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ABSTRACT 

Adaptation of tumors to therapeutic interventions contributes to dismal long-term patient 
outcomes. Adaptation to therapy involves co-action of functionally related proteins that together 
activate cell survival programs and compensate for the therapeutic impact. Oncogenic 
dependencies to such adaptive events, however, can generate new therapeutic vulnerabilities 
that can be targeted with drug combinations. The precision medicine approaches in which 
targeted drugs are matched to pre-existing genomic aberrations fail to address the adaptive 
responses and resulting vulnerabilities. Here, we provide the mathematical formulation, 
implementation and validation of the TargetScore method. The TargetScore identifies collective 
adaptive responses to targeted interventions as concurrent changes of phospho-proteins that are 
connected within a signaling network. Based on the adaptive responses, the method predicts 
drug-induced vulnerabilities. Using TargetScore, we inferred the adaptive responses with short-
term (i.e., days) stress and long-term (i.e., months) acquired resistance to inhibitors of anti-
apoptotic mediators, MCL1 and BCL2. With experiments guided by the predictions, we identified 
synergistic interactions between inhibitors of PARP, SHP2, and MCL1 in breast cancer cells. 
TargetScore is readily applicable to existing precision oncology efforts by matching targeted drug 
combinations to emerging molecular signatures under therapeutic stress.  
 

INTRODUCTION 

Targeted therapies have led to significant improvements in patient survival in diverse 
cancer types (1-3). Resistance to targeted therapies, however, is virtually inevitable and can 
manifest as a lack of initial response to therapy (intrinsic resistance) or disease progression after 
the temporary response (acquired resistance) (4). Drug combinations can overcome or prevent 
the resistance by blocking therapy escape routes and can lead to overall survival gains (5-6). 
However, the discovery of effective combination therapies is a daunting task due to the complexity 
of the molecular landscapes associated with drug response and resistance.    

A recurrent mechanism of resistance is adaptation to the therapeutic stress through 
activation of oncogenic programs that compensate for the effects of the therapy (5,7). Adaptive 
responses to therapy can be manifested within days as a consequence of the plasticity of the 
processes that mediate cell survival (8-9). The long-term adaptive changes, which lead to 
acquired resistance in time-scales of months after effective therapy, may be a consequence of 
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emerging genetic alterations and yet still be manifested as mechanisms similar to short-term 
events (e.g., phenotypic shift, differentiation and signaling plasticity) (1-3). These adaptive 
responses, regardless of their time-scales, may produce new oncogenic dependencies and 
resulting therapeutic vulnerabilities that can be targeted with a second drug (10). Applications 
guided by this concept have enabled the preclinical development of a large repertoire of targeted 
drug combinations. The targets of such drug combinations involve tumor growth, survival, DNA 
repair, immune evasion, epigenetic regulation, apoptotic mediators and other mechanisms (11-
22). Clinical trials guided by adaptive responses are also emerging as exemplified by co-targeting 
PARP with signaling and DNA repair pathways (23-24), and in general, clinical trials guided by 
biomarkers increase the success rate of trials at all stages (25). However, the adaptive response 
mechanisms and resulting therapeutic opportunities are not fully explored owing to the number of 
combinations possible in diverse cancer contexts. Moreover, it is highly challenging to prioritize 
effective combination therapy targets among the broad set of oncogenic processes that can be 
affected by a first-line therapy.  

Analytical methods that extract oncogenic dependencies from high throughput data may 
accelerate the implementation of combination therapies. Methods, such as network modeling, 
that capture collective behaviors of functionally associated molecules may provide stronger 
predictions compared to methods that focus on isolated processes (26). The use of phospho-
proteomic data improves the prediction of responses to targeted drugs since targeted agents 
usually act by altering the post-translational modifications of oncogenic proteins (27-28). 
Additionally, computational methods that can generate testable predictions based on readily 
available (or easily generated) data can be more widely disseminated and have a broad impact 
on precision oncology efforts (29). A recently reported method, DrugCell involves the 
implementation of neural networks represented with complex hierarchical structure of a cell and 
training with responses to hundreds of drugs in approximately one thousand cell lines (30). In the 
absence of protein activity data, another approach, OncoTreat, relies on solving the highly 
challenging task of predicting protein activity from mRNA expression data to prioritize drugs based 
on their ability to suppress the activity of key oncogenic proteins (31). Logical models (e.g., 
CellNOpt) can be trained on a combination of prior signaling information and comprehensive 
proteomic drug response data to predict unseen drug responses using either Boolean or 
differential equation formalism (32). And similarly, our Perturbation Biology method predicts 
responses to unseen perturbations using interpretable network models inferred with statistical 
physics algorithms that require large-scale, comprehensive drug response data (33-34). Despite 
the significant contributions to automating precision therapy selection, a majority of the previous 
approaches (i) focused on transcriptional or mutational changes, (ii) required comprehensive 
datasets as modeling constraints that are costly to generate, and (iii) cannot be immediately 
scaled to a large number of biological samples or molecular entities due to requirement of highly 
comprehensive datasets.  

We have developed a statistical network modeling method, TargetScore to predict 
effective combination therapies. Based on phospho-proteomic responses to only a few 
perturbations, TargetScore quantifies the collective adaptive resistance responses within 
signaling networks. The drug combinations that are predicted to suppress the adaptive responses 
are tested experimentally and validated combinations are nominated for clinical trials. Using the 
TargetScore, we analyzed the responses in breast and ovarian cancer cells to inhibitors of anti-
apoptotic proteins, MCL1 and BCL2. We quantified adaptive responses under short-term 
therapeutic stress and with long-term therapeutic exposure leading to acquired resistance. We 
showed that the emergence of acquired resistance to MCL1 and BCL2 inhibitors is accompanied 
by increased levels of cell growth (HER2/GAB2/SHP2/MAPK) and DNA repair markers (poly 
(ADP-ribose) (PAR)/PARP). Drug combinations involving pairs of MCL1, PARP, and SHP2 
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Figure 1. The TargetScore Algorithm. (A) Tumors adapt to stress engendered by targeted 
therapies through activation of compensatory proliferation or survival programs leading to the 
emergence of adaptive resistance. Adaptive responses can, in turn, be targeted with combination 
therapies. (B) The responses to targeted therapies are, in most cases, collective meaning 
functionally associated molecules work together (in parallel or sequential in time) to execute a 
phenotypic shift that enables escape from therapeutic effects. (C) TargetScore quantifies 
collective responses to targeted therapies as a sum of the self-changes in each protein plus the 
changes in functionally linked entities (i.e., pathway neighborhood). The oncogenic vs. tumor 
suppressor events are annotated to each protein i with a function score (fsi: +1 for oncogenic, -1 
for tumor suppressor proteins) (D) The TargetScore algorithm steps. 1. Profiling of the responses 
to a perturbation; 2. Inference of a reference network using the prior-glasso algorithm. Proteomic 
data from a set of samples that represent a specific context (e.g., disease type) and prior signaling 
information from databases serve as constraints for network inference (see methods). On the 
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reference network, the signaling interactions between nodes (phospho-proteins i and j) are 
quantified by the edge strength, Wij (Wij > 0: activating interactions that increase phosphorylation 
or expression, Wij < 0: deactivating interactions that decrease phosphorylation or expression). 3. 
Quantification of a sample and context-specific adaptation score (i.e., a TargetScore value) on 
the reference network using molecular drug response data (See equation 10). 4. Identification of 
network modules (collective changes) that have a significantly high TargetScore in each sample. 
The network modules involved in adaptive responses are determined by mapping the 
TargetScore values back on the reference network and extracting the connected sub-networks 
enriched with high TargetScore values. 5. Selection of actionable targets that participate in 
adaptive responses in a sample and testing drug combinations in preclinical models. 

 

inhibitors were synergistic and effective in varying contexts of BCL2/MCL1 inhibitor resistance. 
As demonstrated in models of resistance to apoptotic targeting, TargetScore enables the 
development of effective combination therapies that target adaptive responses. The combination 
therapies from TargetScore may provide durable responses in patients that carry the adaptive 
response signatures. 

RESULTS 

TargetScore algorithm quantifies collective responses to targeted perturbations 

The TargetScore algorithm quantifies adaptive responses to perturbations and nominates 
rational combination therapies to suppress the adaptation mechanisms (Figure 1). The algorithm 
is built on the observations that (i) cancer cells adapt to the therapeutic impact of drugs through 
activation of compensatory survival and proliferation programs (Figure 1A) (5); (ii) the 
compensatory programs depend on the co-activation of functionally related molecules (e.g., 
members of a signaling pathway) that together drive the adaptation (35,26,12). A corollary to the 
the observations is that concurrent activation of functionally linked proteins in response to therapy 
is a more likely predictor of adaptation compared to the responses of individual molecules (Figure 
1B). The TargetScore algorithm searches for such “collective adaptive responses” to therapy, co-
activation of functionally linked oncogenic proteins (or de-activation of tumor suppressors) that 
lead to drug resistance (Figure 1C). The TargetScore algorithm involves the calculation of a 
reference network that captures the functional links between signaling molecules followed by 
quantification of sample-specific adaptive responses carried by proteins that are linked in the 
reference model (Figure 1D) (See methods section for mathematical formulation and details).  

The reference network model is inferred based on phospho-proteomics data from a 
population of samples with shared characteristics. The samples with shared characteristics may 
belong to a particular cancer type (e.g., breast cancer patients) or a cohort defined by a genomic 
aberration such as KRAS-mutation. The inter-patient co-variations of the phospho-protein levels, 
which arise due to perturbations act as the constraints for inference of the signaling network. The 
perturbations can be intrinsic as mutations and epigenetic changes or extrinsic as drug 
treatments. In model inference, we also benefit from prior signaling information as imported from 
the signedPC resource within the Pathway Commons signaling database (44). In the network 
models, the nodes represent the phospho-proteomic measurements and edges represent the 
direct associations between the nodes after removal of confounding factors from other variables. 
The rationale in the model inference is that if the levels of two phospho-proteins are directly 
associated with each other across diverse perturbations, the two proteins likely function together 
and are connected to each within the network. For inference, we selected the graphical LASSO 
(glasso) algorithm based on our comprehensive benchmarking of network inference methods for 
proteomics-based modeling of signaling interactions (36). The glasso is a sparse penalized 
maximum likelihood estimator for the inverse of a covariance matrix and used to infer partial 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439861doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439861
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

correlation-based networks (37). To incorporate the prior signaling information, we generated a 
modified glasso algorithm, termed prior-glasso that introduces priors as a probabilistic bias similar 
to the complexity term in the log-likelihood equation (Equation 4 in Methods). The prior 
interactions that conform to the data are favored, priors that do not conform with data are 
eliminated and new interactions are inferred solely from data. The resulting network model 
provides a map of functionally linked proteins on which sample-specific adaptive responses can 
be quantified. 

Based on the interactions within the reference network and sample-specific phospho-
proteomic drug response data, the adaptation to targeted agents is quantified by the TargetScore 
(Equation 10). The TargetScore values are calculated as the network interaction weighted sum 
of the "self-change" of each protein and the change in its pathway/network neighborhood on the 
reference network in response to targeted perturbations. High TargetScore values correspond to 
adaptive responses (e.g., increased RTK activity by MEK inhibitor via a feedback loop, (38) and 
low values correspond to the therapeutic impact of the drug (e.g., lowered p-ERK in response to 
MEK inhibition) (Figure 1C). The connected nodes with high TargetScores form the drug-activated 
network modules of signaling and are predictors of collective adaptive resistance mechanisms. 
The predictions from the algorithm are effective drug combinations that target and suppress 
adaptive responses. When short term adaptive-responses are targeted, the combination may 
involve the first agent that induces and the second agent that suppresses the adaptive response. 
In the case of acquired resistance, a potentially more effective strategy is to target the multiple 
adaptive events as cells are likely hard-wired in the long-term through genetic or epigenetic 
changes to gain resistance to the first agent. The comparison of TargetScore values over different 
cancer samples (e.g., sensitive vs. resistant) reveals how drugs differentially rewire pathway 
activities to quantify adaptive events. The calculations with samples on varying treatment time 
scales (e.g., days to months) inform on the evolution of drug resistance. In summary, with a 
selection of versatile agents, doses, timeframes and samples; the algorithm explores adaptation 
to therapy across diverse dimensions (e.g., drug targets, timescales, degree of resistance). The 
predicted drug combinations are tested experimentally and nominated for further preclinical 
development and clinical trials. 

Emergence of resistance to apoptotic targeting in MCL1-amplified breast cancer cells  

We developed experimental models of resistance to MCL1 and BCL2 inhibitors using the 
HCC1954 breast cancer cell line (Figure 2A). The MCL1 amplified HCC1954 cell line is highly 
sensitive to MCL1 inhibitors (MCL1i; Figure 2B) and partially sensitive to BCL2 inhibitors (BCL2i; 
Figure 2C). We generated the cell lines, named HCC1954-MR and HCC1954-BR, with acquired 
resistance to MCL1i (S63845) and BCL2i (ABT-199), respectively, through the long-term 
treatment of each agent in HCC1954 cells over the course of 4 months with increasing doses (0 
to 4µM) (Figure 2B). As a model of intrinsic resistance to MCL1 inhibition, we used the SKOV3 
ovarian cancer line, which is diploid for MCL1 and relatively refractory to MCL1 inhibition. The 
selection of the SKOV3 cell line is further justified as it is a model of high-grade serous ovarian 
cancer, a subtype with high molecular and pharmacological similarity to basal-like breast cancers, 
which is the origin of HCC1954 (39).  

To monitor drug response, we used the growth rate (GR) inhibition metric (40). GR 
mitigates the confounding factors from varying duplication times across different cell lines. This is 
particularly critical for the analysis of acquired resistance as the emergence of resistance 
generally alters cellular doubling times (41-42). In HCC1954 cells, the doubling time was 
increased from a baseline of 44 hours to 73 and 79 hours in HCC1954-MR and HCC1954-BR, 
respectively (Figure S2A). Using Reverse Phase Protein Array (RPPA) based measurements, we 
profiled the changes in >300 oncogenic protein levels and phosphorylation states in HCC1954, 
HCC1954-MR, HCC1954-BR and SKOV3 in response to apoptotic perturbations (Figure 2C, 
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Figure 2. Response and resistance to apoptotic agents in cancer cells. (A) Generation of 
model systems with acquired and intrinsic resistance to MCL1i and BCL2i. The HCC1954 breast 
cancer cells (MCL1 amplified) were treated with MCL1i or BCL2i at longitudinally increasing doses 
until the emergence of resistance (~4 months). SKOV3 cells (MCL1 wild type) represent a model 
with intrinsic MCL1i resistance. (B) Growth rate (GR) changes in response to MCL1i in cells with 
acquired resistance to MCL1 targeting. In cells with acquired MCL1i resistance, (HCC1954-MR), 
response is measured 3 days after multiple doses of acute MCL1i treatment. GR 0 to 1: partial 
growth inhibition (cytostatic); GR 0 to -1: cell death (cytotoxic). (C) Growth rate changes in 
response to BCL2i in cells with acquired resistance to BCL2i. (D) Responses to MCL1i in cells 
with SKOV3 vs. HCC1954 cells. (E) Phospho-proteomic profiling of responses to short and long-
term MCL2i or BCL2i treatment in cells with varying drug resistance. The phospho-proteins whose 
expression changes in response to at least one perturbation are included (max (abs(log2(xik/xio)) 
> 0.5, for protein i across all perturbations k; xik: readout in perturbed state; xio: readout in 
unperturbed state). 

 
S2B). The parental HCC1954 and SKOV3 are molecularly profiled with short-term drug treatment 
(48 hours), while HCC1954-MR and HCC1954-BR are profiled after long-term drug perturbations 
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(4 months). The proteomic data (Figure 2E) covered diverse oncogenic processes including PI3K, 
RAS-MAPK, Src/FAK, TGF signaling axes, DNA repair, cell cycle, apoptosis, immuno-oncology, 
metabolism enzyme levels, and histone modifications. This resource on BCL2/MCL1 inhibitor 
responses and resistance modalities served as the input data for the TargetScore analysis. 

TargetScore identifies adaptive responses to apoptotic targeting 

We applied the TargetScore algorithm to investigate the collective adaptive responses to 
apoptotic targeting in each cell line with varying resistance to MCL1 and BCL2 inhibitors. First, 
we inferred the disease-type specific reference networks for breast and ovarian cancers. Next, 
we calculated the sample-specific and network-level responses to inhibitors of anti-apoptotic 
proteins, MCL1 and BCL2 for cells with varying drug resistance.  

The reference models are inferred using 1) RPPA data from breast and ovarian cancer 
TCGA cohorts and 2) prior knowledge interaction information (Figure 3, Figure S3) (39, 43-44). 
The combination of these two data sources enables consistency with both context-specific 
biological characteristics (e.g., resulting from the cancer types studied) and previously reported 
signaling knowledge. The breast and ovarian cancer datasets cover phospho-proteomic data from 
901 and 408 patients respectively. Both datasets covered 224 phospho-protein species. The 
network models are inferred with the prior-glasso method (see Methods for mathematical 
formulation).  To enable comprehensive adaptive response quantification in subsequent steps, 
the interactions involving the proteins that are not covered by the patient RPPA but measured 
within the drug response data are also included solely based on prior information. The model 
complexity and prior weights in the prior-glasso inference framework (equation 4) are optimized 
to maximize the glasso likelihood function with a BIC calculation (Equation 5) and set as r=0.035, 
k=0.025 for the breast cancer model (Figure 3B). The ovarian cancer model is inferred using the 
identical approach (Figure S3B). We then tested the model robustness through bootstrapping 
partial datasets (1000 bootstraps, see methods) with varying data coverage (50% to 90%) and 
comparison of models based-on partial data to models inferred from the complete data (Figure 
3C). Even in the lowest coverage level (50%), the models from partial data had a median of 80% 
overlap with models from the complete data suggesting a highly robust inference. Next, the model 
accuracy was tested with 5-fold cross-validation with 500 bootstraps (equation 9), demonstrating 
models inferred with actual data reach significantly lower errors than label-randomized data 
(Figure 3D). For the breast and ovarian cancer signaling models, the resulting reference networks 
carry 954 and 1017 edges (Wij > 0.1) respectively, connecting 304 nodes, with a varying degree 
of 1 to 40 edges/node (Figure 3E, S3C). The disease-type specific reference networks (Figure 
3F, S3) served as the reference models to calculate the sample-specific adaptive responses. 

We calculated the sample-specific TargetScores with reference models and phospho-
proteomic drug response data from HCC1954, HCC1954-BR, HCC1954-MR and SKOV3 lines 
treated with BCL2 and/or MCL1 inhibitors. The calculations for HCC1954 and SKOV3 cells utilized 
the breast and ovarian cancer reference networks, respectively. A TargetScore value is calculated 
for each measured molecular entity (here either a protein or phospho-protein) for all perturbation 
conditions in all cell lines with varying sensitivities to apoptotic targeting (Equation 10). An FDR-
adjusted p-value is calculated for each TargetScore value based on a null distribution of scores 
from randomized drug response data (see Methods). The resulting TargetScores have provided 
a comprehensive resource to analyze the adaptive responses to apoptotic targeting. 

TargetScore algorithm predicts actionable adaptive responses in DNA repair and growth 
pathways 

We analyzed the TargetScore values for all proteins to identify potential drivers of 
adaptation to apoptotic targeting with a focus on MCL1 inhibition as MCL1 amplifications are  
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Figure 3. Reference network captures disease type-specific phospho- and total proteomic 
associations on which collective adaptive responses can be quantified. (A) The breast 
cancer phospho-proteomics data for cancer-relevant proteins from 901 patients. (B) Optimization 

of prior-glasso algorithm parameters is based on BIC error across all r (model complexity penalty) 

and k (prior information prize). (C) The robustness of the reference network is quantified by the 
concordance between network models that were calculated with complete vs. subsampled partial 
data with varying coverage (50% to 90%). (D) Network model validation. The comparison between 
errors of models that were inferred using actual RPPA versus label-randomized data. (E) The 
distribution of connectivity in the network models. (F) The reference network model of signaling 
interactions for breast cancer is inferred using the prior-glasso algorithm. Blue edges represent 
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activating and red edges represent deactivating interactions. The network modules are calculated 
using the GLay community clustering method based on the Newman-Girvan algorithm and each 
module is represented by a distinct color (45). Interactions with Wij > 0.1 are shown. 

 

common in breast and ovarian cancers (46). We analyzed the adaptation profiles in the cells with 
high sensitivity, intrinsic resistance and acquired resistance to apoptotic targeting. In order to 
nominate potentially effective combination therapies to overcome resistance, we evaluated the 
TargetScore ranking, statistical significance and differential characteristics across samples with 
varying resistance to MCL1/BCL2 inhibition 

Based on ranking and statistical assessment (see Methods) of the TargetScore values, 
we first focused on the proteins that are particularly involved in acquired resistance to MCL1 and 
BCL2 targeting (Figures 4B-F). In models of acquired resistance to BCL2 or MCL1 targeting 
(Figures 4E-F), we observed a likely DNA damage response (DDR) marked by concurrent 
TP53BP1 depletion (increased Target Score, fsTP53BP1=-1) and increased PARylation (labeled 
PAR) a marker of PARP activity (Figure 4E-F) (47). TP53BP1 depletion can indicate homologous 
recombination (HR) mediated double break (DSB) repair, while PARylation may be indicative of 
single-stranded break (SSB) repair driven by PARP enzyme activity (48,49). In parallel, GAB2 
adapter protein, which links receptor tyrosine kinases to downstream SHP2/MAPK growth 
signaling (50,51), had significantly high TargetScore values in the HCC1954-MR and -BR 
acquired resistance models (Figure 4E-F).  

Next, we addressed the distinct characteristics of long-term responses to MCL1 targeting. 
We performed a differential analysis of TargetScores from HCC1954 cells with short-term (48 
hours) vs. long-term (HCC1954-MR, 4 months in increasing doses) exposure to the inhibitor 
(Figure 4G). This analysis confirmed the involvement of growth and DNA repair pathways (Figure 
4H). In addition to increases in GAB2, acquired resistance is marked with the restoration of other 
RTK/MAPK pathway mediators including the actionable HER2/p-HER2, SHP2, RAF/MEK/ERK 
as indicated by differential analysis of TargetScores from MCL1i sensitive and acquired resistance 
models (Figure 4H). Similarly, levels of both PARP and the PARylation markers that are indicative 
of PARP activity are selectively high in samples with acquired resistance to MCL1 inhibition 
suggesting a potential dependence on double-stranded DNA-repair (Figure 4H). 

 In addition to the aforementioned DNA repair and growth pathway markers, we observed 
significant increases in the cell adhesion molecule CD171 (L1CAM) as well as decreases in 
androgen receptor (AR), receptor tyrosine kinase AXL, and p-FAK in both BCL2i (Figure 4E) and 
MCL1i (Figure 4F) resistant models. With potential relevance to drug resistance, CD171/L1CAM 
has already been implicated in resistance to apoptosis and poor outcome in various cancers as 
well as epithelial to mesenchymal transition (EMT) (52). However, we did not track CD171 and 
potential EMT responses due to the challenges associated with the therapeutic targeting of EMT. 
In the de novo resistance model, SKOV3 cells, we observed concurrent high TargetScores for 
BRD4 and PARylation (Figure 4D). We have previously demonstrated co-targeting BRD4 and 
PARP is highly synergistic in diverse in vitro and vivo models including the SKOV3 cell line (16). 
The MCL1 TargetScore value was also high in all MCL1 inhibitor-treated samples regardless of 
their level of sensitivity to MCL1 inhibition (HCC1954, SKOV3, HCC1954-MR) suggesting that an 
increase in MCL1 is not unique to drug-resistant context and does not cause resistance to MCL1 
inhibition (Figure 4C-E). Consistent with previous studies, the increase in MCL1 protein and 
associated high TargetScore upon MCL1 inhibition is likely due to stabilization of the inhibited 
protein by drug binding and has no anti-apoptotic consequence (53). 
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Figure 4. TargetScore algorithm nominates maps of adaptive responses and targets to 
mitigate drug resistance. (A) The proteomic profiles from drug-resistant models serve as 
constraints in TargetScore calculations. (B) The proteins are ranked based on the highest and 
lowest TargetScore values in cells with acquired resistance to MCL1i. (C-F) The statistical 
assessment of TargetScores for cells with varying MCL1i/BCL2i resistance. The P-values are 
based on a null distribution generated from randomized data and corrected with FDR-adjustment 
(Benjamini-Hochberg method). (G) The differential analysis of TargetScores upon short- and long-
term exposure to MCL1i in HCC1954. The highest positive (red bars) and negative (blue bars) 
changes are shown based on the difference of TargetScores from resistant vs. sensitive cells . 
(H) The network representation of the differential responses in short vs. long-term MCL1i 
exposure in MAPK and PARP networks (Figure S4 for downstream PARylation targets). 
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Based on the consistently high TargetScore values associated with clinically relevant 
mediators of DNA repair and cell growth pathways, we turned our attention to the therapeutic 
targeting of these two key oncogenic processes. 

Co-targeting PARP and SHP2 is synergistic in cells with resistance to apoptotic targeting  

Guided by the TargetScore predictions, we experimentally measured the impact of co-
targeting DNA repair, growth pathways and the anti-apoptotic mediators particularly in the drug-
resistant cells. For this purpose, we treated the HCC1954, HCC1954-MR and HCC1954-BR cells 
with paired drug combinations (Figure 5). When possible, the proteins were directly targeted with 
specific inhibitors as in the case of PARP, MCL1 and BCL2. On the other hand, the GAB2 
molecule is not directly actionable with existing drugs. Therefore, we chose the GAB2 interaction 
partner, SHP2 phosphatase that links GAB2 to MAPK signaling (54). SHP2 inhibitors have been 
shown to disrupt signaling downstream of GAB2 (e.g., MAPK signaling) (54,55,56) by decreasing 
the interaction of SHP2 and GAB2 (57). We quantified responses using the growth rate (GR) 
metric (Figure 5A-C). The drug synergy is quantified using the combination index (CI) based on 
the IC50 doses of each agent (CI < 0.8: synergy; 0.8 < CI < 1.2: additive; CI > 1.2: antagonism) 
(Figure 5D).  

 First, we focused on the combined inhibition of the targets that were increased in cells with 
acquired resistance to MCL1 and BCL2 inhibition. As predicted by the high PARylation and GAB2 
TargetScores (Figure 4H), co-targeting PARP and SHP2 in HCC1954-MR (acquired resistance 
to MCL1 inhibitor) was highly synergistic (CI=0.55, Figure 5D) and cytotoxic effects were reached 
at relatively low doses (2.5µM) (Figure 5C). In HCC1954-BR (acquired resistance to BCL2 
inhibitor), a considerable cytotoxic effect is reached even with the single-agent MCL1 inhibitor 
treatment (Figure 5B), and no strong improvement with the addition of either PARP or SHP2 
inhibitors is observed (Figure 5B,D). In line with the predictions (Figure 5F), the HCC1954-BR 
cells also had increased sensitivity to PARP and SHP2 co-targeting (cytotoxic at 0.625µM, Figure 
5B) with an additive interaction (CI=1.07, Figure 5D).  

 In HCC1954-MR cells, co-targeting of MCL1 with either SHP2 or PARP did not introduce 
any benefit (Figure 5C). Both combinations were antagonistic (CI > 1.5, Figure 5D) and cytostatic 
effects were not observed at relevant doses. With a retrospective differential analysis of the 
TargetScore values in resistant vs. sensitive parental cells, we observed that the BCL-XL 
TargetScore was increased as resistance to the MCL1 inhibition emerged (Figure 5E). This 
observation leads to the prediction that anti-apoptotic dependence is shifted from MCL1 to BCL-
XL activity concurrently with loss of responsiveness to MCL1 targeting. Indeed, it was recently 
reported that small cell lung carcinoma cells with high MCL1 and low BCL-XL are significantly 
sensitive to MCL1 targeting and patient cohorts with high MCL1/BCL-XL ratios may be candidates 
for MCL1 inhibitor therapy (58) (PMID: 32152266). Here, we make the reciprocal but equivalent 
observation that the emergence of MCL1 inhibitor resistance is accompanied by a decreased 
MCL1 to BCL-XL ratio. Although the shift in the MCL1 to BCL-XL ratio may point to a relevant 
adaptation mechanism to chronic suppression of MCL1, we did not experimentally test BCL-XL 
inhibitors due to their severe toxicity on platelet cells in patients and the reduced enthusiasm for 
clinical translation (59). On the other hand, the parental sensitive cells (HCC1954) displayed a 
strong response and synergy for the combinations of MCL1 inhibitor with both PARP and SHP2 
targeting (CI(MCL1i-PARPi)=0.51, CI(MCL1i-SHP2i)=0.63) (Figure 5D). Similarly, co-targeting 
PARP and SHP2 led to strong responses with a CI in the additive range and a shift from cytostatic 
to cytotoxic effects between 1.25 and 2.5µM in HCC1954 (Figure 5C). This was interesting as the 
modeling in sensitive cells did not immediately capture such a prediction, suggesting there is an 
inherent co-dependency on PARP and SHP2 even before the emergence of resistance. 
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Figure 5. Rational combination therapies from TargetScore analysis. Growth rate changes 
in response to combinations of PARP, SHP2, and MCL1 inhibitors in (A) HCC1954; (B) HCC1954 
resistant to BCL2i; (C) HCC1954 resistant to MCL1i (Figure S5 for cell viability changes and 
combinations with BCL2i). (D) The combination indexes quantify the synergistic drug interactions 
at IC50. (E) The differential analysis of TargetScores within the intrinsic apoptotic pathway in cells 
with acquired resistance (HCC1954-MR) vs. sensitivity (HCC1954) to MCL1i. The proteins that 
are covered in the RPPAs and TargetScore are shown. (F) The predictions and experimental 
testing based on the TargetScore. (G-H) A proposed model of changing interdependencies with 
the emergence of resistance to MCL1i. In the sensitive cells, the coupling between MCL1, PARP 
and SHP2 dependencies is reflected in the synergies of co-targeting MCL1+PARP and 
MCL1+SHP2. In cells with acquired resistance, the synergistic interactions between MCL1 and 
PARP or SHP2 are lost. The synergy between PARP and SHP2 inhibition, however, has become 
stronger leading to a potential therapeutic benefit in the resistant cells. Solid lines: interactions 
that lead to synergistic drug responses, dashed lines: interactions with additive responses.  
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Compared to the MCL1 inhibitor, the BCL2 inhibitor had a limited impact on growth rate 
as well as viability (Figure S5). The relatively limited efficacy of targeting BCL2 is expected as 
drug naïve HCC1954 cells are copy number-amplified for the MCL1 gene and have higher 
baseline MCL1 protein expression, resulting in a potential dependence on the anti-apoptotic 
activity of MCL1 (53, 71).  

In summary, our results suggest the MCL1 inhibition is synergistic with SHP2 and PARP 
targeting in HCC1954 cells (Figure 5G, H) and co-targeting SHP2 and PARP can generate 
significant therapeutic benefit with increased synergy in MCL1i and BCL2i resistant cells as 
predicted by the network modeling (Figure 4).  

DISCUSSION 

In the conventional precision medicine paradigm, targeted therapies are selected to 
suppress the effects of pre-existing oncogenic aberrations, in most cases with mono-therapies 
that are matched to an individual genomic aberration. Although genomically-matched 
monotherapies have introduced substantial therapeutic benefits in select cancer types (60, 61,62) 
, responses to targeted therapies are not durable and eligible patient cohorts are limited. As of 
2019, only 15% of cancer patients are eligible for genomics-informed therapy and only 8% of 
patients benefit from such therapies with objective, but nevertheless, transient responses (63).  

Targeting adaptation to first-line cancer treatments may improve response duration and 
depth in larger patient populations. Here, we developed the TargetScore algorithm for better 
identification of adaptive response mechanisms to targeted agents. We have demonstrated its 
utility in the discovery of combination therapies associated with response and resistance to 
targeting anti-apoptotic mediators. The algorithm is built on the rationale that adaptive responses 
under therapeutic stress occur through protein network rewiring, and collective changes in 
pathway activities are predictors of mitigation strategies. There have been similar approaches on 
modeling to predict responses to therapy based on mRNA data (64) or protein-based inference 
of mainly descriptive network models (65). The predictive proteomics-based network modeling 
approach has a higher chance of success as drug responses are mediated primarily by functional 
proteomic changes.  

TargetScore has flexible data and computing requirements allowing effective scaling of 
analyses. The algorithm is built on functions that can support the analysis of both small and large 
numbers of samples. Therefore, its rapid applications to diverse preclinical or clinical problems is 
not prohibited. For example, in comparison to our previously published network modeling methods 
that enable “de novo” drug combination predictions based on rich perturbation response data (33, 
34), the minimal molecular data requirement for TargetScore is reduced from hundreds of 
conditions to a single sample treated with a single agent. Although the TargetScore results are 
simple to obtain and interpret; here we show that the resulting predictions are sufficient to 
nominate effective drug combinations. The comparison of TargetScore values over different 
cancer samples (e.g., sensitive vs. resistant), across different drug doses or time points reveals 
how drugs rewire pathway activities in time, dose and sample space. The method is amenable to 
the comparison of pre- and post-therapy samples to quantify both short- and long-term adaptive 
events; the molecular profiling data needed as input can be obtained from various biological 
sources: cell lines, xenograft models and patients in clinical trials. The predictions from the 
method are drug combinations involving the agent that induces an adaptive response and a 
second agent that interdicts the adaptive response. Future studies involving TargetScore will 
explore the strength of the methodology utilizing other forms of molecular profiling data (e.g., 
RNA-seq data) and will seek to couple the TargetScore method with separate methods directed 
at understanding drug combination toxicities, which also limit the translation of drug combinations 
to clinical practice (6). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439861doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439861
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

Our analysis suggests that the activity of the MAPK pathway and DNA repair mechanisms 
were increased in cells with acquired resistance to BCL2/MCL1 inhibitors. In subsequent 
perturbation experiments guided by the calculations, we observed synergistic and strong 
responses to combinations of PARP and SHP2 inhibitors in the acquired resistance contexts. In 
the cells with acquired resistance to BCL2/MCL1 inhibitors, the combinations involving the “first-
line therapy” agents (i.e., the MCL1 or BCL2 inhibitor) paired with inhibitors of individual adaptive 
response markers (PARP or SHP2) were not as effective as a combination composed of PARP 
and SHP2 inhibitors. In the parental HCC1954 cell line with higher sensitivity to MCL1 inhibition, 
however, MCL1 co-targeting with either PARP or SHP2 was strong and synergistic (Figure 5D). 
In this drug sensitive parental line, both PARP and SHP2 targeting was effective yet the drug-
drug interactions were more modest (i.e., additive) in comparison to the synergistic effects in the 
MCL1i resistant cells (Figure 5D). These results suggest, that once resistance is acquired, it is 
challenging to overcome the acquired resistance to a particular agent (e.g., MCL1 inhibitor) 
through combinations involving this initial particular agent and an adaptive response marker (e.g., 
MCL1+PARP or MCL1+SHP2 inhibitors). Nevertheless, a therapeutic benefit from such 
combinations (e.g., MCL1+PARP or MCL1+SHP2) may be achieved prior to the emergence of 
resistance. We believe that further study of the observations here is warranted and could be 
conducted by orthogonal means to assess the clinical utility of these observations. As the BCL2 
and MCL1 inhibitors are in clinical trials for the treatment of diverse cancers (66, 67), we expect 
this study to help guide the selection of clinically relevant combination therapies to target 
adaptation to apoptotic therapies. 

In conclusion, systems biology and bioinformatics analyses of adaptive responses along 
the therapy timeline may guide the selection of effective combination therapies. Utilization of our 
analytical approach combined with a longitudinal collection of patient molecular profiling data may 
lead to a novel precision medicine paradigm based on “matching combination therapies to 
emerging molecular signatures under therapy stress”. Subsequently, with a broader repertoire of 
precision combination therapies that are matched to emerging signatures, a larger patient 
population may benefit from deeper and more durable responses. 
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ready for TargetScore execution on the website. For rapid testing of the method and software, we 
also provide a partial dataset covering readouts of 100 phospho-proteins in HCC1954 cells 
treated with MCL1 inhibitor for 48h in addition to all the complete datasets.  

METHODS 

TargetScore algorithm 

Data-driven Reference Network Model  

The reference network on which the adaptive responses are quantified, captures the 
signaling interactions between phospho-proteins. In the network models, the nodes represent the 
levels of phospho-proteins. The edges represent the direct associations between the node pairs 
while removing out the effects from confounding variables. The reference network is inferred using 
a data-driven approach with disease or subtype-specific phospho-proteomics data. Based on the 
data, the models are generated with a statistical inference algorithm, termed prior-glasso and 
prior information as described below, and briefly in the results section. The interactions within the 
resulting data-driven model are relevant across the population of samples with shared 
characteristics.  

Data sources for network inference. The model inference benefits from phospho-proteomic 
data covering hundreds of proteomic species across large sample cohorts.  The data covers 
activity markers of key oncogenic signaling molecules as phosphorylation states or total protein 
levels. The samples are under diverse perturbations (e.g., extrinsic perturbations such as drug 
treatment or intrinsic perturbations such as mutations/epigenetic states) that create rich 
information for identifying the molecular associations. Yet, the samples should carry shared 
characteristics (e.g., disease type, stage, existence of a key mutation) to enable modeling relevant 
to a specific biological context. The set of phospho-proteins is selected to interrogate major drivers 
of oncogenic processes and therapeutically actionable targets, leading to biologically relevant 
models (Table S1). The variations and associations of phospho-protein levels that emerge under 
different perturbations serve as the experimental constraints for network inference. Here, RPPA-
based phospho-proteomics data from the TCGA project for breast and ovarian cancers is used 
(43, 39). The utility and reliability of TCGA RPPA data as input for probabilistic graphical models 
to infer signaling networks have been previously reported and validated (36, 68). This previous 
work showed the ability of RPPA datasets to capture biologically relevant associations within 
individual cancer types. Each RPPA dataset includes 224 phospho and total proteins interrogated 
across 901 and 408 breast and ovarian cancer patients, respectively (see Table S1 for protein 
names).  

Reference Network inference with the glasso algorithm. We have previously published a 
review and benchmark comparison of 13 established network inference methods in inferring 
protein-protein interaction networks from RPPA data (36). Therein, we benchmarked in their 
ability to reproduce interactions from the Pathway Commons database of molecular interactions 
as well as computational efficiencies. The benchmarking study also reported the precision and 
recall performances of an array of inference methods. Of our previously benchmarked regularized 
methods, graphical LASSO (glasso) is a method that balances computation speed (allowing scale 
up to larger systems) and performance measures (i.e., accuracy); additionally, glasso provides 
us a relatively simple framework by which prior information about molecular interactions from 
literature can be incorporated.  

Using proteomic data, the Gaussian graphical model algorithm, glasso generates a partial 
correlation-based network (37). For this purpose, the algorithm estimates a sparse inverse of the 
covariance matrix, termed the precision matrix (𝛩= 𝛴$%), using an L1 penalty. The precision (i.e., 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439861doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439861
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

inverse covariance) matrix is an estimate through maximization of the log-likelihood function by 
applying the L1 penalty; 

 

 𝛩 = 𝑎𝑟𝑔𝑚𝑎𝑥,(𝑙𝑜𝑔 (	𝑑𝑒𝑡𝛩) 	− 𝑡𝑟(𝑆𝛩) − 𝜌 ∗ ||𝛩||%) 
 

(1) 

where S is the empirical covariance matrix and 𝜌	is the weight of the complexity term.  

Next, the precision matrix is converted to an undirected partial correlation network in which 
each interaction represents the direct associations between node pairs with no confounding 
contributions from other nodes. The edge strength (𝑊;<) is the degree of partial correlation 
between node i and node j, and is estimated from the precision matrix using the equation 

 

 𝑊;< =	− 𝜃;<>𝜃;;𝜃<<  
(2) 

 

where 𝜃;<	are elements of the estimated precision matrix 𝛩? and 𝜃;; 	represents the auto-
correlations (diagonal elements of the precision matrix). The resulting edge set with real-valued 
association (edge) strengths defines the reference network. The network models for breast and 
ovarian cancers are available in Tables S4 and S5 in a simple interaction format (SIF).  

Prior-glasso algorithm. We have developed a modified version of the glasso algorithm, termed 
prior-glasso. The prior-glasso integrates experimental constraints with prior information from 
signaling databases as represented in the signedPC data source. This prior information is 
incorporated into the inference with a probabilistic term. The scheme favors prior interactions that 
conform to the experimental data, eliminates priors that do not conform with data, and predicts 
additional interactions that are not in databases but dictated solely by the experimental data. In 
order to enable comprehensive adaptive response quantification in subsequent steps, the 
proteins that are not covered by the patient RPPA (used for network building) but measured within 
the drug response data (used for TargetScore calculation) are also included solely based on prior 
information. The prior information narrows the potential solutions to a biologically more relevant 
domain of the search space by favoring the models that are enriched with known biology among 
solutions with similar errors. The signaling prior is represented with the information matrix 𝜆 which 
is a symmetric adjacency matrix of interactions with the entries 

 𝜆;< = 0, ∀	𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑖	&	𝑗	𝑑𝑜𝑒𝑠	𝑛𝑜𝑡	𝑒𝑥𝑖𝑠𝑡	𝑖𝑛	𝑡ℎ𝑒	𝑝𝑟𝑖𝑜𝑟	𝑠𝑒𝑡 
                             (3) 𝜆;< = 𝜆<; = 	1, ∀	𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑖	&	𝑗		𝑒𝑥𝑖𝑠𝑡𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑝𝑟𝑖𝑜𝑟	𝑠𝑒𝑡		 
 

The prior information is integrated into the Gaussian graphical model as an additional term that 
modifies the log-likelihood equation in the form of (𝜅 ∗ 𝜆P∗P)||𝛩||% to the Equation 1. The precision 
matrix 𝛩 is then estimated through the maximization of the modified log-likelihood function as in 
the glasso algorithm; 
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 𝛩 = 𝑎𝑟𝑔𝑚𝑎𝑥,(	𝑙𝑜𝑔	(𝑑𝑒𝑡𝛩) 	− 𝑡𝑟(𝑆𝛩) − (𝜌 ∗ 𝐼P∗P − 𝜅 ∗ 𝜆P∗P)||𝛩||%) 
 

 (4) 

, where 𝐼 is the identity matrix with dimension P*P, ρ is the weight of the penalty parameter for 
complexity and κ serves as a scalar parameter for the contribution of the prior information matrix, 
P is the number of variables in the system. Here the parameters ρ and κ are tuned through a two-
dimensional Bayesian information criterion (BIC) grid search. In BIC, the paired values of ρ and κ 
are explored to search for a parameter set with the smallest (i.e., more preferable) BIC (72)  

 

 𝐵𝐼𝐶 = 𝑘 ∗ ln	(𝑛) − 2(𝑎𝑟𝑔𝑚𝑎𝑥,{log	(𝑑𝑒𝑡𝛩) − 𝑡𝑟(𝑆𝛩) − (ρ ∗ 𝐼P∗P − κ ∗ 𝜆P∗P)||𝛩||}) 
 

(5) 

, where n stands for the sample size of the data, k stands for the number of non-zero elements in 
the estimated precision matrix. BIC is calculated for every parameter combination through varying 
ρ and κ, ranging from 0 to 1 with step sizes of 0.02 in log10 space {10-2, 10-1.98, …, 10-0.02, 100}. 
Optimized parameters (ρ, κ) were chosen at the lowest BIC value. 

Edge directionality. Directions of the inferred edges are extracted from the signedPC pathway 
source. The edge direction is inferred into the reference network with an indicator function, 1]^𝜆;<_ 
such that (1]^𝜆;<_ = 0	𝑜𝑟	1) based on the prior network in SignedPC. The below formulation leads 
to a partially directed network.  

 		𝜆′;< = 0,									∀	𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑖	&	𝑗	𝑑𝑜𝑒𝑠	𝑛𝑜𝑡	𝑒𝑥𝑖𝑠𝑡	𝑖𝑛	𝑡ℎ𝑒	𝑝𝑟𝑖𝑜𝑟	𝑠𝑒𝑡 𝜆′;< = 1,										∀		𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑓𝑟𝑜𝑚	𝑗	𝑡𝑜	𝑖		𝑒𝑥𝑖𝑠𝑡𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑝𝑟𝑖𝑜𝑟	𝑠𝑒𝑡																		 
(6) 1]^𝜆’;<_ = 	1	𝑤ℎ𝑒𝑛	𝜆’;< = 𝜆’<; = 0	 

	1]^𝜆’;<_ = 	1	𝑤ℎ𝑒𝑛	𝜆’;< = 𝜆’<; = 1	 
1]^𝜆’;<_ = 	0	𝑤ℎ𝑒𝑛	𝜆’;< = 1	𝑎𝑛𝑑	𝜆’<; = 0 

  𝑊<; = 1]^𝜆;<‘_ · 𝑊;< 
  

 

The l’ij represents the directional prior information from the signedPC resource (44). Equation 6 
introduces the directions based on the prior information network and those interactions that are 
not covered in signedPC (data-driven interactions) remain bidirectional. 

Network model robustness. To evaluate the robustness of the data-driven networks, we devised 
a bootstrapping scheme that involves the comparison of models inferred with partial vs. complete 
datasets. The models from partial data are generated using 1000 bootstraps (randomly sampling 
the partial data) with 50%, 60%, 70%, 80%, and 90% of the data. The similarity between the 
models from complete vs. partial data quantifies the robustness score. To measure the similarity, 
the partial correlation network is transformed into a binary network where edges have the values {𝑒};< = {−1,0,1}	such that -1 and +1 indicate presence whereas 0 indicates lack of interaction. The 
eij is the binary value of the edges between nodes i and j and it is assigned with a step function. 
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𝑒;< = f1																																	𝑖𝑓	𝑊;< ≥ 0.10																			𝑖𝑓	0.1 > 𝑊;< > −0.1−1																											𝑖𝑓	𝑊;< ≤ −0.1	   (7) 

 

The sign represents the up (positive) vs. down (negative) regulation of the downstream node by 
the upstream. The weak edges with values that are close to 0 (|Wij|<0.1) are deleted from the 
model. Finally, the degree of robustness is quantified with a score that captures the overlap 
between the edges predicted by the partial data and edges predicted by the complete data.  

 

𝑂;< = l1, 																				^𝑒mnop;nq_;< = ^𝑒rstmqupu_;<	𝑎𝑛𝑑	^𝑒mnop;nq_;< ≠ 00, 																			^𝑒mnop;nq_;< ≠ ^𝑒rstmqupu_;<	𝑜𝑟				^𝑒mnop;nq_;< = 0 	 
(8) 

Robustness	Score =� 𝑂;<;,<𝑁u��u�  

  

 

 

 

, where, Oij quantifies whether the non-zero edges between nodes i and j overlap with each in the 
models from complete vs. partial data. The (epartial)ij is the binary value of the edge between nodes 
i and j in the model generated with the partial data. Similarly, (ecomplete)ij is the edge value in the 
model generated with the complete data. Nedges is the number of edges in the model from the 
complete data. The sum of Oij over all edges quantifies the total overlap. The ratio of the overlap 
between models to the total number of edges quantifies network robustness. 

Reference network inference accuracy. We evaluate the model accuracy for both glasso and 
prior-glasso with 5-fold cross-validation. The cross-validation (CV) error is calculated based on 
the BIC with the log-likelihood evaluated. In the BIC, the precision matrix originates from the 
training set (80% coverage) and the empirical covariance from the validation set (20% coverage).  

 𝐶𝑉uoosot = 𝑛2 ^(𝑠𝑢𝑚(𝛩?pon;�;�� ∘ 𝑆�nq;�np;s�)	− 𝑙𝑜𝑔𝑑𝑒𝑡(𝛩?pon;�;��))_ + 𝑘 ⋅ log	(𝑛2)   

(9) 

 

𝐶𝑉uooso = 1𝑀 � 𝐶𝑉uoosot�
t�%  

 

Θtraining is the estimated precision matrix from the training model, Svalidation is the empirical 
covariance matrix generated from the validation data, n is the number of observations, k is the 
non-zero parameters estimated, m is the bootstrapping index. The training and validation set 
populations are generated with 500 bootstraps (M=500) from complete data without polluting the 
two sets with each other in individual bootstrapping steps. To quantify the model accuracy, the 
error is calculated for each bootstrapped training and validation data. 
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TargetScore calculation 

TargetScore quantifies the collective adaptive pathway responses to a perturbation for each 
proteomic entity on the reference network. The TargetScore calculation requires at least a 
phospho-proteomic profile from a single sample under one perturbation condition as well as the 
unperturbed control condition.  TargetScore is calculated as the sum of the response from each 
phospho-protein level and its pathway neighborhood. The calculation combines the cell type-
specific drug response data with the pathway neighborhood information as encoded in the 
reference network model. The mathematical formulation of TargetScore is 

 

 𝑇𝑆;� = 𝑓𝑠; �𝛥𝑥;�𝜎��� +�2$(m$%) 𝛥𝑥<�𝜎���𝑊;<< � 

 

(10) 

 

 𝛥𝑥; = 𝑙𝑜𝑔2	 �𝑥;m𝑥;��	 
 𝑓𝑠; = {1, 𝑖𝑓	𝑜𝑛𝑐𝑜𝑔𝑒𝑛𝑒;	 																													0, 𝑖𝑓	𝑑𝑢𝑎𝑙	𝑜𝑟	𝑢𝑛𝑘𝑛𝑜𝑤𝑛	;	 																											−1, 𝑖𝑓	𝑡𝑢𝑚𝑜𝑟	𝑠𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑜𝑟}	 

 

            

 

 

 

 

 

 

, where 𝑓𝑠; represents the function score, Δxi is the proteomic response, which is log normalized 
with respect to the matching readout from the unperturbed conditions. σi is the standard deviation 
of Δxi over all samples for each protein entity across all conditions (e.g., culturing conditions, time 
points, drug doses). The optional step involving normalization of readouts with respect to the 
standard deviation enables the algorithm to scale the readouts to a comparable dynamic range 
for each antibody and cross-sample comparisons. Node j is a node in the pathway neighborhood 
of node i, with readout Δxj and standard deviation, σj. p is the pathway distance between the 
nodes i and j. The term 2(p-1) ensures the dissipation of pathway influences from high order 
pathway neighborhoods. Note that, Pmax is set to 1 (limiting the calculations to the first 
neighborhood of interactions) in the current implementation but it can be adjusted as needed. Wij 
represents the signaling interaction between nodes i and j as inferred within the reference 
network. The extremely weak partial correlations corresponding to {-0.05 < Wij < 0.05} are 
removed to reduce noise and {Wij} are normalized with respect to the maximum absolute value of 
Wij to ensure resulting {Wij} is in [-1,1] boundary. The removal of the edges with very weak Wij 
enables TargetScore calculations with a more interpretable reference network and minimal impact 
on the outcome. The cumulative TargetScore over all doses (ds) is formulated as  

 𝑇𝑆; = � 𝑇𝑆;��𝑑(𝑑𝑠)tn��s�u
�� ≅ � 𝑇𝑆;��tn��s�u

��  

 

 

(11) 

TSi gives the cumulative TargetScore across all doses yet a dose-dependent TargetScore can 
also be analyzed.  
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Function Score. The optional parameter, function score, which annotates the oncogenic and 
tumor suppressor roles, is assigned to each of the proteomic entities measured within the RPPA 
platform. The oncogenic role for each measured entity is extracted from the COSMIC (version 89) 
(69). The resulting function scores were refined with literature-based, manual curation. A 
functional score of +1 is assigned to proteomic entities representing total level and activating 
phosphorylation of oncogenes or deactivating phosphorylation of tumor suppressors. Similarly, a 
functional score of (-1) is assigned to total levels and activating phosphorylation of tumor 
suppressors and inhibitory phosphorylation of oncogenic proteins. The activating vs inhibitory 
roles of phosphorylation are assigned based on information on the Phosphosite database or 
manual curation (70). The function scores are available at 
https://github.com/korkutlab/targetscore as part of the TargetScore package and in Table S3.  

Statistical assessment of TargetScore. A potential caveat in the TargetScore calculations is 
the bias introduced by the hyper-connected hub nodes. Such hyper-connectivity can lead to 
artificially high TargetScores solely driven by the network topology and independent of the 
context-specific drug response data. To eliminate the connectivity bias, we assess the 
significance of TargetScore for each proteomic entity. For this purpose, the probability of 
observing a TargetScore is calculated over a fixed reference network structure and randomized 
drug response data (randomized protein labels). The randomized data is generated by sampling 
from the proteomic responses across all conditions for each antibody and assigning random 
labels to sampled data. Based on calculations with 1000 randomly bootstrapped data sets, the 
null distribution of TargetScores for a given network topology is calculated. Next, the FDR-
adjusted q- value is calculated for the TSi for each node (i) based on the Benjamini-Hochberg  
method. Adaptive responses with high TargetScore values and low q-value are nominated for 
further analysis. 

TargetScore module rank and candidate selection. To identify adaptive response modules 
and mechanisms of action modules, we map the top 10% of proteins with the highest TargetScore 
values to the underlying reference networks and detect the highly scored multi-molecule modules. 
Subnetworks with high TargetScore values are identified as adaptive resistant responses 
modules while the subnetworks with the lowest TargetScores are nominated as potentially 
associated with mechanisms of action. Potential adaptive resistance pathways (or modules) are 
detected through differential analysis of TargetScores for each protein in drug-resistant versus 
sensitive samples. The comparison can be made by one-to-one analysis of sensitive and resistant 
samples or with a t-test between resistant and sensitive populations when a sufficient number of 
samples exists.  

Experimental Methods 

Reagents, cell lines, cell cultures 

MCL1 inhibitor-S63845 was purchased from MedChemExpress. BCL2 inhibitor (ABT199), SHP2 
inhibitor (SHP099) and PARP inhibitor (AZD2281) were purchased from Sellekchem. The 
compounds were prepared as stock solutions in DMSO. The drugs were stored at -20°C and 
diluted immediately before use. HCC1954 and SKOV3 cell lines were from the MD Anderson 
Cancer Center cell line repository and had no more than 10 passages.  The cells were thawed 
and cultured in RPMI 1640 supplemented with 10% FBS two weeks before experiments. The cells 
were cultured at 37°C in a humidified atmosphere with 5% CO2. 

Cell proliferation assays. 

Cell proliferation was measured according to the instructions of the PrestoBlue Cell Viability Assay 
kit (A13261, Life Technologies). 2×103 cells were seeded triplicate into 96-well plates for culturing 
overnight. The next day, cells were treated with either vehicle or kinase inhibitors.72 hours later, 
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cells were collected and measured with a SYNERGY H1 microplate reader and analyzed using 
the Gen5 software (BioTek). 

Induction of MCL1 and BCL2 inhibitor-resistance in HCC1954 cells 

HCC1954 cells were thawed and passaged two times in a medium of RPMI 1640 supplemented 
with 10% FBS. The cells were seeded into 10 cm culture plates and changed fresh medium plus 
MCL1 and BCL2 inhibitors of increasing concentrations (from 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 
2.5, 3.0, 3.5, 4.0 µm of inhibitors). Incubating for ~4 months under inhibitor stress, cells were 
diluted and seeded in new 10 cm culture plates. Cells were continued to culture in the medium 
plus MCL1 and BCL2 inhibitors for colony formation in the long term. The single colonies were 
picked and cultured in fresh medium. Both the mixture and the single colonies were collected and 
frozen down at liquid nitrogen. 

RPPA (Reverse Phase Protein Array) 

The cells were washed 3 times with cold PBS and then suspended in an RPPA buffer 
supplemented with proteinase and phosphatase inhibitors (Pierce, Rockford, IL, USA). The cell 
suspension was vortexed for 15 seconds, placed on an end-over-end rotator for 30 min at 4°C 
and centrifuged at 14,000 x g for 15 min at 4°C. The lysates were prepared to provide 1-1.5mg/ml 
of total protein lysate. RPPA analysis samples were prepared by adding SDS Sample Buffer, b-
mercaptoethanol and RPPA Working Solution to obtain a final concentration of 0.5mg/ml. 
Samples were heated for 8 min at 100°C, centrifuged 2 min at 14,000 x g and stored at -80°C. 
The RPPA was performed at the MD Anderson Cancer Center Functional Proteomics core facility. 

Growth rate and drug synergy calculations 

GR estimates the growth rate inhibition using endpoint or time-course assays by eliminating the 
confounding impact of doubling times in cell viability measurements (40). The GR value is the 
ratio between growth rates for the treated and untreated conditions normalized to number of cell 
divisions. A GR value greater than 1 indicates increased growth, values between 0 to 1 indicates 
cytostatic effects whereas GR < 0 indicates cytotoxicity. The GR metric is quantified as: 

  

𝐺𝑅(𝑐) = 	2
qs� ¡�¢�£¤qs� ¡�¢¥¦§�£ ¤ − 1 

 𝑥¨ =	𝑥rpoq ∗ 2$©/©« 

 

 

 

 

(13) 

T: The duration of the assay, c: drug concentration, Td: doubling time, xc: cell count at time t, xctrl: 
control sample cell count, x0: the cell counts from a sample with no drug treatment grown in parallel 
and measured just before drug exposure. The x0 can be estimated from the previously measured 
(or literature extracted) Td.  
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