus orange

dye fluorescence (488 nm). Cells for multiple displacement ampli-

fication (MDA) and downstream PCR amplification were sorted

20 h post-inoculation from both green and red subpopulations.

(TIF)

Figure S2 Representative biparametric flow cytometry plots

showing a post-infection time series of E. huxleyi cells labeled with

CM-H2DCFDA fluorescence dye. (A) non-inoculated (virus-free)

control culture and (B) culture inoculated with EhV-86 viruses

(virus-added). Cells were discriminated on the basis of their red

autofluorescence (610 nm) or green dye fluorescence (522 nm)

signals versus side scatter signal. The virus-free culture showed an

increasing cell subpopulation with high-green fluorescence and

relatively higher red fluorescence and side scatter signals (marked

by squares) throughout the 48 h period of study, probably as a

result of the accumulation of intracellular ROS in some cells due

to normal cellular metabolism. From the 20 h post-inoculation

sampling point onwards the virus-added culture also showed a cell

subpopulation with high-green fluorescence (lower than that in the

virus-free culture), however, these cells had relatively lower red

fluorescence and side scatter signals (marked by circles).

(TIF)

Figure S3 Representative biparametric flow cytometry plots

showing a post-infection time series of E. huxleyi cells labeled with

SYBR Green I fluorescence dye. (A) non-inoculated (virus-free)

control culture and (B) culture inoculated with EhV-86 viruses

(virus-added). Cells were discriminated on the basis of their red

autofluorescence (610 nm) versus side scatter or green dye

fluorescence (522 nm) signals. Both cultures showed a distinctive

cell subpopulation with increased green fluorescence signal (green

cluster) from at least 6 h post-inoculation, probably because of the

presence of dividing cells or diploid cells in the culture, with

relatively higher DNA content. However, from the 20 h post-

inoculation onwards the higher green fluorescence group differed

between the virus-free and the virus-added cultures with respect to

the cells’ red fluorescence and side scatter signals, which were

relatively high in the virus-free culture (marked by squares) but low

in the virus-added culture (marked by ovals).

(TIF)

Figure S4 Representative biparametric flow cytometry plots

showing a post-infection time series of E. huxleyi cells without

addition of any fluorescence dye. (A) non-inoculated (virus-free)

control culture and (B) culture inoculated with EhV-86 viruses

(virus-added). Cells were discriminated on the basis of their red

autofluorescence (610 nm) or green fluorescence (522 nm) signals

versus side scatter signal. In the absence of fluorescence dyes the

cells’ red autofluorescence and green fluorescence levels did not

change throughout the 48 h sampling period, both in the virus-free

and the virus-added cultures.

(TIF)

Figure S5 (A) Critical point (Cp) distribution for whole genome

multiple displacement amplification on a microplate containing

sorted E. huxleyi strain CCMP 1516 cells labeled with the lipid-

specific FM 1-43 dye. Mean Cp is indicated for each group. (B)
Example of kinetics curve in a single sorted cell well.

(TIF)

Table S1 List of PCR primers, and their sequences, used in this

study. F and R denote forward and reverse primer respectively.

(DOC)

File S1 Suitability of the stained and sorted cells for MDA and

PCR screening.

(DOC)
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