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Simple Summary: Head and neck squamous cell carcinomas (HNSCCs) develop from mucosal

cells in the oral cavity, pharynx and larynx after either prolonged exposure to tobacco and alcohol,

or a transforming infection with high-risk human papillomavirus (HPV). HPV-negative HNSCCs

develop in a zone of premalignant mucosal cells centimeters in diameter and characterized by tumor-

associated genetic changes, also referred to as ‘fields’, which can present as white leukoplakia lesions

but are mostly invisible. Patients with HPV-negative HNSCC have an overall 5-years survival rate of

50–60%, despite application of intense treatment protocols, and current treatment regimens seem to

have reached their plateau. Recently, immunotherapy using immune checkpoint inhibitors has been

introduced, but seems effective in only some patients. Targeted treatments have failed to find their

way into the clinic while novel therapies are urgently awaited that could target the tumor as well

as the precancerous cells. However, recent data suggest that we are at the dawn of a new era. This

review focusses on the preclinical identification of druggable targets for therapy for HPV-negative

HNSCC and their preceding precancerous changes.

Abstract: Head and neck squamous cell carcinomas (HNSCC) develop in the mucosal lining of

the upper-aerodigestive tract. In carcinogen-induced HNSCC, tumors emerge from premalignant

mucosal changes characterized by tumor-associated genetic alterations, also coined as ‘fields’ that are

occasionally visible as leukoplakia or erythroplakia lesions but are mostly invisible. Consequently,

HNSCC is generally diagnosed de novo at more advanced stages in about 70% of new diagnosis.

Despite intense multimodality treatment protocols, the overall 5-years survival rate is 50–60% for

patients with advanced stage of disease and seems to have reached a plateau. Of notable concern is

the lack of further improvement in prognosis despite advances in treatment. This can be attributed

to the late clinical presentation, failure of advanced HNSCC to respond to treatment, the deficit of

effective targeted therapies to eradicate tumors and precancerous changes, and the lack of suitable

markers for screening and personalized therapy. The molecular landscape of head and neck cancer

has been elucidated in great detail, but the absence of oncogenic mutations hampers the identification

of druggable targets for therapy to improve outcome of HNSCC. Currently, functional genomic

approaches are being explored to identify potential therapeutic targets. Identification and validation

of essential genes for both HNSCC and oral premalignancies, accompanied with biomarkers for

therapy response, are being investigated. Attentive diagnosis and targeted therapy of the preceding

oral premalignant (preHNSCC) changes may prevent the development of tumors. As classic oncogene

addiction through activating mutations is not a realistic concept for treatment of HNSCC, synthetic

lethality and collateral lethality need to be exploited, next to immune therapies. In recent studies

it was shown that cell cycle regulation and DNA damage response pathways become significantly

altered in HNSCC causing replication stress, which is an avenue that deserves further exploitation as

an HNSCC vulnerability for treatment. The focus of this review is to summarize the current literature

on the preclinical identification of potential druggable targets for therapy of (pre)HNSCC, emerging
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from the variety of gene knockdown and knockout strategies, and the testing of targeted inhibitors.

We will conclude with a future perspective on targeted therapy of HNSCC and premalignant changes.

Keywords: HNSCC; targeted treatment; preclinical development

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) ranks in the top ten of all cancers
with respect to incidence, and encompasses the tumors that develop in the mucosal lining
of the oral cavity, oropharynx, hypopharynx, and larynx. Annually 700,000 new cases are
diagnosed worldwide. The incidence is gender biased; HNSCC occurs about two-times
more often in males than in females [1]. This bias may be related to the major classical
risk factors for HNSCC; carcinogen exposure from tobacco smoke and (excessive) alcohol
consumption, with concomitant exposure increasing the risk [2–4]. A second risk factor for
HNSCC is infection with a high-risk type human papillomavirus (hrHPV), particularly for
tumors arising in the oropharynx [2–8]. Finally, patients with certain hereditary syndromes
may predispose to HNSCC development, of which the most prominent example is the
genetic instability syndrome Fanconi anemia (FA) [9–13].

The presence or absence of hrHPV analyzed by surrogate marker p16Ink4A-immunostaining,
often followed by HPV DNA PCR, is currently used to classify tumors in the oropharynx in
HPV-positive and HPV-negative disease [3,4]. These subgroups differ in progression-free
and overall survival as well as in clinical and molecular characteristics [4,14–16]. The most
recent data from a Dutch cohort of 1204 oropharyngeal squamous cell carcinoma (OPSCC)
patients revealed a 5-years overall survival of 79% for the HPV-positive group and of 43%
of the HPV-negative group [17]. Consequently, HPV-positive and HPV-negative OPSCC are
considered as separate disease entities. The difference in prognosis has led furthermore to
treatment de-escalation trials for HPV-positive HNSCC, although this has not yet resulted in a
more personalized treatment based on HPV status [18,19].

As mentioned above, the major risk factors for HPV-negative HNSCC are tobacco
and alcohol exposure [2,4,20,21]. Cancer risk relates to exposure, generally summarized
as pack years and unit years, and particularly the combination of smoking with alcohol
exposure increases risk synergistically [22]. However, HPV-negative tumors may also
occur occasionally in patients who hardly smoked or consumed alcohol, and the reason
for cancer development in these cases is still elusive [2,23]. Patients generally present with
tumors de novo, but molecular research during the last decades revealed that HPV-negative
HNSCC develops in premalignant changes in the mucosal lining of the head and neck
region [4,24–29], which, however, are mostly not visible by eye.

The premalignant cells cover large areas of the mucosal lining with dimensions of
multiple centimeters in diameter, and contain some of the tumor-associated genetic changes
(mutations and copy number aberrations) that are also observed in the majority of HN-
SCC [4,29–31]. These cells form a contiguous premalignant “field” that is mostly invisible
to the naked eye but may be microscopically identified as dysplasia in surgical margins of
excised tumor specimen. Fields can also be identified per definition using genetic markers
on DNA obtained from surgical margins or cells obtained through oral brushing [29–31].
Only a smaller subgroup of premalignant fields are macroscopically visible as leukoplakia
(white lesions) or erythroplakia (red lesions), which occur with a prevalence of 0.1–0.2% or
0.01–0.02%, respectively [4,32–34]. Sometimes multiple independent premalignant fields
are found in a patient, harboring different gene mutations or genomic aberrations [4,24,26].
The fields can eventually evolve into a squamous cell carcinoma. As most of these fields
are centimeters in diameter but not visible to the naked eye, fields may remain undetected
and stay behind when tumors are excised. When premalignant fields stay behind, new
tumors could form in these fields, which are clinically diagnosed as local recurrences
when they occur within a distance of 2 cm from the original tumor and within a timespan
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of less than 3 years, or as a second primary tumor when located more than 2 cm from
the original tumor or after 3 years [4,35]. Ideally, to prevent tumors developing in these
fields, (targeted) treatments are needed to eradicate these cells before they transform, often
again, into a malignancy. The treatment of premalignant fields is challenging as most
are not macroscopically visible and their dimensions are covering large mucosal areas.
Smaller visible abnormalities can be resected or treated with laser therapy, but often recur
after treatment [33]. Visible or invisible, the curative treatment of premalignant fields
remains problematic.

2. Current Treatment Protocols of HNSCC

2.1. Surgery and (Chemo-)Radiotherapy

During the last two decades, the therapeutic arsenal to treat cancer has been changing
rapidly, and treatment of a variety of malignancies is increasingly based on tumor genetics,
thereby aiming to employ personalized strategies with targeted agents, to reduce toxicity
and enhance therapeutic efficacy [36,37]. Despite great efforts to uncover new targeted
treatments that could find their way into the clinic, the mainstays of HNSCC treatment
remain surgery and radiotherapy, the latter with or without concomitant cisplatin-based
chemotherapy. Treatment planning is currently still based on site, tumor stage, imaging
and post-operative histological findings, but not on genetics or hrHPV presence.

Albeit treatment protocols are generally intense and may cause disfigurements and
toxicities in patients, responses remain somewhat disappointing [38]. Of all tumors, approx-
imately 30% are diagnosed at an early stage [2,39], and these are usually treated with single
modality treatment that comprise either surgical resection or radiotherapy, depending
on the tumor site [40]. Complete cure is often obtained after treatment, and the 5-years
survival rate is around 90% [41].

However, the majority of patients (70%) present with advanced stages of disease,
with regional lymph node metastasis or even metastases at distant sites [2,39]. These
more advanced tumors are treated either with concomitant chemoradiotherapy and when
required with surgical salvage, or with upfront surgery combined with post-operative
(chemo)radiotherapy. In some centers neoadjuvant (chemo)radiotherapy followed by
surgery may be applied [40,42]. Cisplatin has been the primary choice of chemotherapy
since 1977 [43], and is combined with concomitant locoregional radiotherapy. For recurrent-
metastatic disease and patients unfit for platinum-based therapy, immunotherapy with
anti-PD-(L)1 antibodies, anti-EGFR targeting antibody cetuximab, or invasive multidrug
chemotherapies are being applied (Figure 1).

Cisplatin is the mostly applied cytotoxic drug in chemotherapy regimen, which is
often applied in combination with radiotherapy. The drug is able to form both intra-strand
and inter-strand crosslinking bridges between the two complementary DNA strands of both
the genomic and mitochondrial DNA [44,45]. This covalent inter-strand crosslink hampers
DNA replication as the replication fork is challenged to pass the DNA crosslink. The key
pathway to resolve such DNA crosslinks is the FA/BRCA-pathway (Figure 1) [11,46,47].
Cisplatin acts as radiation-sensitizer, but overall responses differ between tumors. A
biomarker or biological explanation for response to cisplatin is unknown other than a
defective FA/BRCA pathway [48]. Many HNSCC patients suffer from cisplatin-induced
toxicity, and consequently they are frequently hospitalized and can often not sustain the
full treatment protocol. Lastly, tumors are or may become resistant to cisplatin.

Most HNSCC patients receive irradiation with photons (IR) in approximately two
Gray fractions and up to a total dose of 70 Gray [21,49–51]. Radiation (RT) induces the
formation of DNA peroxides by water radiolysis in the presence of oxygen, generating
reactive oxygen species (ROS) which induce a high number of single strand DNA (ssDNA)
breaks (Figure 1) [52,53]. These breaks lead to the stalling of replication forks and G2/M-
checkpoint activation. DNA damage is induced by both the stalled replication forks
at ssDNA breaks and the formation of double stranded DNA (dsDNA) breaks during
replication when ssDNA breaks that have not been repaired turn into dsDNA breaks [54,55].
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Radiation-induced dsDNA damage is commonly repaired by non-homologous end joining
(NHEJ) and microhomology-mediated end joining (MMEJ) [56–60]. NHEJ and MMEJ are
error-prone DNA repair mechanisms, introducing mutations that are potentially lethal.
Nonetheless, it has also been described that MMEJ may contribute to IR-resistance [58].

–

 

Figure 1. Approved and clinically applied treatment interventions for HNSCC. Early stage HNSCC is treated with either

surgery or radiotherapy with photons or protons, while advanced stage HNSCC is treated by either upfront cisplatin-based

chemoradiotherapy and salvage surgery when required, or upfront surgical resection with post-operative (chemo-)radiation.

For patients unfit to receive cisplatin, the anti-EGFR monoclonal antibody cetuximab can be applied. Furthermore, patients

with recurrent or metastatic disease are treated by the EXTREME protocol and with anti-PD-(L)1 antibodies, such as

nivolumab and pembrolizumab, although response rates are low and clinical biomarkers for response are still under

investigation. Abbreviations: ROS: reactive oxygen species, ICL: inter-strand crosslink, ssDNA break: single strand DNA

break, dsDNA break: double strand DNA break, NK cell: natural killer cell, DC: dendritic cell, T cell: T lymphocyte,

PD-1: programmed cell death protein 1, TME: tumor microenvironment, EGFR: epithelial growth factor receptor, PD-L1:

programmed death-ligand 1, MAPK: mitogen-activated protein kinase.

2.2. Bio-Radiotherapy

In 2007, the FDA approved chimeric monoclonal antibody cetuximab (Erbitux) for
treatment of HNSCC (Figure 1) [61,62]. Cetuximab targets the membrane protein epithelial
growth factor receptor (EGFR). Although the exact mechanism of action is not completely
understood in head and neck cancer, it hinders the binding of EGF to the receptor and
thereby inhibits downstream signaling pathways such as the Ras-MAPK-ERK pathway [61].
EGFR overexpression is frequently found in HNSCC, which is in some cases associated
with amplification of chromosome 7p [4]. However, single agent response rates remain
low in clinical trials (13%) and biomarkers that predict therapy outcome with cetuximab
in HNSCC are unidentified [62,63]. It has also been suggested that cetuximab mainly
acts as an activator of the immune system in HNSCC patients, thereby acting as a bridge
between tumor cells expressing EGFR and immune cells such as CD16-positive NK-cells
and dendritic cells (reviewed in [64,65]). The lack of biomarkers predicting response,
together with the observation that EGFR small molecule inhibitors such as gefitinib are not
particularly effective in the treatment of HNSCC, may point towards an immunological
response rather than a molecular response to cetuximab treatment [66,67].

2.3. Immune Checkpoint Inhibitors

Evading the immune response is a commonly accepted hallmark of cancer [68], and
HNSCC is known to be very immune suppressive [69]. By overexpression or downregula-
tion of certain immune-associated membrane receptors, tumor cells become unrecognizable
to the immune system [65,69–71]. One of these immune-suppressive systems is catalyzed
by the interaction between PD-1 on the lymphocytes in the tumor microenvironment (TME)
and its ligand PD-L1 on the tumor cells. The development of monoclonal antibodies, such
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as nivolumab (Opdivo®) and pembrolizumab (Keytruda®) directed against PD-1, have
been shown to be an effective immunotherapeutic strategy in HNSCC [69] (Figure 1). These
immune checkpoint inhibitors have been FDA approved for HNSCC since 2016 [72] for
recurrent and metastatic disease, and will become more prominent in upfront treatment
protocols. Tumor-specific PD-L1 expression is hypothesized to be a predictive biomarker
for response, but results are inconclusive [73,74]. It is promising that the response rate
in HNSCC to PD-1 antibody treatment is around 25% in both HPV-positive and HPV-
negative HNSCC [75]. A recent study with a murine oral squamous cell carcinoma model
using 4NQO exposure indicated that PD-1 antibody treatment inhibited progression of
the premalignant lesions into carcinoma, which was to a lesser extent also observed in
PD-L1 knockout mice treated with 4NQO [76]. This study suggests that PD-(L)1 antibody
treatment could be effective in a preventive setting, although data from clinical trials will
be important to test this hypothesis. It should be noted that antibody infusion is a rather
invasive procedure for treating premalignant changes, as is the toxicity profile of these
immune checkpoint inhibitors [77].

3. Molecular Landscape of HNSCC

3.1. Copy Number Alterations

The majority of HNSCC tumors are characterized by a high level of genomic instability,
in part resulting from frequent inactivation of cell cycle control [78], which is reflected by
many copy number alterations. In the vast majority of HNSCC, gains of chromosomal
arms 3q, 5p and 7p, and losses of 3p, 4p and 18q are observed, irrespective of HPV
status [3,79–84]. Focal amplifications of 3q26/28 are associated with over-expression of
TP63, SOX2 and PIK3CA [3,82,85] and lymph node metastasis is associated with the loss
of 4p in oral cancers [86]. HPV-negative HNSCC often contains copy number (CN) gains
of chromosomes 8q, 9q and 11p, and CN losses of 7q, 8p, 9p, 11q and 18p [3,79–81].
Some of the CN alterations in HPV-negative tumors are already present in premalignant
cells [3,4,26,87]. Cell cultures obtained from premalignant fields, including leukoplakia
and erythroplakia lesions, contain CN losses in 3p, 8p and 9p21, and amplifications of 3q
and 8q, which are also often observed in HNSCC [3,26,87,88].

3.2. Cancer Driver Genes in HNSCC

Comprehensive genomic profiling of HNSCC by the TCGA consortium emphasized
the large number of tumor suppressor genes that are inactivated by mutations or chro-
mosomal aberrations, and these studies also highlighted the tremendous heterogeneity
of HNSCC [3,38,89,90]. Driving oncogene mutations are largely underrepresented in HN-
SCC [3], hampering the development of targeted treatments that exploit the concept of
‘oncogene addiction’.

Loss of function of tumor suppressor genes TP53 and CDKN2A (p16Ink4A) through
gene mutation, methylation, or in the case of CDKN2A through focal loss of 9p21, are
often found in both premalignant cells and HPV-negative HNSCC, and occur early in
oncogenesis [3,26,29]. HPV-positive tumors typically lack mutations in TP53 and CDKN2A,
as the viral oncogenes E6 and E7 block the same signaling pathways. The fact that HPV-
positive tumors have a favorable prognosis and are typically TP53 wild type, interferes
with the analysis of TP53 mutations in relation to clinical outcome. Overall survival of
HNSCC patients correlates poorly with TP53 status particularly when stratified for HPV,
conflicting with earlier assumptions when HPV status was not considered [3,78,91,92].
Both CDKN2A and TP53, through its downstream target p21Cip1, are important inhibitors
of cyclin-CDK complexes and can cause cell cycle arrest. Loss of function of these genes
thus results in diminished G1/S-checkpoint control and deregulated cellular proliferation,
which is considered an important hallmark of cancer [68,93]. Besides TP53 and CDKN2A,
gene mutations in FAT1, CASP8, AJUBA, PIK3CA, NOTCH1, KMT2D, NSD1, TGFBR2 and
HRAS are observed in HPV-negative HNSCC [3]. Of note, alterations of NOTCH1 in cancer
can both be oncogenic or imply loss of function depending on the context, but NOTCH1
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mutations in HNSCC are generally considered as loss of function mutations and therefore
NOTCH1 acts as tumor suppressor [94]. PIK3CA mutations are found in both HPV-positive
and -negative tumors, but mutational profiles differ. Amino acid substitutions E542K
and E545K in the helical domain of PIK3CA are predominantly found in HPV-positive
HNSCC, while PIK3CA mutations in HPV-negative HNSCC are generally found in the
kinase domain [85,95,96].

Of the most frequently mutated genes in HNSCC, only those with oncogenic mutations
in PIK3CA and HRAS can be targeted with small molecule inhibitors that are currently
in preclinical testing for HNSCC and other malignancies (see Section 4). Unfortunately,
only a minority of HPV-negative HNSCC harbor either a PIK3CA or HRAS mutation, and
therefore only a small patient group might benefit from a therapy regimen targeting these
mutations [3].

It stands out that most of the frequently mutated genes in HNSCC such as TP53,
CDKN2A, CCND1, HRAS, PIK3CA, PTEN and RB1 are responsible for increased cell pro-
liferation and deregulation of cell cycle control [3]. In addition, mutations in CASP8 as
well as in TP53, HRAS and PIK3CA contribute to evasion of apoptotic cell death, all typical
hallmarks of cancer [68]. Since HNSCC is mainly driven by mutations in tumor suppressor
genes, these alterations in cell cycle progression and escape of cell death may serve as po-
tential vulnerabilities to the efficient eradication of the tumor cells, as well as premalignant
cells, with appropriately selected targeted agents.

4. Classic Approaches to Identifying Targets for Therapy

We define ‘targeted therapy’ as the therapeutic exploitation of a specific cellular vul-
nerability in the context of the somatic genetic changes in the tumor cells. Generally, three
concepts are considered for the application of targeted therapies for different malignancies:
oncogene addiction, synthetic lethality, and collateral lethality (Figure 1). We will discuss
these principles and their feasibility in the preclinical development of targeted therapies
for HNSCC.

4.1. Oncogene Addiction

Activating mutations of oncogenes may lead to the dependency of the cancer cell
on this hyper-activation of the subsequent gene or the pathway it acts in [97]. Oncogene
addiction forms an excellent vulnerability that can be targeted by specific inhibitors, and
will lead to cancer-specific cell death, while untransformed cells may not be affected as they
may rely on backup pathways (Figure 2, left panel) [98]. Targeting the BRAFV600E mutation
in melanoma using tyrosine kinase inhibitor vemurafenib dramatically changed the clinical
treatment of melanoma [99]. Despite initial spectacular results, it also became apparent
that resistance is often observed. Moreover, the BRAFV600E and vemurafenib story has
made crystal clear how critical it is that the pathways are understood in the smallest detail
to overcome potential problems such as, in this case, the BRAF-paradox; inhibition of B-Raf
with vemurafenib caused skin tumors in normal skin by inhibitor-induced refitting of the
Raf pathway [100]. Despite these considerations, oncogene addition remains a promising
concept in cancer therapy.

Unfortunately, the carcinogenesis of HNSCC is mainly driven by loss of tumor sup-
pressor function [3], and therefore exploitation of oncogene addiction as a vulnerability
concept is limited, but nonetheless explored. Oncogene HRAS is mutated (HRASmut) in
about 4% of HNSCC [3]. Two phase II clinical trials (NCT03719690, NCT02383927) are
currently being conducted to investigate the efficacy of tipifarnib, a selective inhibitor
of farnesyltransferase that was shown to be an effective strategy for HRASmut HNSCC
in a preclinical study [101]. A second oncogene, PIK3CA, is mutated in 20% of HNSCC,
but only a minority of mutations are activating mutations [3,102]. PIK3CA acts in the
PI3K-AKT-mTOR pathway that stimulates cell survival upon activation. Different mTOR
inhibitors (everolimus and temsirolimus) and PI3K inhibitors (PX-866 and buparlisib) have
been tested in phase II clinical trials, but response rates were disappointing and severe
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grade 3/4 side effects were observed (reviewed in [103]). A phase III clinical trial is cur-
rently being conducted (NCT04338399) in which PI3K inhibitor buparlisib is administered
with paclitaxel in patients with recurrent or metastatic HNSCC.

Figure 2. Concepts to identify therapeutic vulnerabilities in cancer cells. Left panel: Oncogene addiction. When a cancer

cell harbors an activating mutation of an oncogene, a cancer cell may become completely dependent on this protein product,

resulting in cell death upon targeted inhibition. Inhibition of the same albeit wild type protein impacts survival of normal

cells less or not at all; these cells do not rely on this protein only for survival. Middle panel: Synthetic lethality. Inhibition of

either two proteins or pathways with comparable function does not affect cell survival in normal cells. However, when a

cancer cell harbors a gene mutation that inactivates a protein in such a pathway, cancer cells may become fully dependent

on the other pathway. Inhibition of the remaining functional pathway will induce specific cancer cell death. Right panel:

Collateral lethality. When a tumor suppressor gene is lost through loss of the chromosomal region, other neighboring genes

located at that region may become dose-limiting and cause increased sensitivity for inhibiting drugs. Likewise, when a gene

is lost or partially lost due to copy number losses, inhibition of a paralogue gene may specifically affect cancer cell viability.

Abbreviations: WT: wild type, MUT: mutant.

The most obvious molecular candidate for a targeted approach in HNSCC seems to
be EGFR. Of note, most HNSCCs show overexpression of EGFR, but never activating point
mutations, which may explain the lack of response to EGFR-targeting kinase inhibitors
such as gefitinib and erlotinib [4,66], suggesting that HNSCC cells might not be addicted
to EGFR. Cetuximab, a human-mouse chimeric antibody directed against EGFR, has been
registered for HNSCC, but it remains unclear whether its working mechanism relates
to EGFR inhibition or activation of the immune system. Moreover, for HPV-positive
disease, treatment with cetuximab is inferior to cisplatin and seems not to increase response
rates [18,19].

4.2. Synthetic Lethality

As HNSCC is the main result of tumor suppressor gene inactivation, we have to
rely on alternative concepts for targeted therapy approaches, such as synthetic lethality
(Figure 2, middle panel). A classic example of synthetic lethality is the vulnerability to
PARP inhibition in homologous recombination (HR) deficient tumors [104,105]. Neither the
inhibition of PARP alone nor the loss of homology-directed repair impacts cell survival in
normal cells. The loss of an HR gene such as BRCA1 or BRCA2 induces breast cancer onco-
genesis. Additional loss of the second allele causes these tumors to be HR-deficient. When
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PARP function is inhibited by PARP inhibitors in these HR-deficient tumors, cell death is
induced. In normal HR-proficient cells, HR-directed repair rescues PARP inhibition.

During the past decade, synthetic lethality has been exploited as a therapeutic ap-
proach for most malignancies including HNSCC, but so far with limited success. Although
synergy is observed when combining two treatments (radiotherapy supplemented with
cisplatin, Aurora inhibition combined with Wee1 inhibition, Haspin knockout combined
with Aurora inhibitor [106–108], and many others (see Section 7), these do not follow the
classical synthetic lethality concepts, as in these combination treatments one drug sensitizes
the response to the other. In the case of classical chemoradiotherapy with cisplatin and
irradiation, both induce DNA damage. Nonmalignant cells will respond by cell cycle
arrest and DNA repair, but these controls are diminished in cancer cells due to genomic
alterations, therefore cancer cells suffer from additional intrinsic DNA damage by replica-
tion stress from the uncontrolled entry into S-phase. These treatments are obviously to a
lesser extent also toxic to nonmalignant cells with proper cell cycle control, creating a small
therapeutic window, in the case of radiotherapy enhanced by image-guided planning and
intensity modulation.

Classic synthetic lethal interactions have not yet led to clinical implementation as new
therapies for HNSCC. However, exploiting rewired pathways such as those that regulate
cell cycle control in cancer cells by targeting an additional cell cycle regulating protein also
follows the concept of synthetic lethal interactions. Recent studies suggest that loss of cell
cycle control by p53 and/or p16Ink4A loss of functions sensitize (pre)HNSCC cells to Wee1,
Chk1 and PLK1 inhibition [84,109–112]. Normal cells may stay arrested in G1/G0, while
cancer cells are forced to enter S-phase and progress through the cell cycle and have to
rely on the rewired control mechanisms that act during DNA replication and G2-M. When
these rewired mechanisms are inhibited, the cancer cells die.

4.3. Collateral Lethality

Tumor suppressor genes become inactivated during carcinogenesis through mutations
or genomic deletion. In case of genomic deletion, a larger part of the chromosome is
generally deleted and neighboring genes may be lost in this process. The collateral loss of
these passenger genes can be exploited for therapy since these genes may be involved in
cellular processes, while the gene dosage and associated protein expression has now been
halved in the cancer cells. Loss of such passenger genes may also be compensated through
redundancy by paralogue genes as postulated by Muller et al. [113]. Subsequent interfer-
ence with the paralogue gene may lead to decreased cell survival (Figure 2, Right panel).
To identify redundant paralogue genes after loss of a passenger gene, integrated analysis is
required to match genomic copy number losses with vulnerabilities to interference with
known paralogues [110,113–115].

We previously reported on indications that collateral lethality may occur in prema-
lignant oral cells and HNSCC tumor cells in a customized screen in multiple cell lines
models with 319 siRNAs, preselected from prior HNSCC lethality screens, [110]. Although
we were able to identify collateral lethality for some of these hits, no druggable targets
were found in this small RNA interference screen. More comprehensive screening methods
that integrate copy number alterations with functional data from high-throughput genetic
screens need to be applied to pinpoint new therapeutic avenues based on collateral lethality
to treat HNSCC.

5. Identification of Essential Genes in (Pre)HNSCC Cells by Descriptive and
Functional Genomics

Fundamental understanding of the biology of the tumor cells is required to allow
preclinical identification of vulnerabilities of HNSCC, and the selection of biomarkers for
clinical stratification. Together these form the initial steps towards better and more person-
alized treatments for HNSCC. The descriptive genomics data established by consortia such
as the TCGA [3], which summarize the driver mutations and genomic changes causing
HNSCC in great detail, have revealed a wealth of new molecular information (see below).
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The TCGA aimed to identify new driver genes that could be targeted by small molecule
inhibitors, but the identification of new therapeutic targets was insignificant due to the
absence of oncogene drivers in HNSCC. However, new technological developments have
allowed for a more functional genomics approach, and descriptive and functional genomics
revealed complimentary insights into the drivers of HNSCC. To obtain unbiased data on
essential genes and synergistic targets in tumor cells, (kinome) short hairpin RNA (shRNA)
drop-out screens, microRNA expression screens, genome-wide array-based siRNA screens,
CRISPR-Cas9 knockout screens and drug library screens are being used to identify essential
genes in HNSCC cells and targeted inhibitors.

5.1. shRNA (Kinome) Drop-Out Library Screens

Small interference RNAs (siRNAs) are synthetic 20–25 nucleotide double-stranded
RNA molecules that are complementary to gene transcripts, and cause degradation of the
transcript or inhibition of translation upon binding [116]. Short hairpin RNAs (shRNAs)
are the cloned versions of these siRNAs, inserted in plasmid or lentiviral vectors [117].
Both siRNAs and shRNAs can be pooled in so called libraries that target the whole genome
or a part of the genome. Functional RNA interference kinome screens, are used to identify
targetable kinases. Cells are plated in large culture dishes, infected with a lentiviral library
containing the pooled shRNAs, and grown for a prolonged time after resistance-marker
selection. DNA sequencing reveals the relative increase or decrease of the shRNA constructs
that have a stimulating or inhibiting effect on proliferation, between freshly infected cells
(t0) and study endpoint. Further validation of the identified hits is required to ensure
validity and essentiality, since either off-target effects are observed with shRNAs that
result in false-positive hits, or cells had been infected with multiple shRNAs leading to a
specific lethality [118]. The incomplete knockdown of the target genes by shRNAs (and
siRNAs) mimics drug inhibition best, but may cause essential genes to be missed in these
screens. Despite these considerations, it stands out that in the shRNA screens conducted in
HNSCC, many genes regulating the cell cycle, as well as DNA damage response, emerged
as essential [119–123].

5.2. Genome-Wide Array-Based siRNA Screens and microRNA Expression Library

Pooled shRNA screens are relatively time-efficient compared to array-based siRNA
screens that demand large scale experiments with extensive robotics (see below), but
amplification of the shRNA libraries may cause the library not to be fully representative.
In addition, shRNAs are processed as microRNA genes, and consequently may behave as
miRNAs, the small 20–25 base pairs of single stranded RNAs that are naturally expressed
in cells and regulate gene expression by targeting multiple RNA transcripts [116,124]. An
alternative is array-based siRNA screens with synthetic and optimized RNA molecules,
which are not processed but directly act on the transcripts in the cells. These screens are
conducted in 96 or 384 well plates and only one siRNA pool (a mix of a few siRNAs
complementary to the same transcript) targeting only one single gene is administered per
well, together with a pre-optimized lipid transfection reagent. Cells are added and usually
96 h after transfection cell viability can be measured and essential hits can be identified by
bioinformatic analysis [125]. Several genome-wide and sub-genome custom library siRNA
screens have been conducted in HNSCC cell lines as well as premalignant oral cell lines
to identify essential genes [109,110,126–128]. Again, many genes involved in cell cycle
regulation, DNA damage response and mitotic spindle regulation have been identified
as potential therapeutic candidates for HNSCC. In addition, siRNA screens have been
conducted to identify biomarkers for therapy response or combination therapies [129]. To
identify the hits that are tumor cell-specific, the siRNAs are also tested in nonmalignant
cells. These unbiased screens also reveal tumor-specific hits that are not easily explained,
such as splice factors or ribosomal genes [110,127]. Some genes appear to be essential for
all cells including normal cells and are generally involved in protein homeostasis, such
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as ubiquitin genes, or protein trafficking. However, most genes target tumor cells more
effective than normal cells.

A similar approach to array-based siRNA screens is the use of array-based microRNA
expression libraries to identify putative targets for therapy. The overexpression of the
microRNAs inhibits the expression of a variety of target genes, causing an effect on cell
proliferation or other cellular processes. Expression of microRNAs miR-181a, −326, and
−345 have been reported to specifically kill HNSCC tumor cells by decreasing ATM
expression [130].

5.3. CRISPR-Cas9 Knockout Screens

The CRISPR-Cas9 genome editing approaches have accelerated functional genomic
screens both to identify cancer cell vulnerabilities and elucidate gene function. CRISPR-
Cas9 knockout screens, contrary to siRNA and shRNA libraries, enable complete knockout
of target genes, which have become a game changer in the field of functional genomics.
The Cas9 endonuclease is directed to specific loci in the genome (the PAM sequence) by so
called guide RNAs (gRNAs) that have a sequence complementary to the gene of interest.
The DNA break induced by Cas9 and the gRNA in the gene of interest is repaired by
error-prone NHEJ, which leads to a deletion or insertion and functional knockout of the
gene. Screens can either be using a pooled lentiviral library with cloned gRNAs, followed
by library sequencing to identify depleted or enriched gRNAs targeting essential genes, or
by using an array-based synthetic gRNA approach with viability readout [131]. Several
reports have been published that utilized a CRISPR screen approach to uncover biological
mechanisms and essential genes for therapy [106,132–135]. Furthermore, as part of the
Cancer Dependency Map Project (the Wellcome Sanger Institute and the Broad Institute),
several HNSCC cell lines have already been screened and these datasets are publicly
available [136–138]. Similarly, to shRNA and siRNA screens, lethal hits can be missed
in CRISPR screens, because of unspecific gRNAs or gRNAs that induce functional splice
variants in the gene. The latest versions of libraries have been optimized, however, and are
very specific. Limitations are that a fully active NHEJ system must be available in cells.

5.4. Drug Library Screens

Many investigators choose a shortcut and directly screen for cancer cell vulnerabilities
by using drug libraries. Many commercial drug libraries are available to screen for targeted
inhibitors that may impact survival of cell lines in vitro. Multiple array-based drug screens
have been performed in HNSCC cell lines and primary HNSCC cells in 2D tissue culture,
to identify synergistic drug combinations or new targets for therapy [139–144]. These
screens prominently identified many cell cycle and DNA damage response inhibitors
impacting survival of HNSCC cells. Vulnerability data from drug screens in many cancer
cell lines including HNSCC are collected in datasets such as Genomics of Drug Sensitivity
in Cancer (GDSC) (The Cancer Genome Project by the Wellcome Sanger Institute and
Massachusetts General Hospital Cancer Center) [145]. It would be of interest to obtain
survival data of premalignant oral cells with drug libraries to exploit treatments for high-
risk premalignant changes. In addition, further research is needed to move these in vitro
observations into clinical trials. The obvious limitations of drugs screens are that these are
biased, in that many inhibitors have off-target effects and inhibit a multitude of proteins,
which complicates the understanding of the workings mechanism of a particular drug and
hampers insights into the underlying biological process.

5.5. Descriptive Genomics Technologies

Descriptive genomics encompasses large scale DNA analyses, transcriptomics and pro-
teomics, and can be applied on both cultured cells and patient samples. These approaches
describe and analyze the molecular landscape of cancer including somatic mutations
and copy number alterations, profiles of methylation, gene expression, microRNAs, and
proteins, the latter including post-translational modifications such as phosphorylation.
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Data are collected in publicly available databases, which allows for computational biology
approaches by any research to uncover new tumor vulnerabilities and biomarkers for
therapy. Several initiatives by large consortia to perform in depth profiling of a multitude
of cancers have been initiated in the last decade, and both large scale genomics data and
data on sensitivity to drug libraries are collected, by, for example, The Cancer Genome Atlas
Network [3], The Human Protein Atlas [146] and L1000 [147] amongst others (reviewed
in [148]). Initiatives must be large scale as the significance of modeled predictions on tumor
classification or outcome directly increases with the number of analyzed samples. How-
ever, technical aspects such as sequencing depth and data of normal control samples also
support the interpretation of these data. Several in silico analysis of HNSCC have now been
published [142,149–151]. Furthermore, machine learning models are developed to predict
HNSCC tumor progression [152], along with other HNSCC data sources as summarized
by Willems et al. [153]. Predicted tumor vulnerabilities and potential biomarkers from
computational approaches are however hypothesis-generating and these hypotheses will
need to be tested by both in vitro and in vivo preclinical studies before translation into the
clinic. To further utilize the abundance of data obtained through genomics, transcriptomics,
and proteomics, together with tumor cell vulnerability data obtained through functional
genomics approaches such as siRNA, CRISPR or drug library screens, computational plat-
forms have been developed to identify disease- and subgroup-specific putative targets
while estimating the efficiency and toxicity based on modeled predictions through in silico
analysis [148]. Although the data is out there, understanding the underlying biological
principles and translating these to new therapeutic avenues is a challenge for the future.

6. Changes in Cell Cycle in HNSCC

Unbiased screening for vulnerabilities in HNSCC cells has uncovered that inhibition
of proteins that regulate cell cycle and DNA damage response impact survival of both
premalignant oral cells and HNSCC (see above). A recent proteogenomic study using
108 HPV-negative HNSCC patient tumors strengthened this observation by uncovering
that important drivers of HNSCC carcinogenesis act in the cell cycle [151]. The cell cycle
is compromised in most HPV-negative HNSCC and premalignant cells through loss of
function of p53, p16Ink4A (mutations, methylations and focal losses of chromosomal locus
9p21) and frequent amplification of cyclin D1 (Figure 3) [3,26]. In normal cells, cellular
growth stimulatory signals (mitogens) induce cyclin D1 expression and consequently
CDK4/6 activation, Rb phosphorylation, E2F release and transition from G1- to S-phase.
This is counteracted by p16Ink4A induced arrest [154–156]. Cellular stress leads to increased
stabilization of p53 through posttranslational modifications of both p53 and its E3 ubiquitin
ligase MDM2 which becomes inactive by the modification. If DNA damage occurs, the
ATM-Chk2 signaling cascade is activated [155,157–167]. The p53 protein acts as tetrameric
stress-induced transcription factor and induces p21Cip1 expression, causing the inhibition
of the cyclin-CDK complexes, and cells stay in G1-phase or arrest in S-phase and particu-
larly G2-phase to support efficient DNA repair or induce apoptosis [160,161,163,167–169].
Unscheduled S-phase entry induces replication stress and subsequent DNA damage, and
consequently cell death by p53 induction. Remarkably, knockout of p53 or p21Cip1 reduces
the replication stress induced DNA damage, a counterintuitive finding in mouse cells after
knockout of all Rb proteins [170]. This observation was made after starvation induced repli-
cation stress in engineered cells, which might differ from the real situation in cancer cells.
Although the precise mechanisms remain unclear, most tumor cells as well as premalignant
cells suffer from replication stress induced DNA damage.

Release from cellular stress inducers results in degradation of p53 by MDM2, and
allows restart of cell cycle progression by multiple mechanisms [160,168]. Upon loss of p53,
p16Ink4A or both in cancer cells, the progression from G1- to S-phase is especially impacted
due to loss of the G1-checkpoint. In addition, DNA damage induced cell cycle arrest is
inhibited by the loss of p53 and, together with an altered expression of cyclin D1, HNSCC
cells are unperturbed continuing from G1- into S-phase [3,4,171]. The involvement of cyclin
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D1 goes beyond complexing with CDK4/6 alone, since it is also involved in regulation of
the DNA damage response through BRCA2, RAD51 and p21Cip1, and different chromatin
modification pathways (as reviewed in [172]). Together, these frequently occurring genetic
alterations result in a rewired cell cycle and deregulated DNA damage response, explaining
the tumor vulnerability to regulators of these processes.

–

Figure 3. Cell cycle control in premalignant mucosal cells and HPV-negative HNSCC is impaired through frequent

inactivation of p53 by (point) mutations. P16Ink4A encoded by the CDKN2A gene at chromosome 9p21 is frequently

inactivated by either mutations or promotor methylation, or focal homozygous losses of chromosome 9p21. Combined with

the amplification of the CCND1 gene which encodes for cell cycle regulating protein cyclin D1, these alterations result in

loss of normal cell cycle control and increase tolerance for DNA damage and aneuploidy as often observed in cancer cells.

Many classical cytotoxic chemotherapeutic agents used in cancer therapy exploit
alterations in cell cycle regulation in cancer cells. As mentioned above (Figure 1), the
crosslinking agent cisplatin remains the first choice of chemotherapy in HNSCC combined
with radiotherapy. As reviewed by Williams and Stoeber, cisplatin treatment efficiently
affects DNA replication in S-phase and the subsequent G2-phase [173]. Cells arrest in
the S- and G2-phase to allow time for DNA repair. Additionally, classically applied
chemotherapeutic agents in standard oncological treatment protocols like 5-fluorouracil
(5-FU, a thymidylate synthase inhibitor), methotrexate (an inhibitor of dihydrofolate re-
ductase), irinotecan/campthotecin (inhibitors of topomerase I) and the RNR-complex
inhibitor and nucleotide analogue gemcitabine, all affect DNA replication and S-phase
progression [173,174]. Tubulin-targeting agents docetaxel, paclitaxel and vincristine fur-
thermore interfere with mitotic progression by stabilizing the spindles [175]. Although
these chemotherapeutics target both malignant and rapid proliferating untransformed
cells and may cause severe toxicities, these therapeutics illustrate that the mechanisms
underlying DNA replication and cell cycle progression harbor targetable vulnerabilities in
HNSCC and other cancer cells (Table 1).

7. Clinical Perspective

7.1. Targeting the Cell Cycle for Therapy

During the last decade, a novel interest emerged in targeting the cell cycle in HNSCC
(Table 1) as well as other cancers [155,176–186]. The therapeutic effects of classical cytotoxic
agents and γ-irradiation already point to the efficacy of targeting the rewired cell cycle
in cancer cells. To execute more effective targeted treatments protocols for HNSCC in
clinical care, the research objective is to make treatments more efficient and with less
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collateral damage in nonmalignant cells. The application of functional genomic approaches
by mRNA interference with siRNAs and shRNAs, microRNA expression libraries, high-
throughput CRISPR-Cas9 screens, and drug library screens enabled the identification of
essential genes specifically to HNSCC cells but at a lesser or no extent to nonmalignant
cells [121,127,137,187,188]. Several S-phase and DNA damage related genes have been
identified as potential targets for treatment of HNSCC as well as high-risk premalignant
changes (Table 1). ATM mRNA knockdown was reported to be lethal when using mi-
croRNA expressing oligonucleotides [187]. The complexity of the ATM protein as well as
redundancy in the kinase domain of ATM with other PIKK-family members, complicates
the development of specific inhibitors with sufficient bioavailability in vivo. Nevertheless, a
phase I clinical trial with the new ATM inhibitor AZD0156 is now conducted in solid tumors
(NCT02588105) [111,187,189–192]. Similarly, PIKK-family member ATR was identified as
an essential gene in HNSCC, but small molecule kinase inhibitors has lacked specificity in
clinical trials so far. Recent developments uncovered highly potent small molecules against
ATR and DNA-PK, and clinical trials are conducted in HNSCC with these inhibitors both
as single agent and in combination (Table 1; ATR: NCT04576091, NCT04491942; DNA-PK:
NCT04533750, NCT01353625) [48,111,177,193,194].

Interference of Aurora proteins, FOXM1, KIF11 and PLK1 showed promising results
in vitro and in vivo in HNSCC, but these molecular targets are currently not tested in
HNSCC in clinical trials [107,109,127,188,195–204]. Furthermore, therapeutic inhibition
of S-phase regulator CDC7, the function of which is essential for origin firing and repli-
cation fork formation [205], is currently clinically tested in a phase I trial with CDC7
inhibitor LY3143921 in HPV-negative HNSCC patients (NCT03096054). Although the
clinical application of monotherapy with CDK4/6 inhibitors might not be suitable for HN-
SCC, clinical trials in combination with cetuximab, radiotherapy, PI3K/mTOR inhibition
or anti-PD-(L)1 antibodies are currently being conducted (NCT03065062, NCT03024489,
NCT04000529) [206–208].

Table 1. Preclinical studies referring to druggable hits in cell cycle control.

Target Inhibitor or Interference Method HPV Ref

ATM Antisense oligodeoxynucleotides In vitro U [189]
Nanoparticles with AS-ODNs In vitro U [190]

Antisense oligodeoxynucleotides In vitro, in vivo Positive [191]
microRNA expression In vitro Negative [187]

AZD0156 In vitro Negative [209]
KU-55933 +/− photons +/− protons In vitro Both [210]

ATR siRNA interference In vitro U [193]
AZD6738 +/− KU-0060648 In vitro U [48]

AZD6738 +/− Paclitaxel or Cisplatin In vitro, in vivo Both [194]
AZD6738; VX-970 In vitro Negative [209]

VE-821 +/− photons +/− protons In vitro Both [210]

AURORA siRNA interference +/− Paclitaxel In vitro Negative [199]
R763, Alisertib a In vitro U [200]

Alisertib a +/− MG132 In vitro, in vivo Positive [201]

Danusertib b In vitro, in vivo Both [188]
Alisertib a +/− Adavosertib c In vitro, in vivo Negative [107]

Alisertib a; Danusertib i In vitro Negative [209]

VX-680 +/− HaspinKO or CHR-3464 In vitro Negative [106]

CDC7 XL413 +/− Cisplatin and Fluorouracil In vitro, in vivo Both [202]

CDK4/6 Palbociclib + Cetuximab Phase I trial Both [206]
Abemaciclib +/− Torin2 or Everolimus In vitro, in vivo U [207]

Ribociclib +/− RT In vitro U [208]
Palbociclib + Cetuximab Phase II trial Negative [211]
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Table 1. Cont.

Target Inhibitor or Interference Method HPV Ref

Palbociclib + Cisplatin
Phase I trial, in vivo,

in vitro
Negative [212]

Abemaciclib + Metformin In vivo U [213]
Palbociclib + Navitoclax In vitro Both [214]

Palbociclib In vitro Negative [209]

Chk1/2 PF-00477736 +/− RT In vitro Positive [215]
AZD7762 +/− Cisplatin In vitro Negative [216]

siRNA interference In vitro U [193]
MK-8776 +/− Adavosertib c In vitro U [217]

CCT244747 +/− RT +/− Paclitaxel In vitro, in vivo Both [218]

Prexasertib d Phase I trial U [219]
AZD7762 or Rabusertib e or MK8776 + / − RT In vitro Positive [220]

Prexasertib d +/− RT +/− Cetuximab In vitro, in vivo Both [221]
AZD7762 In vitro, in vivo Both [198]

Prexasertib d Phase I trial Both [222]

siRNA interference; Prexasertib d In vitro Both [112]
siRNA interference In vitro Negative [126]

siRNA interference; Rabusertib e; Prexasertib d;
MK-8776; PF-477736

In vitro Both [111]

PF-00477736 +/− Alpelisib h In vitro, in vivo U [223]
shRNA; MK-8776 +/− Niraparib + / − RT In vitro, in vivo Both [224]

Prexasertib d +/− Cisplatin + / − RT In vitro, in vivo Both [225]

Prexasertib d; MK8776 In vitro Negative [209]

Prexasertib d In vivo Both [226]

DNA-PK KU-0060648 +/− AZD6738 In vitro U [48]
CC-115 In vitro Negative [209]

KU-57788 or IC87361 +/− Olaparib or
Veliparib +/− RT

In vitro Both [227]

NU7441 +/− Olaparib In vitro, in vivo Negative [228]
KU-57788 +/− photons +/− protons In vitro Both [210]

FOXM1 siRNA interference In vitro Positive [203]
Thiostrepton In vitro, In vivo Positive [204]

KIF11 Ispinesib Phase II trial U [195]
siRNA interference; Ispinesib In vitro, in vivo Negative [127]

PLK1 siRNA inteference +/− RT In vitro, in vivo Negative [196]
BI2536 In vitro U [197]

Volasertib f In vitro, in vivo Both [198]

siRNA interference; Volasertib f; GSK461364;
Rigosertib g; HMN-214

In vitro, in vivo Neg, preHN [109]

BI2536 In vitro Negative [209]

Wee1 Adavosertib c In vitro, in vivo Both [121]
Adavosertib c +/− Cisplatin In vitro, in vivo Negative [229]
Adavosertib c +/− Cisplatin In vitro, in vivo Positive [230]

Adavosertib c +/− RT In vitro Positive [220]
Adavosertib c +/− Vorinostat In vitro, in vivo Negative [231]

Adavosertib c In vitro Negative [232]
Adavosertib c In vitro, in vivo Both [198]
Adavosertib c In vitro, in vivo U [233]

Adavosertib c + Cisplatin + Docetaxel Phase I trial Both [234]
siRNA interference In vitro Negative [126]

Adavosertib c In vitro Negative [209]
Adavosertib c In vitro Positive [235]
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Table 1. Cont.

Target Inhibitor or Interference Method HPV Ref

Adavosertib c +/− Alisertib a In vitro, in vivo Negative [107]
siRNA interference; Adavosertib e In vitro Neg, preHN [110]

Adavosertib c In vitro Positive [236]
Adavosertib c + Cisplatin Phase I trial U [237]

shRNA; Adavosertib e +/− Niraparib +/− RT In vitro, in vivo Both [224]

Ledgends a MLN8237 f BI6727 RT radiotherapy
b PHA-739358 g ON-01910 U unknown

c AZD1775/MK-1775 h BYL-71 preHN premalignant oral cells
d LY2606368 i AMG900 KO CRISPR-mediated knockout
e LY2603618

In several reports the susceptibility of HNSCC to Chk1 and Wee1 inhibitors has been
published (Table 1) [107,110–112,121,126,193,198,209,215–226,229–237]. Chk1 is mainly
involved in S-phase regulation upon stalled replication forks, which makes it a feasible
target for cancers with high replication stress such as HNSCC [180,238–242]. Clinical
trials with the Chk1 inhibitor SRA737 and the dual Chk1/Chk2 inhibitor prexasertib have
been completed for treatment of solid tumors amongst which is HNSCC (NCT01115790,
NCT02555644, NCT02797964).

Wee1 is a critical regulator of the G2/M-checkpoint through CDK1 phosphorylation,
which inactivates the protein, but also plays a role in S-phase regulation by inactivating
CDK2 phosphorylation against a background of replication problems [180,186,241,242].
The Wee1 inhibitor adavosertib is the only compound tested in clinical trials, including
several studies in HNSCC, either as monotherapy or in combination with conventional
chemotherapy and radiation (NCT04460937, NCT03028766) [177]. A phase I trial with
promising results in HNSCC has been published [234].

Premalignant cells have been shown to be specifically vulnerable to PLK1 and Wee1
inhibition, whilst normal oral keratinocyte and fibroblast cells are not affected [109,110].
This strengthens the hypothesis that loss of p53, p16Ink4A and to a lesser extent cyclin D1
amplification as seen in premalignant cells [26], sensitizes cells to these inhibitors, which
may support the initiation of clinical trials. Particularly the application as monotherapy for
treatment of high-risk premalignant changes characterized by morphological and genetic
changes, might contribute to eradication of visible changes such as leukoplakias, but may
also lead to less recurrent disease after treatment of the index tumor and improve overall
survival rates of HNSCC patients.

Altogether, these preclinical and clinical trial data indicate the feasibility of targeting
DNA replication and cell cycle progression in HNSCC. It should be noted, however, that
the data in cell lines also point towards tumor-specific differences in response, possibly
reflecting inter-tumor heterogeneity of HNSCC [90]. Clinical trials will provide important
additional information on efficacy and biomarkers for patient selection in the future, as
well as useful combination therapies. For many targets, small molecule inhibitors that show
better bio-distribution and target-specificity in vivo and alternative therapeutic molecules
such as protein degrading (PROTAC) molecules [243] are needed for more successful
clinical implementation and increased responses.

7.2. Combining PD-L1 Antibodies with DNA Damaging Agents

Preclinical research has shown that activation of the cGAS/STING pathway after
DNA damage enhances immune cell infiltration into the tumor microenvironment (TME)
through secretion of pro-inflammatory type I interferon (IFN) and induction of a senescence-
associated secretory phenotype (SASP) [244]. More data has been published recently
indicating that degree of successful cGAS/STING pathway activation after classical DNA-
damaging chemotherapeutics and radiation therapy influences treatment outcome through
antitumor immunity (as reviewed in [245]). By inducing DNA damage and activation of T-
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cells, two hallmarks of cancer are being exploited, with potentially better responses and less
therapy resistance [68,246]. To reduce toxicity as observed with classical chemotherapies
and to enhance tumor-specificity, further research should determine whether combination
of immune checkpoint inhibitors such as anti-PD-(L)1 antibodies with targeted agents
improves HNSCC response rates and survival. As shown in other tumor types (reviewed
in [246]), inhibitors targeting molecules such as ATR, Wee1 and Chk1, which induce
replication-associated DNA damage and potentially cGAS/STING pathway activation
through subsequent cytosolic DNA fragments in HNSCC, are promising candidates for
combination treatments in HNSCC. Clinical trials are currently conducted combining
ATR and Chk1 inhibitors with anti-PD-(L)1 antibodies in solid tumors including HNSCC
(NCT04266912, NCT02264678, NCT04095273, NCT03495323) [246].

8. Conclusions

Survival rates for late stage HNSCC remain disappointing and while protocols for
first-line treatment have been optimized in recent decades, this has not fundamentally
improved survival since the implementation of cisplatin in 1977. The FDA approval of
cetuximab in 2007 and two anti-PD-1 antibodies in 2016 have increased the arsenal, but
the response rates still leave much to be desired and the lack of reliable biomarkers for
response hamper implementation given the costs and associated toxicities of these new
agents. Treatments with targeted agents have hardly been introduced in routine care as
activating mutations in oncogenes are scarce in HNSCC, and clinical results so far were
disappointing. In the last decade, through unbiased screening of siRNA and shRNA
libraries, inhibitor libraries and more recently guide RNA libraries utilizing CRISPR-Cas9
technology, a better understanding of HNSCC vulnerabilities was established. Especially
deregulation of the cell cycle in HNSCC has emerged as a candidate to be exploited for
clinical use, not only to treat invasive cancers but also high-risk premalignant mucosal cells.
In addition, combination therapies with immune checkpoint inhibitors and targeted agents
that affect DNA damaging, such as ATR, Chk1 and Wee1 inhibitors, have potential to
further increase response rates and survival. Better understanding of genomic alterations
and loss of passenger genes will furthermore contribute to the identification of targets
through synthetic and collateral lethality, which will expand our pre-clinical toolbox to
uncover new HNSCC vulnerabilities in specific genetic backgrounds. Lastly, research
should increase the focus on premalignant mucosal cells, and test vulnerability of these
cells to new therapeutic compounds. By targeting these lesions together with the index
tumor during treatment, recurrent and secondary tumors may be prevented. Furthermore,
diagnosis and treatment of high-risk premalignant lesions by targeted inhibitors with their
generally mild toxicity profiles could prevent the malignant progression of these precancers
into difficult to treat HNSCC tumors.
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