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Introduction

Lung cancer remains by far the single most common cause 
of cancer-related mortality with nearly 1.6 million deaths 
worldwide in 2012 or nearly 20% of cancer mortality as 
a whole (1). Over the last decade, molecular translational 
research advances have heralded major breakthroughs in the 
understanding, diagnosis and management of lung cancer, 
particularly for the more common (~80%) non-small cell 
lung cancer (NSCLC). Conversely, treatment for small cell 
lung cancer remains chemotherapy-based and whilst there 
are promising results with novel cytotoxics, its platinum-
etoposide backbone holds strong (2).

The term ‘Theranostics’ whereby therapeutics and 
diagnostics have been meaningfully combined to achieve 
personalised pharmacotherapy has now become commonplace 
in oncology. Sequencing of the human genome has permitted 
more efficient identification of epigenetic mutations, tumour-
suppressor-gene inactivation as well as oncogene driver 
mutations that are potential targets for therapy (3-8). Such 
examples include trastuzumab for HER-2 over-expressing 

breast cancer and vemurafenib for BRAF-mutant melanoma 
(9,10).

It is now accepted that NSCLC is not a singular 
entity but is in fact multiple pathologies with unique 
molecular signatures that we are only beginning to unravel 
and understand (11-13). Broadly speaking, the main 
subtypes are pulmonary adenocarcinoma, squamous cell 
carcinoma (SCC) and large cell carcinoma. This distinction 
alone allows for a more tailored selection of cytotoxic 
chemotherapy in advanced NSCLC without a driver 
mutation, as seen with enhanced efficacy with pemetrexed 
in adenocarcinoma (14,15) or the toxicity concerns of 
bevacizumab in patients with squamous histology (16).

Optimal management of NSCLC now requires that 
tumours be screened for a range of predictive and prognostic 
biomarkers that help to predict sensitivity to targeted therapy 
and estimate prognosis respectively (17). For NSCLC, much 
of the work in the last decade has been focussed on mutations 
of the epidermal growth factor receptor (EGFR) and on 
the abnormal fusion of the anaplastic lymphoma kinase 
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(ALK) being inhibited successfully with EGFR tyrosine 
kinase inhibitors (TKI) and crizotinib respectively. Targeted 
agents are now being rationally designed to inhibit particular 
mutations leading to a more streamlined clinical trial process. 
In this review, we will examine the major subtypes of driver 
mutations that have been identified in NSCLC and relevant 
targeted therapies available both now, and in the foreseeable 
future. 

Signalling pathway targets in NSCLC 

The traditional and now over-simplified histological 
distinctions within NSCLC include adenocarcinoma, 
SCC and large cell carcinoma (Figure 1). Up to 60% of 
lung adenocarcinoma and up to 50-80% of SCC have 
a known oncogenic driver mutation (Figure 1) (18,19). 
These mutations in receptors or protein kinases can 
stimulate a complex cascade of cross signalling pathways 
such as the RAS-RAF-MEK-ERK or MAPK, PI3K-AKT-
mTOR or JAK-STAT pathways (Figure 2) (3,4,7,18,20). 
Ultimately these lead to uncontrolled growth, proliferation 
and survival. Successful targeted therapy involves the 
identification and inhibition of these up-regulated pathways 

by either small molecule inhibitors or receptor monoclonal 
antibodies (mAb). The best studied in NSCLC is the 
interaction between EGFR and its downstream pathways.

Epidermal growth factor receptor (EGFR) 

The epidermal growth factor receptor (EGFR or ErbB1 
or HER1) belongs to a family of receptor tyrosine kinases 
that can trigger a vast array of signalling pathways leading 
to cell growth, proliferation and survival (20,21). Such flow-
on pathways include the RAS-RAF-MEK-ERK or MAPK 
pathway and the PI3K-AKT-mTOR pathways. 

There are three main mechanisms leading to EGFR 
activation: increased expression of EGFR on malignant 
cells; enhanced ligand production by malignant cells; and 
activating mutations of EGFR within malignant cells. 
EGFR is overexpressed in up to 40-80% of NSCLC and 
was a promising translational therapeutic target however 
it was subsequently discovered that activating mutations 
rather than overexpression of EGFR was the prime 
therapeutic target. The two most common mutations are 
exon 19 deletions (60%) and L858R missense substitutions 
at position 858 (35%) where leucine is replaced by arginine 

Figure 1 NSCLC by histology and mutations. NSCLC, non-small cell lung cancer.
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resulting in constitutive activation of the receptor without 
ligand binding (21-23). Mutant EGFR can be inhibited 
either by small molecule TKI (such as gefitinib and 
erlotinib) or mAb (such as cetuximab).

Gefitinib and erlotinib were the first EGFR TKIs to be 
developed. Both are reversible competitive inhibitors of 
ATP for the tyrosine kinase domain of EGFR resulting in 
blockade of downstream pathways. Early trials used EGFR 
TKIs in an unselected population as these predated the 
now known clinical and molecular predictive biomarkers 
(24-28). As trials matured, subgroup analyses identified 
characteristics that correlated with response such as 
adenocarcinoma histology, Asian ethnicity and minimal 
smoking history (24-26,29-34). Molecular testing of tissue 
samples from those who had responded to TKIs revealed 
that somatic activating mutations in EGFR underpinned 
the responses seen (29,30,35-37). The incidence of EGFR 
mutation varies with ethnicity, with Asian populations 
having up to 50% of adenocarcinomas driven by activating 
EGFR mutations compared to only 10% to 15% in 
Caucasians (37). Unfortunately, there are no reliable 
clinical phenotypes or characteristics that allow for accurate 
prediction of an EGFR mutation, thus all tumours must 
undergo specific mutational testing (38).

EGFR-mutant NSCLC 

The most significant paradigm change in the last 10 years 
for NSCLC management was heralded by the use of EGFR 
TKIs as first-line therapy for patients with a targetable 
EGFR driver mutation. The landmark Iressa Pan-Asia Study 
(IPASS) randomised 1,217 patients from several East Asian 
countries with untreated stage IIIB or IV adenocarcinoma 
to gefitinib or carboplatin and paclitaxel chemotherapy 
(Table 1) (39). Subjects were clinically selected with no or 
minimal smoking history and EGFR was explored as a 
potential biomarker. IPASS met its primary endpoint with 
a 12-month progression-free survival (PFS) of 24.9% with 
gefitinib versus 6.7% with chemotherapy (39). EGFR status 
was known in approximately a third of patients, and of these, 
60% harboured an activating mutation. For these patients, 
PFS was significantly prolonged with gefitinib compared 
to chemotherapy [HR 0.48 (95% CI, 0.36-0.64); P<0.001]. 
Conversely, patients with wild-type EGFR did better with 
chemotherapy [HR 2.85; (95% CI, 2.05-3.98); P<0.001]. 
The First-SIGNAL study (41) verified these findings by 
clinically selecting never smokers with adenocarcinoma 
then comparing chemotherapy to gefitinib first-line  
(Table 1). Overall PFS was not significantly different but 

Figure 2 Overview of molecular pathways and potential targets in non-small cell lung cancer (NSCLC) [(from Alamgeer et al. (18)].
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upon review of patients treated with gefitinib, an activating 
EGFR mutation did predict for superior overall response 
rate (ORR) (84.6% vs. 25.9%, P<0.001) and significantly 
longer PFS (HR 0.377; 95% CI, 0.21-0.67; P<0.001) (41).

Further confirmatory trials (Table 1) compared gefitinib 
(42,43), erlotinib (44,45) or afatinib (46,47) to chemotherapy 
specifically in EGFR-mutated NSCLC rather than simply 
by the clinical enrichment criteria of earlier studies. All 
found that first-line EGFR TKIs afforded superior ORR, 
PFS and quality of life compared to chemotherapy. Thus 
upfront tumour interrogation for predictive biomarkers 
has now become standard and if EGFR demonstrates an 
activating mutation, then EGFR TKIs should be given as 
first-line therapy. However, despite mature follow up data 
for IPASS (40) and other studies, no EGFR TKI in first-
line has demonstrated an overall survival benefit most likely 
due to extensive crossover after progression (59).

Currently, there are no published head to head trials 
directly comparing the efficacy of first-line EGFR TKIs. In 
general, these agents all demonstrate similar efficacy so the 
choice of agent depends on toxicity or clinician preference 
at the present time (60). Results of the phase IIb LUX-
Lung 7 study directly comparing afatinib to gefitinib as 
first-line treatment for EGFR-mutant adenocarcinoma are 
eagerly anticipated and may address this (ClinicalTrials.gov 
Identifier: NCT01466660). 

The role of adjuvant EGFR TKIs for resected stage 
I to III NSCLC remains uncertain (Table 2). Adjuvant 
erlotinib after surgery, specifically in EGFR-mutants, is 
currently being investigated in the RADIANT trial, with or 
without chemotherapy and is expected to complete in 2016 
(ClinicalTrials.gov identifier: NCT00373425). Data from 
this study will be particularly interesting as a previous trial, 
NCIC BR19 (66), in an unselected patient population using 
adjuvant gefitinib, proved negative. 

EGFR wild type and EGFR-unknown advanced NSCLC 

Most tumours do not harbour an activating EGFR mutation 
(known as EGFR wild-type) and the role of TKIs in this 
specific population is contentious. With regards to first-
line therapy, guidelines discourage the use of first-line TKIs 
based on the IPASS (39,40) and TORCH (54,55) trials which 
both demonstrated inferior survival compared to up-front 
chemotherapy (67,68). For second-line therapy (Table 1),  
the TAILOR trial (58) compared erlotinib to docetaxel 
specifically in EGFR wild-type tumours. All endpoints of 
ORR, PFS and overall survival (OS), were significantly 

better with docetaxel compared to erlotinib (58). This 
supports the continuing role for cytotoxic chemotherapy 
as the preferred therapeutic option in NSCLC without 
targetable driver mutations (69).

Four trials investigated whether adding EGFR TKIs to 
standard platinum doublet chemotherapy could improve 
outcomes (Table 1). The INTACT 1 (48) and INTACT 
2 (49) looked at gefitinib whereas the TRIBUTE (50) 
and TALENT (51) trials used erlotinib. All proved to be 
negative trials with no improvement in efficacy or survival 
compared to standard chemotherapy alone. 

The prognosis for patients remains poor for those who 
progress after initial platinum doublet chemotherapy. Both 
docetaxel (70) and pemetrexed (71) are approved active agents 
in the second-line setting, but more therapeutic options 
were needed, especially for those unable to have further 
chemotherapy. The INTEREST study was a multinational 
phase III randomised trial that compared gefitinib to 
docetaxel in unselected second-line patients (Table 1) (31). 
Gefitinib was non-inferior with respect to median OS of  
7.6 months with gefitinib and 8.0 months with docetaxel, HR 
1.02 (95% CI , 0.905-1.150). Further trials with second-line 
gefitinib (32,33) and erlotinib (34) showed superior response 
rates, PFS and quality of life without significant differences 
in OS compared to chemotherapy. 

For patients with unknown EGFR status who are unfit 
for chemotherapy, the phase III TOPICAL study (72) found 
a significant survival benefit with first-line erlotinib over 
placebo but only in those who developed a rash within 28 
days. It should be noted that those who failed to develop a 
rash with erlotinib had inferior survival compared to placebo. 
Two early phase III trials investigated EGFR TKIs versus 
placebo in second- or third-line in unselected patients, prior 
to knowledge of predictive biomarkers (Table 1) (56,57). 
The BR.21 trial (56) was the first, and still the only phase 
III trial to show an overall survival benefit from an EGFR  
TKI (59). Survival with erlotinib was 6.7 months compared 
to 4.7 months with placebo (HR 0.70; 95% CI, 0.58-
0.85; P<0.001) (56). In contrast, gefitinib failed to show a 
significant survival benefit in the ISEL trial (57). Icotinib, a 
novel EGFR TKI has also demonstrated non-inferiority in a 
head to head trial compared to gefitinib in previously treated, 
unselected advanced NSCLC (73). Therefore in patients with 
unknown or wild-type EGFR status, who have no further 
chemotherapy options, erlotinib may be beneficial as second- 
or third-line therapy after platinum-based chemotherapy. 

Switch maintenance therapy to EGFR TKIs after initial 
induction chemotherapy has shown a modest but statistically 
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significant benefit (Table 2). The WJTOG0203 (61) and 
INFORM (63) trials used gefitinib whereas SATURN (62)  
and IFCT-GFPC 0502 (64) showed similar benefits 
for erlotinib. However the SWOG S0023 study (65) 
demonstrated no benefit with gefitinib compared to placebo 
following definitive chemoradiation. In fact, there appeared 
to potentially be harm from gefitinib in this setting as placebo 
paradoxically demonstrated a superior PFS and OS. 

Anti-EGFR monoclonal antibodies

Monoclonal antibodies represent an alternative way 
to inhibit EGFR activation and signalling. Apart from 
competitive inhibition of ligands binding to the extracellular 
domain, they can also form antibody-receptor complexes 
that are endocytosed and degraded. Available anti-EGFR 
mAbs now include cetuximab, necitumumab, panitumumab 
and matuzumab.Two phase III studies, FLEX (52) and 
BMS099 (53) have examined the combination of cetuximab 
with platinum doublet chemotherapy in advanced NSCLC 
(Table 1). Whilst the FLEX trial demonstrated a marginal 
improvement in median overall survival (11.3 months 
with cetuximab versus 10.1 months with chemotherapy 
alone), the smaller BMS099 trial was negative (52,53). 
Necitumumab is currently being investigated in two 
phase III studies. The ongoing INSPIRE study in 
non-squamous NSCLC (ClinicalTrials.gov identifier: 
NCT00982111) and the recently completed SQUIRE study 
for squamous NSCLC investigating cisplatin-gemcitabine 
with necitumumab. The SQUIRE study reportedly 
demonstrated an improved OS and formal publication of 
these results are eagerly anticipated (ClinicalTrials.gov 
identifier: NCT00981058). Other mAbs currently in phase 
II trials include panitumumab (ClinicalTrials.gov identifiers: 
NCT01038037 and NCT01088620) and matuzumab 
(ClinicalTrials.gov identifier: NCT00111839).

Resistance to EGFR targeted therapy 

Although EGFR TKIs have revolutionised treatment of 
EGFR-mutant NSCLC, most responses have not proved to 
be durable with many patients progressing after 7-12 months. 
Resistance can occur primarily (that is, de novo) or develop 
after exposure to targeted agents, and can exist as resistant 
clones within a tumour or in different tumours within the 
same patient. Most will develop ‘acquired resistance’, either 
through secondary EGFR mutations or activation of EGFR-
independent pathways. Clinicians should therefore consider 

re-biopsy at progression to assess contemporaneous tumour 
biology (74-77). The most frequent mechanism (~50%) 
is via concurrent acquisition of a mutation in exon 20 of 
EGFR, encoding for T790M (74-80). Threonine is replaced 
by methionine, altering the configuration of the kinase 
domain and enhancing its affinity (over wild-type) for ATP, 
with corresponding decreased affinity for first-generation 
reversible TKIs (81). The second most common mechanism 
(in 5-20%) involves amplification of MET to circumvent 
EGFR inhibition via PI3K-AKT-mTOR signalling  
(74-76). Other resistance mechanisms include mutations in  
PIK3CA (75), HER2 (79,82), BRAF (83), STAT3 (84), 
AXL kinase (85), CRKL amplification (86) and in 5%,the 
unexpected transformation into small cell lung cancer (75,76). 
Despite significant advances in our understanding of the 
mechanisms of acquired resistance, up to 30% of resistance 
is mediated via an unknown mechanism and hence empirical 
cytotoxic chemotherapy remains the treatment of choice (75).

In contrast to chemotherapy, resistance to targeted 
therapy can be approached rationally once aberrant 
pathways are identified. Second-generation irreversible 
ErbB-family TKIs such as afatinib, which covalently binds 
to EGFR/HER1 and HER2, can overcome the T790M 
mutation as seen in LUX-Lung1 with 7% ORR and PFS 
improved from 1.1 months with placebo to 3.3 months (HR 
0.38; 95% CI, 0.31-0.48, P<0.0001) (87,88). Dual EGFR 
blockade with EGFR TKIs and cetuximab are now being 
tested after success in murine models (89-91). Combined 
inhibition of MET and T790M has also shown promise in 
murine models (92) and is now undergoing clinical trials in 
humans with a MET/ALK inhibitor (crizotinib) plus a pan-
HER inhibitor (dacomitinib) (ClinicalTrials.gov identifier: 
NCT01121575). Third generation EGFR TKIs such as 
CO-1868 and AP26113 that specifically target T790M have 
preliminary evidence of efficacy in acquired resistance with 
reasonable toxicity (93,94). Although addressing resistance 
to targeted therapy appears possible, the challenge for the 
future will be rationally choosing combinations and whether 
upfront combination therapy will be more effective than 
first-line single-agents whilst balancing toxicity and costs. 

EML4-ALK positive NSCLC 

The ALK  gene was first discovered in 1994 in the 
context of a subtype of Non-Hodgkin lymphoma where 
ALK was fused to nucleophosmin (NPM) as a result of 
a chromosomal translocation (95). In 2007, Soda et al. 
screened NSCLC tumours and found the same ALK 
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gene but this time fused to Echinoderm Microtubule-
associated protein-like protein 4 (EML4) as a result of a 
small inversion within chromosome 2p (96). The EML4-
ALK fused oncogene is present in up to 3-7% of NSCLC 
and promotes malignant growth and proliferation (96). As 
with EGFR, ALK rearrangements are more likely to be 
seen in specific populations; younger patients who are light 
or never-smokers with adenocarcinoma and frequent signet 
ring cells seen on histology (97-101). Tumours carrying 
ALK rearrangements are mutually exclusive from those 
harbouring EGFR or KRAS mutations and represent the 
prototype for ‘oncogene addiction’ where a single gene 
product can result in malignancy (97,102,103).

Unlike the history of EGFR, lessons learnt since have 
allowed a more logical approach for ALK as a therapeutic 
target; from discovery, prospective tumour genotyping and 
specifically designed trials to test inhibitors and achieve 
positive patient outcomes. Crizotinib is an oral small molecule 
inhibitor of the ALK, MET and ROS tyrosine kinases (104). It 
was granted FDA approval in 2011 after only phase I/II studies 
showed impressive response rates (ORR 57%, including one 
complete response) in pre-treated patients (98). Final results 
revealed a PFS of 9.7 months (95% CI, 7.7-12.8 months) (105). 
Median OS data are awaited but a retrospective analysis of 
ALK-positive NSCLC suggests that crizotinib is associated 
with a survival advantage compared to those who did not have 
crizotinib available (106). Importantly, ALK-positivity itself is 
not a favourable prognostic factor as those without treatment 
have similar poor outcomes to the general population of 
NSCLC (106).

Crizotinib has also proved its superiority over second-
line chemotherapy in those who had previously received 
a platinum doublet (101). Median PFS was 7.7 months 
with crizotinib versus 3.0 months with pemetrexed or 
docetaxel chemotherapy (HR 0.49; 95% CI, 0.37-0.64, 
P<0.001) (101). Overall survival was no different, likely 
due to extensive crossover and immature follow up for 
survival. This was all achieved with relatively few adverse 
effects, mainly mild visual disturbances (photopsia, blurred 
vision) and gastrointestinal side effects. Elevations in liver 
aminotransferases were severe in 16%, and one progressed 
to fatal hepatic failure. Interstitial lung disease was seen 
in 2% with two fatalities. Overall patients still reported 
superior reduction of symptoms and improvements in 
overall quality of life with crizotinib (101).

The phase III PROFILE 1014 study is currently 
investigating crizotinib as first-line therapy compared to 
platinum-pemetrexed chemotherapy in untreated patients 

and has now completed recruitment (ClinicalTrials.gov 
Identifier: NCT01154140). Results are expected shortly 
and if positive, will cement crizotinib as the gold standard 
treatment for all lines of therapy for ALK-positive NSCLC. 

As with EGFR TKIs, resistance can also develop to 
crizotinib for ALK rearranged NSCLC. Unfortunately a 
wide variety of mechanisms are being discovered including; 
ALK amplification, EGFR/HER1, HER2 and HER3  
up-regulation, cKIT amplification and various ALK 
mutations including L1196M (analogous to T790M for 
EGFR) (107-110). In those with acquired resistance to 
crizotinib, a phase I trial has just shown that a second-
generation ALK inhibitor, ceritinib (LDK378), had an ORR 
of 56% (95% CI, 45-67%) (111). It is up to 20 times a more 
potent ALK inhibitor than crizotinib, explaining its potential 
to overcome the L1196M mutation (111-113). Particularly 
encouraging is that response rates were similar for patients 
with various known resistance mechanisms as well as those 
without an identifiable mutation (114). Other similar 
second generation ALK inhibitors such as alectinib are 
under investigation but, as is the case with EGFR, a rational 
approach to overcoming ALK-resistance holds promise for 
the future (115-117).

K-RAS mutation in NSCLC

K-RAS (Kirsten rat sarcoma 2 viral oncogene homolog) 
belongs to a family of GTPases that transduce growth 
signals from multiple tyrosine kinases including EGFR 
and MET (Figure 2) (18). Activating mutations in KRAS 
leading to constitutive signalling are present in about 30% of 
adenocarcinoma and 4% of SCC (118,119). KRAS mutations 
are more likely to be found in Caucasians, former or current 
smokers and are mutually exclusive from EGFR or ALK 
mutations (103,119-121). They have also been associated 
with a poorer prognosis as well as resistance to chemotherapy 
and EGFR TKIs (122-125). Despite KRAS being one of 
the earliest known oncogenic drivers in NSCLC (126), 
effective targeting remains a therapeutic challenge. Direct 
RAS inhibition with salirasib was unsuccessful (127), so novel 
approaches are currently attempting to inhibit downstream 
molecules in the RAS/RAF/MEK/ERK and PI3K/AKT/
mTOR pathways (119). Other approaches include targeting 
the heat shock protein (HSP90) which KRAS mutant cells 
have increased dependence upon (92,119). Selumetinib 
(AZD6244; ARRY-142866) a MEK1/MEK2 inhibitor showed 
a PFS advantage when combined with docetaxel in a recent 
phase II trial in advanced KRAS-mutant NSCLC (128). It 
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is now being investigated in a confirmatory phase III study, 
SELECT-1 (ClinicalTrials.gov Identifier: NCT01933932), in 
addition to preclinical combinations with AKT inhibitors (129).

MET amplification in NSCLC

Amplification of mesenchymal-epithelial transition (MET) 
factor is found in about 5% of lung adenocarcinoma and 
results in overexpression of its gene product—hepatocyte 
growth factor receptor (HGFR)—which is involved in cell 
proliferation, migration, invasion and metastasis (130). Various 
strategies to inhibit MET/HGFR mediated growth are in 
development including: HGF antagonists, anti-HGFR mAb, 
anti-MET mAb and MET TKIs such as tivantinib (ARQ197), 
cabozantinib (XL184) and of course crizotinib (131).

MET and EGFR appear to be synergistic for growth and 
MET amplification is also the second most common cause 
of acquired EGFR TKI resistance. Dual EGFR and MET 
inhibition, with erlotinib and tivantinib respectively, was 
tested in non-squamous NSCLC in the much anticipated 
global phase III trial MARQUEE (132), after phase II 
data (133) suggested improved PFS for KRAS-mutants. 
Onartuzumab, a monoclonal antibody against MET also 
showed promise in a phase II trial (134) so was brought to 
phase III in the MetLung study where it was combined with 
erlotinib for MET-positive NSCLC (ClinicalTrials.gov 
Identifier: NCT01456325) (135).

Despite these early promising results, confirmatory 
studies using MET TKIs and MET mAb have yielded 
disappointing results and early trial closures for both phase 
III trials. MARQUEE (132) was closed in late 2012 due to 
an interim analysis declaring futility in its primary outcome 
of overall survival (136). MetLung was also terminated early 
due to lack of efficacy (137). Interestingly, subset analyses 
from MARQUEE were presented at the European Cancer 
Conference 2013, which suggested that in tumours with 
strong MET immunostaining, there was a PFS and OS 
benefit (138). Only 40% of tumours in MARQUEE had 
tissue for MET expression analysis and it appears that the 
future progress with MET inhibition is likely to require a 
clear predictive biomarker to enhance appropriate patient 
selection moving into the future. 

ROS1 rearrangements in NSCLC

ROS1 rearrangements were first seen in 2007 with around 
1-2% of NSCLC harbouring different ROS1 fusion variants 
(139,140). Whilst its function in humans is yet unknown, 

its highest expression is seen in normal lung tissue (141). 
Like many other receptor tyrosine kinases, ROS1 feeds 
into multiple downstream pathways such as the RAS/RAF/
MEK or MAPK, JAK/STAT3 and PI3K/AKT/mTOR 
pathways (Figure 2) (141,142). Both rearrangements share 
similar clinical phenotypes: younger, non-smokers with 
adenocarcinomas (141,143). There also appears to be ~50% 
sequence homology between ROS1 and ALK, and fortunately 
ALK inhibitors such as crizotinib can and do inhibit both 
kinases (139,141). Indeed crizotinib has shown some early 
activity in the phase I setting (144), but again, acquired 
resistance appears to limit the long-term efficacy of kinase 
inhibition (ClinicalTrials.gov Identifiers: NCT01449461, 
NCT01284192) and specific ROS1 inhibitors, such as 
foretinib are currently under investigation (145).

RET fusions in NSCLC

The RET (rearranged during transfection) is a novel 
fusion gene with various partners including KIF5B (kinesin 
family member 5B) and others such as CCDC6, NCOA4, 
and TRIM33 (146). It is found in around 1-2% of lung 
adenocarcinomas and predominantly in non-smokers 
(143,147). No specific RET inhibitors are currently 
available but multi-kinase inhibitors such as vandetanib 
(phase II) and cabozantinib (phase III) are being trialled in 
RET fusion-positive NSCLC (ClinicalTrials.gov Identifiers: 
NCT01823068 and NCT01639508). 

HER2 overexpression and mutations in NSCLC

Human epidermal growth factor 2 (HER2/ErbB2/neu), 
like EGFR/HER1, is a member of the ErbB family of 
tyrosine kinase receptors that are activated by homo- or 
hetero-dimerisation with other ErbB receptors (21). HER2 
overexpression is seen in up to 20% of NSCLC (148,149) 
but HER2 mutation rates occur less frequently in up to 
3-4% (149,150). Rationale for blockade in NSCLC was 
borrowed from successes seen in HER2-positive breast 
cancer (9), however phase II trials combining trastuzumab 
with chemotherapy in NSCLC have so far been negative to 
date (148,149).

BRAF mutations in NSCLC

BRAF mutations in NSCLC are uncommon and seen in 
less than 5% of cases (151). As an important part of the 
RAS/RAF/MEK/ERK or MAPK pathway, BRAF inhibition 
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seemed logical, especially since TKIs were already available 
for melanoma (10). However, only around half of those 
identified harbour the specific V600E mutation for which 
effective therapies exist (151). Currently a phase II trial is 
looking at the combination of a BRAF and MEK inhibitor, 
dabrafenib and trametinib respectively, in stage IV NSCLC 
(ClinicalTrials.gov Identifier: NCT01336634). 

Squamous cell carcinomas (SCC)

Although many of the pathways and targeted agents 
described thus far apply primarily to adenocarcinoma, 
targeted therapy for SCC is now a focus of current research. 
Recent discoveries from the cancer genome atlas about 
the molecular pathology of SCC have identified several 
important signalling pathways (152). Although these 
pathways can be inhibited, clinically meaningful benefits are 
currently lacking but ongoing work should hopefully see the 
realisation of targeted agents for SCC in the near future.

The phosphatidylinositol 3-kinase (PIK3CA) pathway is 
one of the most commonly altered in SCC with PIK3CA 
mutation and amplification as well as loss of the PTEN tumour 
suppressor gene (4,153). Ongoing phase II trials of the PI3K 
inhibitor, buparlisib (BKM120) are underway in squamous 
NSCLC in combination with chemotherapy (ClinicalTrials.
gov Identifiers: NCT01911325, NCT01820325).

The fibroblast growth factor receptor 1 (FGFR1) is 
another exploitable pathway with overexpression in up to 
20% of SCC compared to only 3% of adenocarcinoma (154). 
FGFR inhibitors, such as brivanib (BMS-582664) and other 
multi-kinase inhibitors showed positive signals in vitro (154) 
and are now in early phase trials (ClinicalTrials.gov Identifier: 
NCT00633789) (155).

DDR2 (discoidin domain receptor 2) is a tyrosine kinase 
receptor seen in up to 4% of SCC (156). Again DDR2, 
with collagen as its ligand, is involved in cell migration, 
proliferation and survival (156). Early promise was seen 
in vitro and in murine models of DDR2 inhibition with 
dasatinib, a multi-TKI targeting BCR-Abl and the Src family 
of tyrosine kinases (156). The phase II trial was negative (157) 
but further research on DDR2 inhibition is ongoing. 

Angiogenesis inhibition in NSCLC

Disrupting tumour blood supply and angiogenesis has been a 
enticing target for many years now (158) with some successes 
in other malignancies such as colorectal cancer (159),  
ovarian (160) and now cervical cancer (161). Complex 

signalling pathways with multiple growth factors and cytokines 
are thought to regulate angiogenesis (162,163). Two key 
growth factors include vascular endothelial growth factor 
(VEGF) and platelet derived growth factor (PDGF) (162,163).

Two pivotal phase III trials provide evidence for targeting 
angiogenesis in NSCLC with both utilising the anti-
VEGF monoclonal antibody, bevacizumab in combination 
with standard platinum chemotherapy doublets (164-166). 
The Eastern Cooperative Oncology Group ECOG 4599  
study (164) reported a median OS advantage from  
10.3 months with chemotherapy alone to 12.3 months 
with the addition of bevacizumab to chemotherapy and 
as maintenance (HR 0.79; 95% CI, 0.67-0.91; P=0.003). 
The AVAiL study (165) demonstrated an improved 
ORR and longer PFS although failed to demonstrate an 
improvement in overall survival. Toxicities with bevacizumab 
include bleeding, thromoboembolism, and hypertension 
(164,165). Major bleeding and haemoptysis was associated 
with squamous histology and cavitation, thus limiting its 
clinical use to non-squamous NSCLC after fatal pulmonary 
haemorrhagic events were noted in earlier phase II studies 
(164,167,168). A further phase III study (AVAPERL) in 
non-squamous NSCLC suggests that perhaps maintenance 
therapy with pemetrexed is improved by the addition of 
bevacizumab (169,170).

Small molecule TKI can also be utilised to inhibit the 
VEGF pathway. To date, several multi-TKIs have failed to 
demonstrate a clinically significant survival benefit in phase 
III trials (171-175). Nintedanib combined with second-line 
chemotherapy (LUME-Lung1) resulted in a very modest 
benefit in PFS without a benefit in OS, however, planned 
subgroup analyses suggest that patients with adenocarcinoma 
histology may benefit most (12.6 months with nintedanib 
plus docetaxel versus 10.3 months with docetaxel alone (HR 
0.83; 95% CI, 0.70-0.99; P=0.0359) (176).

A novel class of anti-angiogenesis drugs known as 
tumour vascular disrupting agents did show some promise 
in pre-clinical trials. However vadimezan (ASA404) failed 
to show a benefit in phase III trials (177) and so further 
development has been abandoned. Further research is 
needed to elucidate appropriate predictive biomarkers for 
anti-angiogenic therapies in the future. 

Conclusions

Within the last decade, significant advances in molecular 
pathology have afforded an improved understanding of 
the underlying pathology and significant heterogeneity 
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of NSCLC. Multiple signalling pathways have now been 
identified as well as specific oncogenic driver mutations 
that lead to malignant transformations. Indeed in clinical 
practice, reflex molecular interrogation of tumour tissue 
for such driver mutations has now become commonplace. 
For the vast majority at present, no known drivers are 
detected and such patients are still empirically treated with 
standard cytotoxic chemotherapy. Whilst impressive clinical 
benefits have been observed for NSCLC with a known 
driver mutation, acquired resistance is frequently seen and 
presents us with the next challenge in the goal to deliver 
unique personalised medicine.

Building on past experience is helping to improve the 
approach to targeted therapy. For example, it took just over 
six years to progress from initiation of phase I to positive 
phase III trials of crizotinib in ALK-positive patients and 
just four years to achieve FDA approval with only phase 
II data—a truly remarkable achievement. The key to 
the future success of theranostics and truly personalised 
oncological management will be to ensure appropriate 
patient selection using predictive biomarkers to optimise 
limited resources and minimise harm. Addressing resistance, 
utilising the correct inhibitor, or combination of inhibitors, 
whilst minimising adverse effects will hopefully lead to the 
realisation of ongoing improvements in survival for patients 
in the future. Further to this, the real challenge will be 
bringing these agents into the management of patients with 
earlier stage disease with the hope of truly improving rates 
of cure for the devastating illness that is lung cancer. 
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