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Glioblastoma (GBM) is the most common and fatal type of primary brain tumor. Gliosarcoma 
(GSM) is a rarer and more aggressive variant of GBM that has recently been considered a 
potentially different disease. Current clinical treatment for both GBM and GSM includes 
maximal surgical resection followed by post-operative radiotherapy and concomitant 
and adjuvant chemotherapy. Despite recent advances in treating other solid tumors, 
treatment for GBM and GSM still remains palliative, with a very poor prognosis and a 
median survival rate of 12–15 months. Treatment failure is a result of a number of causes, 
including resistance to radiotherapy and chemotherapy. Recent research has applied the 
cancer stem cells theory of carcinogenesis to these tumors, suggesting the existence of 
a small subpopulation of glioma stem-like cells (GSCs) within these tumors. GSCs are 
thought to contribute to tumor progression, treatment resistance, and tumor recapitulation 
post-treatment and have become the focus of novel therapy strategies. Their isolation and 
investigation suggest that GSCs share critical signaling pathways with normal embryonic 
and somatic stem cells, but with distinct alterations. Research must focus on identifying 
these variations as they may present novel therapeutic targets. Targeting pluripotency 
transcription factors, SOX2, OCT4, and Nanog homeobox, demonstrates promising 
therapeutic potential that if applied in isolation or together with current treatments may 
improve overall survival, reduce tumor relapse, and achieve a cure for these patients.

Keywords: glioblastoma, gliosarcoma, octamer-binding transcription factor 4, SRY (sex determining  
region Y)-box 2, Nanog homeobox, pluripotency genes, glioma stem cells

introduction

Glioblastoma (GBM) is the most common and fatal type of primary brain tumor, with approximately 
10,000 new adult cases per annum in the United States of America (1). It comprises 70% of all gliomas 
and is categorized as grade IV glioma. Gliosarcoma (GSM) is a rarer and more aggressive variant of 
GBM and comprises 1.8–2.8% of grade IV gliomas (2). Both GBM and GSM tumors grow quickly and 
are heterogeneous, composed of transformed glial cells. In addition, GSM contains a mesenchymal 
component within the glial component, which is thought to contribute to the increased heterogeneity 
and invasiveness of GSM. In line with these tumor characteristics, GSM is associated with a lower 
proportion of long-term survivors compared to the general pool of GBM patients (3, 4).

The absence of effective treatments for GBM and GSM, their invasiveness as well as their increasing 
incidence have sparked renewed interest in these tumors and their malignant characteristics (5, 6). A 
study between 2000 and 2008 presented an increasing incidence of grade IV gliomas from 3.22 to 3.96 
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cases per 100,000 people per year (6). Unfortunately, this is not the 
only concern about these tumors. Despite recent advances in treat-
ing solid tumors, treatments for grade IV gliomas remain palliative 
and do little to alter the very poor prognosis from this disease (7). 
Even the most aggressive surgical resections, although they debulk 
a large proportion of the tumor, always leave some residual that 
infiltrates surrounding brain tissue and recapitulates the tumor 
(5). GBM and GSM also display resistance to radiotherapy and 
chemotherapy, and often the recurrent tumors are more aggressive 
(4, 8). Prognosis for GBM and GSM patients is very poor, with 
a median survival of 12–15  months (9). These unsatisfactory 
outcomes stress the urgent need for the identification of novel 
therapeutic targets.

The recapitulation of the tumor after aggressive surgical 
resection and at times complete radiological responses following 
chemoradiotherapy suggests the presence and proliferation of 
cancer stem-like cells (CSCs) post-treatment (10). These have been 
identified in grade IV gliomas and are termed glioma stem-like 
cells (GSCs) (11). Recent studies are implicating pluripotency 
genes, normally expressed in self-renewing embryonic stem cells 
(ESCs) and in some types of plastic somatic cells (12, 13), in the 
pathology of GSCs, their origin, and persistency post-treatment. 
These genes may offer new promising therapeutic targets for this 
disease, with the aim to not only improve overall survival and 
achieve longer remission but also reduce the rate of tumor relapse, 
and potentially give rise to a cure for these devastating cancers.

Glioblastoma and its Subtypes

The Cancer Genome Atlas (TCGA) Research Network (2008) has 
generated an extensive catalog portraying the genomic charac-
teristics of GBM. In addition, many groups have conducted high 
dimensional profiling studies in an attempt to understand the 
molecular mechanisms that drive tumorigenesis in GBM. These 
efforts have lead to the identification of several GBM tumor sub-
types (14), of which the main subtypes are the classical, proneural, 
neural, and mesenchymal (14, 15).

The classical subtype displays mutations that create gene ampli-
fication and gene loss (14). In all classical subtypes screened, there 
was a loss of chromosome 10 and an amplification of chromosome 
7, which is also seen in other GBM tumor subtypes. However, high 
levels of epidermal growth factor (EGFR) mutations are observed 
mainly in classical tumors, whereas they are rarely seen in other 
GBM subtypes (14). Classical tumors are also characterized by 
lack of tumor suppressor TP53 mutation, whereas the majority 
of proneural tumors exhibit TP53 mutation (15). In addition, the 
proneural subtype has two distinct features, namely alterations in 
platelet-derived growth factor receptor A (PDGFRA) and point 
mutation in IDH1 (14). GBM tumors categorized as neural present 
expression of NEFL, GABRA1, SYT1, and SLC12A5, all of which 
are neuronal markers. On the other hand, mutations in neurofi-
bromatosis type 1 (NF1) are characteristic of the mesenchymal 
category of GBM tumors (14). These different tumor subtypes 
may convey differing prognosis and response to treatments, which 
still remain unknown, yet reflect the heterogeneity of GBM (14).

Gliosarcoma, a morphological variant of GBM, also con-
veys a mesenchymal phenotype (3), associating GSM with the 

mesenchymal subtype of GBM (16). Expression of lineage-specific 
markers and morphological appearance suggests that the mesen-
chymal component is enriched for GSM allowing differentiation 
along multiple lineages including smooth and skeletal muscle (3, 
17). These characteristics point toward a multilineage potential of 
GSCs in GSM. DNA profiling of GSM has revealed similar genetic 
profile to GBM, with mutations in tumor suppressors TP53 and 
phosphatase and tensin homolog (PTEN). However, GSM is 
known to lack EGFR amplification, which is observed in some 
GBM tumors, especially the classical subtype (18). Reportedly, the 
pathology of GSM has been very little studied despite the worse 
prognosis of these patients (19).

Current Glioblastoma Treatments

For many decades, post-operative radiotherapy was the only 
adjuvant therapy offered to patients diagnosed with grade IV 
gliomas (20). However, the addition of radiation treatment 
provided an overall survival benefit, but still with no long-term 
survivors (20). More recently, Stupp et al. (7) compared radio-
therapy alone against radiotherapy with concomitant and adjuvant 
temozolomide (TMZ). The addition of TMZ, an oral alkylating 
agent, demonstrated anti-cancer activity and improved survival 
from 12.1 to 14.6 months. Most importantly, the proportion of 
5-year survivors increased from around 2% to around 10% (9). In 
summary, the median survival after maximal surgical resection, 
combination of radiotherapy and concomitant chemotherapy, 
and also adjuvant chemotherapy is only 12–15  months, with 
a very small 10% of patients achieving long-term survival (9). 
Importantly, GSM patients are treated the same as the general GBM 
patients, although both molecular and phenotypic data suggest 
that GSM is an altogether different disease (17). However, due 
to the lack of additional encouraging data on other treatments, 
currently both GBM and GSM patients undergo maximal surgical 
resection followed by radiotherapy with concomitant and adjuvant 
chemotherapy with TMZ (9).

Temozolomide is not effective in all patients (21). TMZ is a 
lipophilic pro-drug able to penetrate the blood–brain barrier. 
Its metabolite, MTIC, has alkylating properties and deposits 
methyl groups to guanine bases of DNA. This creates nicks in 
the DNA strand causing cell cycle arrest between G2 and mitotic 
phase. Damage to DNA becomes overwhelming for the cell 
that leads to cellular apoptosis (22). The DNA repair enzyme 
O6-methylguanine-DNA methyltransferase (MGMT) is able to 
reverse the effects of TMZ by removing alkyl groups from the O6 
position of guanine (23). Therefore, high levels of MGMT activ-
ity in cancers have been related to treatment failure of alkylating 
agents (23). Epigenetic silencing of MGMT through promoter 
methylation causes a loss in MGMT expression and prevents DNA 
repair (24). These findings suggested that MGMT could possibly 
be a predictive marker for chemotherapy with alkylating agents. 
Hegi et al. (21) validated this demonstrating that GBM patients 
with methylated MGMT promoter benefited from TMZ, whereas 
those with unmethylated MGMT promoters did not benefit from 
the treatment. Nevertheless, in the absence of other beneficial 
treatments in the unmethylated population and with evidence that 
a small proportion of patients with unmethylated MGMT do in 
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fact benefit, all patients currently receive TMZ, and the presence 
of MGMT methylation does not currently determine treatment 
selection. However, there is an urgent need for new treatments for 
the unmethylated population.

Recurrent GBM can be different from the original tumor. TMZ 
is currently the standard treatment for newly diagnosed GBM, 
but there is no clear standard care for recurrent GBM. A char-
acteristic of the recurrent tumors is high expression of vascular 
endothelial growth factor (VEGF), which has been associated 
with poor prognosis as it promotes angiogenesis and tumor 
growth (25). Phase II trials have been conducted in patients with 
recurrent GBM testing a combination of bevacizumab, a human-
ized immunoglobulin G1 monoclonal antibody for VEGF, and 
irinotecan, a topoisomerase 1 inhibitor (26, 27). The trials resulted 
in a median survival of approximately 7–9 months after treat-
ment with bevacizumab and irinotecan (26, 27). Furthermore, 
immediate treatment with bevacizumab after surgery did not 
result in a survival benefit (28, 29). As there is no cure for grade 
IV gliomas, relapse occurs essentially in all patients. Recurrent 
GBM is also more likely to develop into its more aggressive variant 
GSM, which is characterized by shorter survival rate and at times 
can metastasize extracranially (8).

Collectively, it must be emphasized that current treatments 
for grade IV gliomas are only palliative and have shown limited 
survival benefits producing very poor prognosis and reinforcing 
the urgent need for the identification of novel therapeutic targets 
that will augment current therapies. A major explanation for the 
lack of effective treatments is the poor understanding of the cel-
lular and molecular mechanisms governing tumor growth and 
recurrence. Focus of recent research has pointed toward CSCs.

Cancer Stem-Like Cells

Cancer stem-like cells have recently become a main focus in cancer 
research. According to Clarke et al. (30), a CSC is a cancer cell 
able to self-renew and to differentiate into different cell lineages 
that contribute to the heterogeneity and the resulting complexity 
of tumors. The clonal evolution model suggests that self-renewal 
capabilities randomly occur (31). However, the CSCs hypothesis 
portrays a hierarchical structure in which stem-like cells are 
favored (32). CSCs are also known to be resistant to radiotherapy 
and chemotherapy and have the ability to remain quiescent (33); 
therefore, their persistence results in tumor redevelopment. 
Anti-cancer therapies may also switch the cellular hierarchy of 
the tumor toward CSCs (19, 34). This implies that CSCs could 
be the cause of the poor prognosis, treatment failure, and disease 
relapse associated with many solid tumors.

There has been intense discussion concerning the origin of 
CSCs. CSCs could derive from cancer cells that have been hierar-
chically downstream to give undifferentiated CSCs. Furthermore, 
cancer arises from the accumulation of mutations, thus CSCs 
may also originate from normal stem or progenitor cells. There 
is substantial evidence toward the connection between normal 
stem cells and cancer (34) in many tissues and organs. Researchers 
have isolated stem cells from the normal brain, and formed 
neurospheres in culture via the use of serum free media sup-
plemented with cytokines (10). Each neurosphere is speculated 

to arise from a single stem cell (10) demonstrating their potential 
for self-renewal. Efforts have also been made to isolate CSCs from 
grade IV gliomas (11). GBM and GSM cells have been grown on 
non-adherent surfaces to form tumorspheres (35). Each sphere 
is thought to originate from a single CSC, similar to the normal 
neurospheres originating from a single neural stem cell (35). 
There are a number of examples illustrating the stem cell theory 
of carcinogenesis. Evidence has indicated that leukemia originates 
from leukemic stem-like cells (LSCs). (36). Furthermore, Al-Hajj 
et al. (37) demonstrated that a small minority of cells within breast 
cancer express CD44 and CD24 surface markers, which distin-
guish and isolate tumor-initiating cells from non-tumorigenic 
cells (37). CSCs have also been found in human ovarian cancers 
(38). The identification and isolation of CSCs from solid human 
brain tumors (10), leukemia (36), ovarian cancer (38), and breast 
cancer (37) have been achieved and provide a unique opportunity 
for exploring the tumor-initiating and -maintaining abilities of 
CSCs.

Cancer Stem-Like Cells in Brain Tumors

The brain contains neural stem/progenitor cells, and the possibil-
ity has been suggested that aggressive gliomas occur by mutations 
of these cells (Figure 1B). Previous studies have supported this 
by showing that GBM contains tumor cells comparable in some 
ways to normal neural stem cells (39). Normal neural stem 
cells express CD133 (also called Prominin 1, PROM1) (40), a 
cell surface glycoprotein, the function of which is still poorly 
understood. CSCs from human gliomas may also express CD133 
(40). Further investigations showed that within a tumor, there is 
a population of cells that are either CD133+ or CD133−, with 
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FiGURe 1 | Proposed representations of the development of glioma 
stem cells. (A) Aberrant overexpression of pluripotent transcription factors, 
SOX2, OCT4, and NANOG, promote multilineage potential in glioma stem 
cells. Aberrant overexpression of pluripotent transcription factors activates 
stem cell networks while deactivating differentiation pathways. This promotes 
the formation of self-renewing glioma stem cells with multilineage potential. 
(B) Multilineage neural stem cells express SOX2, OCT4, and NANOG. 
Oncogenic mutations may cause aberrant expression of pluripotent 
transcription factors resulting to multilineage glioma stem cells.
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the former being able to recapitulate the tumor (10). The link 
between Phillips et  al. (15) and Verhaak et  al. (14) molecular 
subtype of GBM and GSCs is not established, but analysis has 
presented that the mesenchymal and neural subtypes demon-
strates strong signatures of CD133 expression (41). In vitro and 
in vivo studies conveyed that GSCs from mesenchymal subtypes 
were more aggressive, invasive, and more resistant to treatment 
than classical and neural subtypes (42), suggestive of a correlation 
with CD133 expression. However, later investigations showed 
that subpopulations within the CD133− population could also 
generate tumors (43). Interestingly, neurospheres and serum 
cultures of GSM lacked CD133 expression (3), presenting the 
controversy of the CSC theory as no markers for CSCs have been 
established (19). Collectively, these data emphasize the existence 
of a cellular hierarchy including plastic, undifferentiated CSCs 
in solid brain tumors (10, 11). Both CD133+ and CD133− cell 
populations have been shown to lack expression of neural dif-
ferentiation markers suggesting mutagenic transformation from 
neural stem cells and derivation of cells of multiple differentiation 
states within a tumor (10).

Campos et al. (44) applied a neural colony-forming assay to 
GBM cell lines to examine self-renewal and tumor-forming capaci-
ties, and established that GBM cultures displayed low and high clo-
nogenic subpopulations that contribute to aberrant tumor growth 
and tumor recurrence. Culturing of GBM cells under conditions 
permissive for stem cell proliferation generated tumorspheres with 
self-renewing capacities, which is a shared property of neural stem 
cells (11, 44). Again, this hints at the existence of CSCs in gliomas. 
These spheres could produce daughter cells that displayed the 
phenotypes present in GBM (11). Similarly, GSM cells placed in 
neurosphere promoting media were able to form tumorspheres, 
which were transplanted into mice and consequently generated 
large necrotic tumors (3). Reiterating, the proposed existence of 
CSCs in glioma, but very little research has explored the GSCs 
population in GSM.

Normal neural stem cells are known to exist within several 
brain niches, such as the vascular niche (45). Evidence also 
implicates that CSCs within brain tumors are harbored and 
maintained within vascular niches (46). Most brain tumors are 
highly vascularized, hence there has been speculation about a 
close relationship between CSCs and blood vessels. Calabrese 
et al. (46) demonstrated that vascular endothelial cells were able 
to maintain the stem-like properties and tumorigenicity of brain 
tumor cells in immunocompromised mice. Vascular endothelial 
cells also release nitric oxide, which has been shown to promote 
self-renewal and maintain CSCs through activation of the Notch 
signaling pathway (47). The stimulation of Notch signaling via 
the vascular niche could possibly aid resistance to radiotherapy 
and chemotherapy (48). Thus, the vascular niche could be a target 
for novel therapies.

As mentioned above and following the CSC theory of car-
cinogenesis, this subpopulation of cancer cells has the capacity 
to self-renew aiding to the maintenance of the tumor (39). 
However, CSCs are quiescent and are cycling slowly (33, 49). 
It is this feature as well as their ability to asymmetrically divide 
that is thought to contribute to their chemo-resistance and 
the recapitulation of the tumor post-treatment, respectively. 

More specifically, GBM have shown to harbor quiescent cells 
that are non-apoptotic (44), resulting in their survival after 
chemotherapy and radiotherapy, both of which target cycling, 
highly proliferative cells (33, 49). In turn, the ability of CSCs 
to divide asymmetrically and give rise to more differenti-
ated daughter cells that are more proliferative is thought to 
facilitate the regrowth of the tumor post-treatment, and it 
also contributes to the heterogeneous phenotype of the tumor 
(Figure 2) (30, 39). This theory has been implicated in relation 
to GBM as quiescent cells triggered tumor regrowth after TMZ 
treatment (50). These characteristics perfectly describe the 
malignant nature of grade IV gliomas, and portray that these 
cells contribute to the aggressiveness, tumor progression, and 
recurrence. Therefore, to achieve long-lasting remission or a 
cure for GBM and GSM, we need to target GSCs as well as 
the highly proliferative cells. Targeting GSCs should augment 
current clinical treatments.

Treatment Resistance of  
Glioma Stem-Like Cells

The common cause for treatment failure in many malignancies, 
including grade IV gliomas, is tumor resistance to radiotherapy 
and chemotherapy (21, 51, 52). Collective data have established 
that CSCs, such as GSCs, are more resistant to conventional 
radiotherapy and chemotherapy than non-CSCs (30). Glioma 
xenografts subjected to radiation were enriched for cells 
expressing CD133, suggesting that radiotherapy enhances the 
GSCs population (51). GSCs possess the ability to activate 
several checkpoint proteins, such as ATM, Rad17, Chk2, and 
Chk1, in response to DNA damage induced by radiation (51). 
Hence, GSCs are able to efficiently repair damaged DNA, allow-
ing better recovery than non-stem tumor cells. Low molecular 
weight inhibitors against Chk1 and Chk2 kinases eliminated 
radio-resistance and sensitized GSCs to radiotherapy, but the 
inhibition of such DNA damage checkpoints in normal stem 

FiGURe 2 | Schematic representation of the cancer stem cell theory 
in glioma tumors, illustrating the effect of current clinical treatments 
on enriching glioma stem cell populations. Current radiotherapy and 
chemotherapies target highly proliferative cells, leaving a small population of 
quiescent cells that over time cause the recapitulation of the tumor.
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cells may lead to oncogenesis and is therefore prohibitive (51). 
Another pathway that demonstrates radio-resistance is the Notch 
signaling pathway. Notch signaling promotes self-renewal and its 
suppression by γ-secretase inhibitor or Notch shRNA promotes 
sensitivity of GSCs to radiation (52).

Beside radio-resistance, GSCs have also shown resistance 
to clinically used chemotherapies. As described above, chemo-
resistance to TMZ occurs in patients with high expression of 
MGMT, a DNA repair gene (21). GSCs also highly express BCPR1, 
a drug resistance gene (53). This further contributes to chemo-
resistance to TMZ (53).

Treatment resistance can also be explained using the CSCs 
hypothesis. As described above, the CSC hypothesis presents a 
hierarchical structure, which favors stem-like cells, such as GSCs 
(32). Radiotherapy and chemotherapies could enhance this 
phenotype by switching the cellular hierarchy toward GSCs (19, 
34). It is known that radiotherapy and chemotherapy target highly 
proliferative cells and are thus ineffective on quiescent, slow-cycling 
GSCs. Moore and Lyle (49) demonstrated that cell lines with low 
clonogenic capacity failed to grow detectable tumors in vivo but 
highly clonogenic cell lines quickly produced large tumors. Thus, 
current clinical treatments enrich the GSCs subpopulation, which 
overtime recapitulates the tumor due to its self-renewal properties 
(33, 44, 49).

Current knowledge has failed to identify a novel thera-
peutic target for grade IV gliomas that will produce better 
prognosis, longer-lasting remission, or a possibility of a cure 
without inflicting harm to normal brain cells and normal neural  
stem cells.

Targeting Glioma Stem-Like Cells

One search avenue for effective therapeutic targets for gliomas has 
focused on exploiting the self-renewal and other critical pathways 
in GSCs, while causing minimal toxicity to normal cells. The CSC 
hypothesis proposes that research must identify critical pathways 
controlling maintenance of CSCs that do not overlap with those 
needed by normal cells (54). Direct targeting of GSCs may improve 
the efficacy of conventional radiotherapy and chemotherapy 
through eliminating residual resistant stem cells. In this context, 
signaling pathways and transcription factors overexpressed or 
specifically activated in GSCs have been investigated in hope for 
a novel therapeutic target.

Notch signaling is one of the many pathways examined. There 
are four different members of the Notch protein family (1–4), all 
of which are transmembrane receptors that mediate short-range 
cellular communication (55). The Notch signaling pathway 
generally acts to promote self-renewal and repress cellular differ-
entiation, and it is therefore essential for the maintenance of stem 
and progenitor cells (55). As mentioned above, inhibiting Notch 
signaling through γ-secretase inhibitor or Notch shRNA reduced 
radio-resistance (52). Blockade of Notch signaling in GSCs has also 
diminished the capability to form tumorspheres (56). Blocking the 
Notch signaling pathway evidently may be a good target for GSCs; 
however, in vivo studies show that cells pretreated with γ-secretase 
inhibitors still developed large xenografts (56). Another signaling 
pathway overexpressed in grade IV gliomas is the signal transducer 

and activator of transcription 3 (STAT3) (57). STAT3 is involved in 
many cellular activities, such as cell growth, division, and apoptosis 
(58). Abnormal expression of STAT3 in GSCs promotes cell growth 
and contributes to immunomodulation (57). Inhibitors that 
induce genetic knockdown of STAT3 interrupt proliferation and 
maintenance of GSCs as well as decreased tumorigenic capabilities 
in vivo (57). However, STAT3 is also vital for the maintenance of 
normal stem cells and is a critical component of normal immune 
responses; therefore, targeting STAT3 will not be specific to tumor 
cells and may cause major side effects (57).

It has also been shown that GBM cells have low expression of 
miR-145, which is associated with poor patient outcome (59). The 
knockdown of miR-145 expression in GSCs leads to increased 
cell proliferation, invasion, and migration, whereas upregulation 
causes the opposite effects (59). Further investigations of the 
mechanisms behind loss of miR-145 expression in GBM revealed a 
negative correlation with ABCG2 (60). ABCG2 is an ATP-binding 
cassette transporter protein known to be overexpressed in GSCs 
(61). Dual-luciferase reporter gene assays showed that ABCG2 
is a target for miR-145 (60). Knockdown of ABCG2 by small 
interfering RNA reduced cell migration and invasion (60). This 
reveals the importance of miR-145 in preventing tumor progres-
sion and potentially proposes that upregulation of miR-145 or 
downregulation of ABCG2 could be possible novel targets for 
grade IV gliomas.

As mentioned above, there is some controversy concerning the 
CSC theory as cell marker or identifiers for GSCs have not been 
established, which limits the isolation and study of GSCs (19). 
The search for novel therapeutic targets may also identify possible 
novel markers or identifiers for the GSCs population, aiding in the 
isolation and understanding of the GSCs population.

Function of Pluripotency Genes in  
Normal Stem Cells and in Glioma

Glioma stem-like cells share important characteristics with 
normal stem cells (12, 39), including key stem cell transcription 
factors that are involved in cell maintenance (Figure  1). Some 
of these transcription factors are sex determining region Y-Box 
(SOX2), octamer-binding transcription factor 4 (OCT4), and 
Nanog homeobox (NANOG), which are critical components in 
maintaining pluripotency in ESCs and somatic stem cells (12, 
19, 62, 63). SOX2, OCT4, and NANOG are known to be highly 
expressed in subpopulations of GSCs, maintaining self-renewal 
and cellular proliferation (64). They are also thought to contribute 
to the multilineage potential and heterogeneity of GSCs (64). SOX2 
expression is very minimal in the adult brain and is only limited 
to stem cells and progenitor cells (65), thus emphasizing the pos-
sibility of SOX2, as a potential therapeutic target for grade IV 
gliomas. The expression of OCT4 and NANOG in normal brain 
tissue is still unclear.

SOX2 is a gene that encodes a transcription factor made of 
317 amino acids (62). SOX2 contains a high mobility group 
(HMG) DNA-binding domain (62). OCT4 is a member of the 
Pit–Oct–Unc (66) transcription family known to interact with 
other transcription factors to activate and repress genes (67). OCT4 
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heterodimerizes to SOX2 and synergistically alters the expression 
of several genes in ESCs (62). NANOG is a homeobox protein, 
which also cooperates with SOX2 and OCT4 (Figure 3) in the 
regulation of genes, vital at the early development of ESCs (68). 
SOX2, OCT4, and NANOG co-occupy the promoter regions of at 
least 353 genes (62). Among these are genes encoding key signaling 
pathways that control pluripotency and self-renewal (62). At the 
same time, they repress genes that promote differentiation (62, 68). 
These transcription factors are also involved in an autoregulatory 
loop controlling their own genes (62). In addition to ESCs, SOX2 
is expressed in neural stem cells and prevents their differentiation 
into neurons (69). It is also expressed in other adult stem cells, such 
as those of the breast, particularly during pregnancy and lactation 
(63). SOX2 is also expressed in stem/progenitor populations in the 
liver, pancreas, and stomach, which are endodermal organs (70).

A mouse model revealed that SOX2 is required for the main-
tenance of CSCs in high-grade oligodendroglioma (71). Mice 
transplanted with SOX2-depleted cells remained tumor-free, 
whereas control animals produced lethal tumors. This highlights 
a potentially important role for SOX2 in brain neoplasm tumo-
rigenicity. In the same study, a subgroup of wild type mice was 
vaccinated with a SOX2 peptide. This SOX2 immunotherapy 
increased survival rates and the combination of peptide with 
TMZ-doubled survival time (71).

Guo et  al. (13) used qRT-PCR and western blotting to 
demonstrate SOX2 expression in gliomas. Western blot analysis 
demonstrated that grade IV gliomas had greater SOX2 mRNA 
expression than grade II gliomas (13). The function of SOX2 has 
also been specifically characterized in GBM tumor-initiating cells 
(64). The silencing of SOX2 in human GBM cells transplanted in 
immunodeficient mice ceased cell proliferation and resulted in loss 
of tumorigenicity (64). Gangemi et al. (64) also confirmed that the 
observed effect was due to SOX2 knockdown.

In addition to SOX2, expression of OCT4, a known partner 
of SOX2 (62), has also been reported in human gliomas, with 
higher grade gliomas showing significantly greater mRNA expres-
sion than low-grade gliomas (72). Immunostaining illustrated the 
localization of OCT4 in the nucleus of tumor cells, with higher 
grade gliomas staining more intensely than low-grade gliomas 
(72). Interestingly, the expression of OCT4 has not been character-
ized in grade IV gliomas.

Nanog homeobox is another transcription factor playing a crucial 
role in the self-renewal and differentiation of ESCs; therefore, it is 
no surprise that NANOG expression has been detected in human 

gliomas (73). Furthermore, a positive correlation between NANOG 
expression and pathological grade was observed (72, 73). Grade III 
and IV glioma tissues presented strong expression and localiza-
tion of NANOG in the nuclei of glioma cells, whereas lower grade 
gliomas displayed low to moderate expression of this gene (73).

Current research demonstrates a positive correlation between 
the expression of SOX2, OCT4, and NANOG and the pathological 
grade of gliomas (73). The aberrant expression of SOX2, OCT4, 
and NANOG may promote self-renewal as well as multilineage 
potential within GSCs (Figure 1A). However, there is a possibility 
that these transcription factors may exhibit a distinct role in indi-
vidual tumors, and the variation among different GBM subtypes 
and in GSM is as yet unexplored. It can also be hypothesized that 
the increased aggressiveness of recurrent GBM and the conver-
sion to GSM that is sometimes seen is due to the enhancement of 
the GSC phenotype post-treatment. Indeed, it has been recently 
showed that expression of OCT4 and NANOG increased after 
anti-EGFR therapy in GBM (74). Thus, further investigation is 
warranted to characterize the expression of SOX2, OCT4, and 
NANOG in grade IV gliomas and examine potential associations 
with patient outcome and tumor aggressiveness. Moreover, inves-
tigations examining the effects of current clinical treatments on 
the expression of these genes in GBM and GSM may elucidate the 
mechanisms of tumor recurrence and treatment failure.

SOX2, OCT4, and NANOG Target 
Therapies in Other Tumors

SOX2 studies in ovarian epithelial lesions revealed that SOX2 
expression increased with malignant potential from benign, 
borderline to malignant ovarian tumors (75). The expression of 
SOX2 within serous ovarian cancer cells induced properties of 
CSCs, such as increased expression of CSC markers, the ability 
to form tumorspheres, their tumor-initiating capacity, and the 
enhanced ability to resist conventional chemotherapies (76), 
characteristics similar to those displayed by gliomas. SOX2 has 
been shown to be a major player in the tumorigenicity of breast 
cancers. The overexpression of SOX2 has been demonstrated in 
43% of basal cell-like triple negative breast carcinoma and 28% 
of all invasive breast carcinoma (77). Stolzenburg et  al. (77) 
engineered zinc-finger-based artificial transcription factors that 
selectively suppressed SOX2 gene expression. This technology 
was tested in breast cancer cell lines and resulted in a significant 
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74–94% downregulation of SOX2 mRNA expression compared to 
an empty vector control. Human breast tumor xenografts grown 
in mice were also treated with these artificial transcription factors 
and produced a significant reduction in tumor size compared to 
non-transduced tumors (77).

Similarly, OCT4 has also been detected in ovarian cancer cell 
lines and tumor patient samples, advancing with tumor grade 
(78). The downregulation of OCT4 via RNA interference caused 
a 60% reduction in cell viability (78). The same trend was observed 
with NANOG mRNA expression, as ovarian cancers expressed sig-
nificantly higher levels than benign cystadenomas (79). NANOG 
expression also defined patient outcomes and poor prognosis, 
while its knockdown reduced cell proliferation, migration, and 
invasion (79).

These studies reinforce the importance of targeting key regula-
tory transcription factors to reduce their proliferative potential and 
facilitate successful treatment of malignancies. It also opens up 
investigations of the use of such and/or similar technologies in other 
types of cancers like GBM and GSM that express these transcription 
factors. With such treatments and brain tumors, the blood–brain 
barrier can implicate a challenge; however, such treatments be 
administered during surgical resection. In relation to GBM and GSM, 
similar techniques for the administration of carmustine, another 
chemotherapy drug, can be used to give these novel therapies.

Conclusion and Outlook

Grade IV gliomas are a difficult cancer to treat and remain incur-
able. Treatment for grade IV gliomas has not seen any major recent 
therapeutic advances, with the most exciting advances providing 
very minor improvements in survival. Recent research has fol-
lowed the CSC theory of carcinogenesis, implicating that grade IV 
gliomas contain GSCs. This small population of GSCs has shown 
powerful capabilities of invasion, therapeutic resistance, and tumor 

recapitulation post-treatment. Therefore, the exploitation of GSCs 
may elude the mechanisms governing treatment resistance and 
tumor recurrence seen in all grade IV glioma patients.

Cancer cures need to eliminate all tumor cells. Targeting GSCs 
within grade IV gliomas may help improve the poor prognosis 
and provide the possibility of a cure. However, GSCs share criti-
cal signaling pathways as normal neural stem cells thus targeting 
GSCs proves to be a difficult task. We have discussed targets and 
pathways, such as Notch and STAT3 (55, 57), which have shown 
promising potential but demonstrated no clinical application as 
they are vital for the function of normal stem cells. Future research 
should focus on identifying molecular regulators and signaling 
pathways that are exclusively unique to GSCs. The amplified 
expression levels of SOX2, OCT4, and NANOG transcription 
factors in grade IV gliomas implicate a possible clinical interven-
tion. SOX2 has previously shown great potential. A breast cancer 
study used zinc-finger-based artificial transcription factors to 
downregulate SOX2 expression, which consequently lead to 
reduction in tumor size (77). Breast cancer cells lines have also 
been treated with another similar technology known as synthetic 
interference peptides (80). Synthetic interference peptides are a 
new technology that specifically targets transcription factors to 
inhibit their aberrant function. These therapeutic strategies can 
be applied to GBM and GSM; however, further investigation is 
required to determine the clinical relevance of these laboratory 
techniques, and the effect of current clinical treatments on GSCs. 
These novel therapies should also augment current clinical treat-
ment to eliminate the tumor as a whole. GBM is a heterogeneous 
disease with tumors varying molecularly and genetically between 
patients, suggesting the use of several targeted therapies. Current 
research has also suggested that GSM is a completely different 
disease to GBM. Thus, further investigation is required to clearly 
define the genetic and phenotypic characteristics of GSM in order 
to develop patient-specific and -effective treatments.
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