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Simple Summary: Breast cancer is the most commonly diagnosed cancer and the second leading
cause of cancer deaths among women globally. Due to its biological heterogeneity, breast cancer
treatment and prognosis are highly variable among patients. In particular, the triple-negative subtype
(TNBC) has a poorer prognosis with a lack of targeted therapies. With this in mind, we sought
to develop a potentially more effective, novel receptor-targeting strategy. This study describes
measuring the expression of the putative biomarker, interleukin-13 receptor (IL-13R)α2, in breast
cancer (including TNBC) and its therapeutic targeting using a novel hybrid cytolytic peptide (Pep-1-
Phor21) approach. We have shown in this manuscript that IL-13Rα2 exhibits potential as a therapeutic
target, particularly for TNBC types of breast cancer. Importantly, drug-induced breast cancer cell
lysis could be enhanced by treatment with epigenetically active anti-cancer compounds, suggesting
that a combination adjuvant therapy of Pep-1-Phor21 with such compounds may be a particularly
productive strategy for TNBC.

Abstract: Highly metastatic breast cancers, such as triple-negative subtypes (TNBC), require the
most effective treatments. Since interleukin-13 receptor (IL-13R)α2 is reportedly over-expressed in
some cancers, we investigated here its expression and the feasibility of therapeutically targeting
this receptor in breast cancer using a novel hybrid cytolytic peptide (Pep-1-Phor21) consisting of
IL-13Rα2-binding (Pep-1) and cytolytic (Phor21) domains. This study demonstrates that particularly
TNBC tissues and cells display the prominent expression of IL-13Rα2. Furthermore, Pep-1-Phor21
induced the rapid necrosis of tumor cells expressing cell-surface IL-13Rα2. Notably, IL-13Rα2
expression was found to be epigenetically regulated in breast cancer cells in that the inhibition of
histone deacetylase (HDAC) or DNA methyltransferase (DNMT) upregulated IL-13Rα2 expression,
thereby sensitizing them to Pep-1-Phor21. IL-13Rα2-negative non-malignant cells were refractory
to these epigenetic effects. Consistent with its cytolytic activity, Pep-1-Phor21 readily destroyed
IL-13Rα2-expressing breast cancer spheroids with HDAC or DNMT inhibition, further enhancing
cytolytic activity. Therefore, the Pep-1-Phor21-mediated targeting of IL-13Rα2 is a potentially novel
therapeutic strategy for TNBC. Given that tumor cells can be selectively sensitized to Pep-1-Phor21
via the epigenetic up-regulation of IL-13Rα2, a combined adjuvant approach involving Pep-1-Phor21
and epigenetic inhibitors may be an effective strategy.

Keywords: IL-13Rα2; TNBC; cytolytic peptide; cytotoxic; adjuvant; epigenetic; cancer therapy

1. Introduction

Breast cancer accounts for one of the commonest forms of malignancy in women and
while advances in treatments have decreased mortality rates for many forms of breast cancer,
highly metastatic types such as triple-negative breast cancer (TNBC) remain a considerable
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therapeutic challenge [1]. In particular, as TNBC-type tumors lack the expression of the
estrogen receptor (ER), the progesterone receptor (PR), and human epidermal growth
factor (EGF) receptor-2 (HER2), current treatments, therefore, consist of adjuvant-type
approaches based on agents that include anthracyclines, taxanes, alkylating agents, and anti-
metabolites [2,3]. However, these approaches lack tumor-specific targeting and produce
considerable side effects and, consequently, TNBC is associated with faster relapse times
and higher mortality rates [4,5]. Moreover, the development of multi-drug resistance, where
(for example) cancer cells over-express intracellular drug-efflux pumps, further reduces the
effectiveness of conventional cytotoxic chemotherapies [6]. Therefore, more selective and
effective targeted therapies for TNBC-type breast cancer are urgently required.

More selective approaches to tumor therapy include targeting receptors that are
upregulated in an oncogenic setting with one putative candidate being the cell-surface
protein, interleukin-13 receptor α2 (IL-13Rα2). Previous studies have shown that IL-13Rα2
is over-expressed in the latter stages of breast cancer, where increased expression levels
correlate with higher rates of metastasis and a poorer prognosis [7,8]. Further, IL-13Rα2,
which is also called cancer/testis antigen (CT)19, has insignificant expression in normal
tissues [9,10]. Initially, IL-13Rα2 was characterized as a decoy receptor, where it binds with
high affinity to its natural cytokine ligand, IL-13 [11,12]. However, recent studies have
shown a more complex signaling function for IL-13Rα2 in brain tumor progression [12].
Although the functional significance of IL-13Rα2 expression on tumor cells remains largely
undefined, under certain circumstances, IL-13Rα2 signaling can mediate a variety of cellular
and tissue responses that may impact tumorigenesis [13]. Nevertheless, various IL-13Rα2-
targeting strategies involving cytotoxic therapeutics have been developed [14]. For example,
IL-13 conjugated with Pseudomonas exotoxin subunits (IL-13-PE) has been developed for
glioblastoma therapy [15]. However, treatment-induced neurotoxicity associated with the
internalization of IL-13-PE [16,17] produced off-target tissue damage, attributed to the
ability of IL-13-PE to bind to the alternative physiological receptor for IL-13, namely the
IL-13Rα1/IL-4Rα heterodimer [18]. Therefore, in pursuing a strategy of targeting IL-13Rα2-
expressing tumors, candidate drugs must display appropriate specificity and selectivity.
Furthermore, IL-13Rα2 expression is regulated via epigenetic mechanisms [19,20] and,
concerning breast cancer, epigenetic activity, including DNA methylation and histone
modifications, has been linked to disease progression [21–23]. Notably, ER expression can
be re-established in breast cancer cells after treatment with histone deacetylase (HDAC)
inhibitors [23], raising the possibility that similar mechanisms may also upregulate IL-
13Rα2 expression, consequently sensitizing them to IL-13Rα2-targeting strategies.

To improve selectivity and specificity in targeting IL-13Rα2, we developed a hybrid
cytolytic peptide (Pep-1-Phor21), which, unlike previous strategies, is not a cytotoxin–
drug conjugate. Instead, Pep-1-Phor21 consists of a unitary peptide structure bearing
distinct receptor-binding (Pep-1) and cytolytic (Phor21) domains. The seven-amino-acid
Pep-1 peptide was originally discovered by screening a phage display library for novel IL-
13Rα2 ligands and it selectively binds IL-13Rα2 with high affinity at a site on the receptor
distinct from that utilized for IL-13 binding [24]. Pep-1 in conjugate form has been used as
drug therapy and as a means of PET imaging IL-13Rα2-expressing gliomas [25,26]. The
Phor21 lytic domain corresponds to the previously described amphipathic membrane-
disrupting cytolytic peptide, which contains three sequence repeats of seven amino acids
(KFAKFAK) [27]. This cytolytic peptide kills cells through necrosis by acting on the plasma
membrane and, therefore, bypasses multidrug resistance [28]. Further, unlike the lytic
peptides that kill cells by apoptosis, the Phor21 cytolytic peptide doesn’t internalize since
it elicits necrosis [29]. Although the combination of Pep-1 with Phor21 (Pep-1-Phor21)
has not previously been investigated, Phor21, when combined with a segment of the
β-chain of chorionic gonadotropin (β-CG) (Phor21-βCG[ala]), was reportedly able to
target cancer cells expressing the luteinizing hormone/chorionic gonadotropin receptor
(LHCGR) [30]. Since Phor21-βCG[ala] has been shown to have a short in vivo half-life
(~5 h), it is very unlikely to elicit an immune response and/or cause liver toxicity [28].
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We have demonstrated recently that the Pep-1-Phor21 cytolytic peptide shows anticancer
properties against IL-13Rα2-expressing prostate cancer cells [31].

This study addresses the hypothesis that IL-13Rα2 is a druggable target for the treat-
ment of breast cancer. To test this, we examined IL-13Rα2 expression in both non-TNBC
and TNBC breast cancer using representative cell lines, and tissue cDNA- and micro-arrays.
Further, we defined the specific activity of Pep-1-Phor21 against IL-13Rα2-expressing breast
cancer cells and -transfected cells. To model more tumor-representative conditions, we
determined in detail the activity of Pep-1-Phor21 against IL-13Rα2-positive TNBC spheroid
cultures [32]. To sensitize breast cancer cells to subsequent Pep-1-Phor1 treatment, we
also examined the epigenetic regulation of IL-13Rα2 expression in breast cancer cells with
a specific focus on HDAC and DNMT inhibitor treatments. Taken together, the results
show that TNBC cells, in particular, express relatively high levels of IL-13Rα2 and the
Pep-1-Phor21 peptide efficiently targets these tumor cells, rapidly destroying them through
cytolysis. Furthermore, HDAC or DNMT inhibition selectively upregulated IL-13Rα2
expression and enhanced the effectiveness of Pep-1-Phor21 against tumor cells, raising the
possibility that a combination drug therapy approach may be particularly effective.

2. Materials and Methods
2.1. Cell Culture

Human non-tumorigenic breast epithelial cell line (MCF-10A (catalog number (#) CRL-
10317)), breast cancer cell lines (MCF-7 (#HTB-22), MDA-MB-231 (#HTB-26)) and COS-7
cell line (#CRL-1651) were obtained from the American Type Culture Collection (ATCC®).
LM2, the highly metastatic 1834 sub-line of MDA-MB-231, was kindly donated by Dr. J.
Massague, Memorial Sloan-Kettering Cancer Center, NY [7]. COS-7, MCF-7, and MDA-
MB-231/LM2 cell lines were maintained in Dulbecco’s Modified Eagles Medium (DMEM)
supplemented with 10% fetal bovine serum (FBS) and 1% PSG (200 mM L-glutamine,
10,000U/mL penicillin and 10mg/mL streptomycin). MCF-10A cells were maintained in
Ham’s F12:DMEM (50:50) culture medium containing 5% horse serum, 1% PSG, 20 ng/mL
EGF, 0.1 µg/mL cholera toxin, 10 µg/mL insulin, and 0.5 µg/mL hydrocortisone [33].

To create spheroids, a Terasaki plate (Greiner Bio-One (#653180), Stonehouse, UK)
seeded with cells (20 µL of 1 × 105 cells/mL per well) was incubated upside-down in a
humidified incubator. Where appropriate, cells were labeled with Vybrant® DiO fluorescent
vital membrane dye (Thermo-Fisher Scientific (#V22886), Loughborough, UK). After 1 day
of incubation, the spheroids, along with the medium pooled from 3 wells of the Terasaki
plate, were transferred into a single well of a U-bottom, surface-repellent, 96-well plate
(Greiner Bio-One (#650970)). Spheroid formation was monitored using an inverted light
microscope and viability was assessed using LIVE/DEAD® Viability/Cytotoxicity Assay
kit (Thermo-Fisher Scientific (#L3224)), which contains ethidium homodimer-I (EthD-1).
Labeled spheroids were pipetted into pre-prepared 50% (v/v) Matrigel® (Merck (#E1270),
Gillingham, UK): 30 µL Matrigel® per well/96-well µClear® half area black plate with a
flat bottom (Greiner Bio-One (#675090)), pre-incubated for 24 h to allow the solidification of
the Matrigel®. Spheroids in Matrigel® were then treated with a test compound for up to 3 h
and then incubated in phenol red-free RPMI-1640 (Thermo-Fisher Scientific (#11835030))
containing 2 µM EthD-1 at room temperature (RT) for 40 min. Spheroids in Matrigel® were
then washed three times with phenol red-free RPMI-1640 and immediately imaged by
confocal microscopy (LSM 710, Carl Zeiss, Inc., White Plains, NY, USA). Where applicable,
COS-7 cells were transfected for 48 h with expression plasmid IL-13Rα2-mCherry [11] or
Myc-LHCGR [34] or an empty control plasmid (mCherry) using jetPRIME® transfection
reagent (Polyplus-transfection SA (#101000015), Illkirch-Graffenstaden, France) according
to the manufacturer’s instructions [35].

2.2. Peptides and Other Reagents

Pep-1-Phor21 (ACGEMGWVRCGGGKFAKFAKKFAKFAKKFAKFAK) and its indi-
vidual subunit motifs, Pep-1 (ACGEMGWVRCGGGS) and Phor21 (KFAKFAKKFAK-
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FAKKFAKFAK), were synthesized (>95% purity) by Thermo Fisher Scientific Inc. Phor21-
βCG [30] was used where indicated. Epigenetically active inhibitor compounds Trichostatin-
A (TSA (#T8552)) and 5-aza-2′-deoxycytidine (5-aza-dC (#A3656)) were obtained from Merck.

2.3. Real-Time-PCR (RT-PCR)

Total RNA was isolated from cultured cells using RNeasy mini kits (Qiagen (#74104),
Manchester, UK). An amount of 1 µg of total RNA was reverse transcribed to cDNA in a
20 µL reaction volume using a High-Capacity cDNA Reverse Transcription Kit (Applied
Biosystems (#4368814)). RT-PCR was carried out using the SensiFAST SYBR® and Fluores-
cein Kit (Bioline (#BIO-96005)) in a final volume of 10 µL containing 0.5 µL cDNA and 250 nM
primers and a Bio-Rad CFX 96 Real-Time Detection System. Primer sequences were 5′-
TAACCTGGTCAGAAGTGTGCC-3′ (sense) and 5′-GGAGGGTTAACTTTTATACTCGGTGT-
3′ (antisense) for IL-13Rα2 and 5′-CAGCCATGTACGTTGCTATCCAGG-3′ (sense) and 5′-
AGGTCCAGACGCAGGATGGCATG-3′ (antisense) for beta-actin. The relative expression
of IL-13Rα2 mRNA was calculated using the 2−∆∆Ct method with beta-actin mRNA as the
internal control [36]. To determine relative IL-13Rα2 mRNA expression in breast cancer
tumors representing various stages of the disease, a similar RT-PCR methodology was
applied to Origene TissueScan™ Breast Cancer cDNA Arrays (samples from CSRT104,
BCRT103, and BCRT104; 60 tumor samples (n = 60) covering various disease stages with
non-malignant (n = 7) breast tissue cDNA samples for comparison) [37].

2.4. Immunohistochemistry

For the detection of IL-13Rα2 expression in primary tumor tissue, immunohistochem-
ical staining was performed on a breast cancer tissue array (BR1009, US Biomax) using
a Vectastain® Elite ABC-HRP kit (Vector Laboratories (#PK-6200)) [38]. Briefly, duplicate
cores on the array (formaldehyde-fixed tissue, paraffin sections) were first pre-treated with
1.0% hydrogen peroxide to block endogenous peroxidase activity followed by antigen un-
masking with Retrievagen A solution (BD Biosciences (#BD 550524)). Subsequent sequential
blocking treatments included incubation with 1.5% normal horse serum and avidin/biotin
solution (Vector Laboratories (#SP-2001)). IL-13Rα2 was detected using mouse anti-human
IL-13Rα2 (2K8, sc-134363, Santa Cruz Biotechnology Inc., diluted 1:200 (0.5 µg/mL final
concentration)) primary antibody, biotinylated secondary antibody (1:500 dilution), and
horseradish peroxidase (HRP)-conjugated avidin (1:500 dilution). Diaminobenzidine (DAB)
enzyme substrate was used to visualize anti-IL-13Rα2 staining. The manual scoring of
tissue cores for positive staining was based on the Allred scoring system in which the
percentage of positive cells (proportion score: 0 [none]–5 [100%]) and the intensity of
the reaction product (intensity score: 0 [none]–3 [strong]) in the entire tissue core were
evaluated [36]. The two scores were added together for a final score with a maximum score
(strongly positive) of 8 and negative staining = 0.

2.5. Immunoblotting

Harvested cells were lysed with standard RIPA lysis buffer (10 mM Tris-HCl pH
7.5, 10 mM EDTA, 1% NP-40, 0.1% SDS, 150 mM NaCl, 0.5% sodium deoxycholate) con-
taining 1% mammalian proteinase inhibitor mix. Cell lysates fractionated by SDS-PAGE
gel electrophoresis were transferred onto polyvinylidene fluoride (PVDF) membranes as
described [39]. IL-13Rα2 protein was detected with an anti-IL-13Rα2 mouse monoclonal
antibody (sc-134363, Santa Cruz Biotechnology) diluted 1:500 in blocking buffer (TBS, 0.1%
Tween-20 containing 5% milk powder) followed by incubation with an HRP-conjugated
anti-mouse secondary antibody. Where indicated, mCherry was detected with rabbit anti-
RFP antibody (Abcam [#ab34771]). Membranes were developed using ECL Select Substrate
(GE Healthcare (#RPN2235), Hatfield, UK) and bands were visualized using a Bio-Rad
ChemiDoc TM XRS system (Watford, UK). For standardization, blots were stripped as
described [40] and re-probed using an anti-α tubulin mouse monoclonal antibody (Merck
(#T6074), Gillingham, UK).
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2.6. Cell Surface Enzyme-linked Immunosorbent Assay (ELISA)

The cell surface expression of IL-13Rα2 was assessed by ELISA using non-permeabilized
cells, as previously described [34,41]. Briefly, cells were plated at 60–80% confluence in
poly-L-lysine-coated wells of a 48-well plate. After 24 h in culture, cells were serum-starved
for 2 h and then fixed with 4% (w/v) paraformaldehyde for 5 min. Following incubation
with blocking buffer (1% bovine serum albumin (BSA) in TBS), cells were incubated with an
anti-IL-13Rα2 mouse monoclonal antibody (sc-134363, Santa Cruz Biotechnology; diluted
1:800) followed by incubation with an HRP-conjugated anti-mouse IgG antibody. Follow-
ing washing, surface staining was developed by incubating with 1-step Ultra TMB-ELISA
substrate solution (Thermo-Fisher Scientific (#34029)) and absorbance was determined at
450 nm.

2.7. Cell Viability, Cytotoxicity, and Apoptosis Assays

Unless specified otherwise, 96-well black, µClear, half area, and flat-bottom plates
(Greiner Bio-One (#675090)) were used for these assays. Cell viability was assessed us-
ing Alamar Blue according to the manufacturer’s instructions (Thermo Fisher Scientific
(#DAL1100)). Before this, the optimal cell density of MCF-10A, MCF7, and MDA-MB-231
required for cell viability was established as 40,000 cells per well (Figure S2). This was
carried out by plating 10,000 to 80,000 cells per well and analyzing cell growth daily for
up to 4 days by using Alamar Blue assay. Cell cytotoxicity was assessed using CellTox™
Green Cytotoxicity Assay (Promega (#G8743), Southampton, UK). Briefly, 40,000 cells per
well were plated. After 24 h, the medium was replaced with medium containing 0.1% (v/v)
CellTox Green Dye and the appropriate test compound. Fluorescence was measured using
the 490 nm (excitation) and 525 nm (emission) settings on a POLARstar Omega microplate
reader (BMG LABTECH). Fluorescence after the initial 30 min was considered zero, with
subsequent fluorescence measurements obtained at 3 h intervals. Cells treated with the
lysis buffer provided in the assay kit were used as the positive control (100% cytotoxicity).
The combined measurement of cell viability, cytotoxicity, and apoptosis was determined
by ApoTox-GloTM Triplex Assay (Promega (#G6320)): Briefly, 40,000 cells per well were
plated into the 96-well µClear® half area black (for the cell viability and cytotoxic assays) or
white (for the apoptosis assay) plate with a flat bottom (Greiner Bio-One (#655083)). After
24 h, the medium was replaced with fresh medium containing the test compound. After
6 h, 10 µL of cell viability/cytotoxicity reagent was added to each well and incubated for
a further 1 h at 37 ◦C. Cell viability (fluorescence) was measured at 400 nm (excitation)
and 505 nm (emission) settings. Cytotoxicity was measured at 485 nm (excitation) and
520 nm (emission). Apoptosis (luminescence) was determined by adding Caspase-Glo®

3/7 reagent and incubating for 30 min at RT.

2.8. Statistical Analysis

Data were analyzed using GraphPad Prism version 6.0 software. All data are presented
as the mean ± standard error of the mean (SEM) from three independent experiments [42].
Statistical analysis was conducted using an unpaired Student’s t-test or one-way analysis
of variance with post-Tukey’s multiple comparisons test with a significance of * p ≤ 0.05,
** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001; ns = not significant.

3. Results
3.1. Expression of IL-13Rα2 in Breast Cancer

For the determination of IL-13Rα2 mRNA expression, real-time RT-PCR was per-
formed on breast cancer cDNA arrays containing multiple samples representative of the
diverse breast cancer phenotypes. IL-13Rα2 mRNA expression was found to be signifi-
cantly higher in breast cancer tissues compared with that in non-malignant breast tissues
(Figure 1a). Further, IL-13Rα2 mRNA expression was significantly greater in TNBC-type
tumors, compared to that in non-TNBC tumors (positive for at least one of ER, PR, HER2)
or non-malignant breast tissue (Figure 1b). Immunohistochemical staining of tissue micro-
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array samples confirmed this pattern of expression at the protein level in that IL-13Rα2
expression was more predominantly detectable in TNBC-type tumors (Figure 1c).
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Figure 1. Expression of IL-13Rα2 in breast cancer tissue. (a) RT-PCR analysis of IL-13Rα2 mRNA
expression in cDNA array samples (TissueScan™, Origene) derived from breast cancer (number
of samples (n = 60)) and non-malignant (n = 7) tissue. Shown is the fold-change relative to mean
expression in non-malignant samples (mean fold-change, cancer versus non-malignant; *** p ≤ 0.001).
(b) Stratification analysis of IL-13Rα2 mRNA expression data comparing TNBC-type (n = 19) versus
non-TNBC (n = 41) tumors (mean fold-change, TNBC versus non-TNBC, *** p ≤ 0.001). (c) Im-
munohistochemical analysis of IL-13Rα2 protein expression in breast cancer tissue array samples
(US Biomax, BR1009). Shown images (at 40×magnification) are representative examples of specific
staining with an anti-IL-13Rα2 antibody (sc-134363) versus a mouse IgG2a isotype control: (left
panel), non-malignant tissue; (middle panel) non-TNBC tumor (ER+, stage IIa); (right panel) TNBC
tumor (stage IIb). (Right Figure), scoring analysis of anti-IL-13Rα2 reactivity in non-malignant (n = 9),
non-TNBC (n = 8), and TNBC (n = 21) tissue array sections (mean score, TNBC versus non-malignant,
*** p ≤ 0.001).

To validate cells for in vitro modeling studies, IL-13Rα2 expression was determined
in the non-tumorigenic breast epithelial cell line (MCF-10A), a non-TNBC cell line (MCF-
7), and two TNBC cell lines (MDA-MB-231 and its highly-metastatic sub-line, LM2 [7]).
RT-PCR analysis revealed that only the TNBC-type cell lines had significantly elevated
expression of IL-13Rα2 mRNA (Figure 2a) and this was confirmed at the protein level
by immunoblotting (Figure 2b). In contrast, non-malignant MCF-10A and non-TNBC
MCF-7 cancer cells did not exhibit detectable IL-13Rα2 protein expression. A cell-based
ELISA was utilized to determine whether the IL-13Rα2 protein was appropriately localized
at the cell surface and this analysis confirmed that IL-13Rα2 cell-surface expression was
undetectable in MFC-10A and MCF-7 cells (Figure 2c). In comparison, TNBC-type cell lines
exhibited prominent cell-surface IL-13Rα2 expression (MDA-MB-231: 613.3% ± 55.3, LM2:
863.5% ± 33.0; relative to MCF-10A). Therefore, IL-13Rα2 expression is similar in breast
cancer tissue samples and representative cell lines with an expression more prominent in
TNBC-type tumor cells.
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Figure 2. Expression of IL-13Rα2 in breast cancer cell lines. (a) RT-PCR analysis of IL-13Rα2 mRNA
expression in non-malignant (MCF-10A), non-TNBC (MCF-7), and TNBC (MDA-MB-231, LM2) cells.
(b) Quantification of IL-13Rα2 protein expression in representative cell lines by Western blot. For
densitometry, individual band density was normalized against α-tubulin expression. The uncropped
bolts are shown in Supplementary Materials File S1. (c) Cell-surface expression of IL-13Rα2 protein
was measured in non-permeabilized cells by cell-based ELISA. All graphs show fold-change relative
to mean expression in MCF-10A cells. Data = mean values ± SEM of three independent experiments
(*** p ≤ 0.001; **** p ≤ 0.0001).

3.2. Evaluation of Pep-1-Phor21-Mediated Cell Targeting

To evaluate the specificity and activity of Pep-1-Phor21, COS-7 cells transfected with
either an empty mCherry vector or a mCherry-tagged IL-13Rα2 expression plasmid were
used. Immunoblotting analysis confirmed that appropriately transfected cells expressed
either the ~27 kDa mCherry protein or the ~75 kDa IL-13Rα2 mCherry-fusion protein
(Figure 3a). Transfected cells were subsequently treated with Pep-1-Phor21 (0–10 µM)
for 3h and evaluated cell viability (Alamar Blue assay; Figure 3b) and cytotoxicity (Cell-
Tox assay; Figure 3c). Pep-1-Phor21 was shown to kill IL-13Rα2-expressing COS-7 cells
in a dose-dependent manner with a determined 50% inhibitory concentration (IC50) of
0.13µM for both Alamar Blue and CellTox assays. A peptide consisting of only the sub-
unit lytic motif (Phor21) exhibited no appreciable activity against IL-13Rα2-expressing or
mCherry-expressing COS-7 cells. To further define specificity, we compared Pep-1hor21
with an LHCGR-targeting hybrid peptide (Phor21-βCG) [30] in their ability to specifi-
cally kill IL-13Rα2- or LHCGR-transfected COS-7 cells (Figure 3d). Pep-1-Phor21 had
no demonstrable cytotoxic effect on COS-7 cells expressing LHCGR (COS-7 LHCGR),
whereas only Phor21-βCG exhibited significant cytotoxic activity against COS-7 LHCGR
cells (cytotoxicity = 86.2% ± 0.6 of maximal activity). Reciprocally, only COS-7 cells ex-
pressing IL-13Rα2 (COS-7 IL-13Rα2) were susceptible to Pep-1-Phor21 treatment (cytotoxi-
city = 83.3% ± 3.4). Therefore, Pep-1-Phor21 does not exhibit any appreciable off-target
activity, and the complete unitary peptide structure is required for functional activity
against IL-13Rα2-expressing cells.
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contrast, IL-13Rα2-positive TNBC-type cell lines, MDA-MB-231 and LM2, were highly 
sensitive to Pep-1-Phor21 treatment and their sensitivity increased as the time of incuba-
tion with Pep-1-Phor21 was increased. Notably, LM2 cells, which exhibited the most 
prominent surface IL-13Rα2 expression, were the most susceptible to Pep-1-Phor21 (Fig-
ure 4b). Furthermore, the measurement of cell death associated with a loss of cell mem-
brane integrity (CellTox Green assay, detects the dead cell DNA) showed that only Pep-1-
Phor21 had a demonstrable cytotoxic effect on IL-13Rα2-positive cell lines (Figure 4c) with 
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= 96.9% ± 0.4 of maximal activity). In contrast, Pep-1-Phor21 (≤120 µM) did not exhibit 
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Figure 3. Evaluation of Pep-1-Phor21 activity. (a) Protein samples from transfected COS-7 cells
expressing the red fluorescent protein (RFP) mCherry (27kDa) or IL-13Rα2-mCherry (75 kDa) were
immunoblotted (IB) using either an anti-RFP or an anti-IL-13Rα2 antibody with α-tubulin detection
as a loading control. The uncropped bolts are shown in Supplementary Materials File S1. (b) COS-
7 cells transfected with IL-13Rα2-mCherry plasmid or empty mCherry vector were treated with
Pep-1-Phor21 (O) or Phor21 (y) at 0–10 µM for 3 h and their viability was determined by Alamar
Blue assay (IC50 for Pep-1-Phor21 against IL-13Rα2-transfected cells = 0.133 µM ± 0.04). (c) CellTox
assay was used to determine the cytotoxic activity of Pep-1-Phor21 against IL-13Rα2-transfected cells
(IC50 = 0.130 µM ± 0.03). (d) IL-13Rα2- or LHCGR-transfected COS-7 cells were treated with 0.5 µM
Pep-1-Phor21 or βCG-Phor21 for 3 h and their relative cytotoxicity was determined (versus empty
vector-transfected cells). Only IL-13Rα2-transfected cells exhibited susceptibility to the cytotoxic
effects of Pep-1-Phor21, whilst remaining resistant to βCG-Phor21. Data = mean value ± SEM of
three independent experiments (ns = not significant).

3.3. Cytotoxic Activity of Pep-1-Phor21 against IL-13Rα2-Positive Breast Cancer Cells

Having validated its selectivity, Pep-1-Phor21 activity was further tested against breast
cancer cell lines representative of TNBC and non-TNBC phenotypes and of defined IL-
13Rα2 expression. When grown as monolayers, IL-13Rα2-negative non-malignant MCF-10A
cells or malignant non-TNBC MCF-7 cells did not exhibit any appreciable loss of viability
(Alamar Blue assay) after treatment with Pep-1-Phor21 (dose-response range = 0–120 µM)
or its constitutive peptide subunits (Pep-1, Phor21) for 24 h (Figure 4a). In contrast, IL-
13Rα2-positive TNBC-type cell lines, MDA-MB-231 and LM2, were highly sensitive to
Pep-1-Phor21 treatment and their sensitivity increased as the time of incubation with Pep-
1-Phor21 was increased. Notably, LM2 cells, which exhibited the most prominent surface
IL-13Rα2 expression, were the most susceptible to Pep-1-Phor21 (Figure 4b). Furthermore,
the measurement of cell death associated with a loss of cell membrane integrity (CellTox
Green assay, detects the dead cell DNA) showed that only Pep-1-Phor21 had a demonstrable
cytotoxic effect on IL-13Rα2-positive cell lines (Figure 4c) with LM2 cells again being the
most susceptible (24 µM Pep-1-Phor21, 3 h: relative cytotoxicity = 96.9% ± 0.4 of maximal
activity). In contrast, Pep-1-Phor21 (≤120 µM) did not exhibit appreciable cytotoxic activity
against IL-13Rα2-negative cells (MCF-10Aand MCF-7). Since the 3 h treatment seems to
be optimal for analyzing the dose-dependent effect of the peptide on the tumor cell lines
used in the study, we used the treatment of peptides for 3 h in further experiments unless
otherwise indicated.
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Figure 4. Treatment of representative breast cancer cell lines with Pep-1-Phor21. (a) Dose-dependent
effect of Pep-1-Phor21 (O), Pep-1 (y), or Phor21 (∆) on the viability of non-tumorigenic (MCF-10A), non-
TNBC (MCF-7), and TNBC cells (MDA-MB 231, LM2). Cells were treated with different concentrations
of Pep-1-Phor21 (effective concentration range = 0–120 µM, a 5-fold serial dilution) and their viability
was assessed after 3 h, 6 h, or 24 h of the treatment by Alamar Blue assay. (b) The IC50 of peptides
for various cell lines for different incubation times. (c) The cytotoxic effect of individual peptides on
cell lines was also assessed by CellTox assay. MCF-10A and MCF-7 cells were treated for 3 h with
120 µM Pep-1-Phor21 (maximum concentration used in the dose-response analysis, Alamar Blue,
Figure 4a). MDA-MB 231 and LM2 cells were treated with Pep-1-Phor21 at 24 µM (maximal effective
concentration against LM2, as determined in dose-response analysis, Alamar Blue, Figure 4a). Pep-1-
Phor21 had a significant cytotoxic effect only against IL-13Rα2-expressing TNBC cells (MDA-MB-231,
LM2; relative cytotoxicity = 85.2% ± 5.4 and 96.9% ± 0.38, respectively, versus non-treated cells).
Data = mean value ± SEM of three independent experiments (* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001;
**** p ≤ 0.0001).

To more precisely delineate the mode of cell killing, we concomitantly measured
the cell viability, cytotoxicity, and apoptosis (ApoTox-Glo Triplex Assay) of IL-13Rα2-
positive TNBC MDA-MB-231 cells after treating them with Pep-1-Phor21 (20 µM). As
comparative controls, cells were treated with the cytotoxic compound ionomycin (150 µM),
or the apoptosis inducer staurosporine (10 µM). The exposure of MDA-MB-231 cells to
either Pep-1-Phor21 or control compounds produced a significant loss of viability (loss of
internal live-cell protease activity, Figure 5a). However, only Pep-1-Phor21 or ionomycin
(but not staurosporine) induced a significant increase in cytotoxicity (increased dead-cell
protease activity, released from cells with impaired membrane integrity), consistent with
primary necrosis (Figure 5b). In contrast, only staurosporine preferentially activated cellular
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apoptosis, as demonstrated by increased caspase 3/7 activation above baseline activity
(Figure 5c). The Pep-1-Phor21 or ionomycin-treated cells showed lower caspase activity
than untreated or Pep-1- or Pho21-treated cells, which is probably due to the loss of cellular
components by necrosis. Therefore, Pep-1-Phor21 may be particularly effective against
TNBC-type tumors that express high levels of IL-13Rα2. Furthermore, Pep-1-Phor21 has a
cytolytic mode of action, rapidly inducing necrotic cell death.
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induction was not demonstrable in non-malignant MCF-10A cells. Although the TNBC-
type cell lines already expressed relatively high levels of IL-13Rα2, significantly increased 
expression was detectable in 10µM TSA-treated MDA-MB-231 cells, with the LM2 sub-
line exhibiting further marginal increases in expression. 

Given that HDAC or DNMT inhibition selectively enhanced IL-13Rα2 expression in 
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to Pep-1-Phor21. Exposure to the epigenetic modulators themselves (up to 10 µM TSA or 
5-aza-dC for 24 h) did not produce any cytotoxic effect. However, consistent with their 
effects on IL-13Rα2 expression, TSA or 5-aza-dC pre-treatments induced non-TNBC MCF-
7 cells to become sensitive to Pep-1-Phor21 (1.0µM 5-aza-dC or 1.0µM TSA, followed by 
20µM Pep-1-Phor21: relative cytotoxicity = 84.7% ± 4.5, and 81.9% ± 4.3, respectively; Fig-
ure 7). IL-13Rα2-negative MCF-10A cells remained resistant to Pep-1-Phor21 after pre-
treatment with either TSA or 5-aza-dC. Consistent with IL-13Rα2 expression data, only 
10µM TSA was able to significantly increase the sensitivity of MDA-MB-231 cells to Pep-

Figure 5. Characterization of the cell-killing mechanism utilized by Pep-1-Phor21. MDA-MB-231
cells were treated with peptides: Pep-1-Phor21, Pep-1, or Phor21 (20 µM); staurosporine (10 µM);
or ionomycin (150 µM). After 6 h, cell viability (a), cytotoxicity (b), and apoptosis (c) were assessed
by ApoTox-GloTM Triplex Assay. Individual Pep-1 or Phor21 peptides were inactive against MDA-
MB-231 cells. In contrast, all other treatments induced a rapid loss of cell viability (a). Pep-1-Phor21
or ionomycin induced a significant increase in relative cytotoxicity, whereas staurosporine did not
have a significant cytotoxic effect (Pep-1-Phor21: 76.7% ± 5.6; staurosporine: 21.7% ± 4.88, relative to
non-treated cells: 13.8% ± 2.3) (b). In contrast, only staurosporine induced an increase in caspase 3/7
activity (34.6% ± 4.9 detectable increase above baseline), consistent with the induction of apoptosis
in target cells (c). Data = mean value ± SEM of three independent experiments (*** p ≤ 0.001).

3.4. Epigenetic Modulation of IL-13Rα2 Expression in Breast Cancer Cells

Given previous reports that IL-13Rα2 expression can be upregulated in certain cancers
via epigenetic mechanisms [19], we sought to clarify whether IL-13Rα2 expression could be
similarly enhanced in breast cancer cells, sensitizing them to Pep-1-Phor21 in the process.
In particular, we determined the effects of treatment with an HDAC inhibitor (TSA), or
with a DNMT (5-aza-dC) on IL-13Rα2 expression. The treatment of IL-13Rα2-negative non-
TNBC MCF-7 cells with either TSA or 5-aza-dC for 24 h induced the detectable expression
of IL-13Rα2 mRNA (Figure 6a), total IL-13Rα2 protein (Figure 6b), and cell-surface IL-
13Rα2 expression (Figure 6c) in a dose-dependent manner. In contrast, this induction was
not demonstrable in non-malignant MCF-10A cells. Although the TNBC-type cell lines
already expressed relatively high levels of IL-13Rα2, significantly increased expression
was detectable in 10µM TSA-treated MDA-MB-231 cells, with the LM2 sub-line exhibiting
further marginal increases in expression.
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Figure 6. Epigenetic modulation of IL-13Rα2 expression in breast cancer cells. Non-malignant
breast epithelial (MCF-10A), non-TNBC (MCF-7), and TNBC (MDA-MB 231, LM2) cell lines were
treated with an HDAC inhibitor (TSA) or with a DNMT inhibitor (5-aza-dC) for 24 h and IL-13Rα2
expression at the mRNA, total protein, and cell-surface levels were subsequently measured by RT-PCR
(a), Western blot (b), and cell-based ELISA (c), respectively. Treatment with either epigenetically active
compound induced detectable levels (all assays) of IL-13Rα2 expression in MCF-7 cells, whereas
expression was not altered in MCF-10A cells (remaining IL-13Rα2-negative). In IL-13Rα2-positive
cells, 10 µM TSA significantly upregulated IL-13Rα2 expression in MDA-MB-231 cells, as measured
in all assays. Data = mean value ± SEM of three independent experiments (* p ≤ 0.05; ** p ≤ 0.01;
*** p ≤ 0.001; ns = non-significant; relative to untreated cells).

Given that HDAC or DNMT inhibition selectively enhanced IL-13Rα2 expression in
tumor cells, we further determined whether this effect translated into increased sensitivity
to Pep-1-Phor21. Exposure to the epigenetic modulators themselves (up to 10 µM TSA or 5-
aza-dC for 24 h) did not produce any cytotoxic effect. However, consistent with their effects
on IL-13Rα2 expression, TSA or 5-aza-dC pre-treatments induced non-TNBC MCF-7 cells
to become sensitive to Pep-1-Phor21 (1.0µM 5-aza-dC or 1.0µM TSA, followed by 20µM
Pep-1-Phor21: relative cytotoxicity = 84.7% ± 4.5, and 81.9% ± 4.3, respectively; Figure 7).
IL-13Rα2-negative MCF-10A cells remained resistant to Pep-1-Phor21 after pre-treatment
with either TSA or 5-aza-dC. Consistent with IL-13Rα2 expression data, only 10 µM TSA
was able to significantly increase the sensitivity of MDA-MB-231 cells to Pep-1-Phor21.
Therefore, TSA or 5-aza-dC can selectively upregulate IL-13Rα2 expression in breast cancer
cells (particularly in non-TNBC), increasing their subsequent susceptibility to targeting via
Pep-1-Phor21.
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Figure 7. Effect of HDAC or DNMT inhibitors on Pep-1-Phor21-induced cytotoxicity. All cell lines
were treated with 0–10 µM TSA or 5-aza-dC for 24 h. MCF-10A, MCF-7, MDA-MB-231, and LM2
cells were subsequently treated with 50 µM, 20 µM, 10 µM, or 0.5 µM Pep-1-Phor21, respectively,
for 3 h, and their cytotoxicity was determined (CellTox assay). Pep-1-Phor21 had a demonstrable
cytotoxic effect on non-TNBC MCF-7 cells only after pre-treatment with TSA- or 5-aza-dC. Similarly,
Pep-1-Phor21 exhibited a significant increase in cytotoxic activity against TNBC MDA-MB-231 cells
when pre-treated with 10 µM TSA. Data = mean value ± SEM from three independent experiments
(** p ≤ 0.01; *** p ≤ 0.001; ns = non-significant; relative to untreated cells).

3.5. Targeting Breast Cancer Spheroids with Pep-1-Phor21

To more rigorously test the activity of Pep-1-Phor21, we utilized breast cancer cells
cultured as spheroids, which exhibit growth characteristics more consistent with solid tu-
mors [43]. All cell lines cultured in the spheroid format maintained their relative IL-13Rα2
expression status (Figure 8a) and, consistent with this, Pep-1-Phor21 had a dose-dependent
cytotoxic effect only on MDA-MB-231 or LM2 spheroids (Figure 8b). However, calcu-
lated IC50 values for Pep-1-Phor21 activity against spheroids were moderately higher
than those observed under monolayer conditions—MDA-MB-231, IC50 = 22.98 µM ± 1.5;
LM2, IC50 = 12.22 µM ± 2.5—consistent with the moderately lower IL-13Rα2 mRNA ex-
pression levels measured in spheroid cultures (Figure S1). As observed with monolayer
cells, the Phor21 lytic peptide subunit displayed no significant cytotoxic activity against
spheroid cultures.

To visualize cell killing, confocal fluorescence microscopy was performed on breast can-
cer spheroids treated with Pep-1-Phor21. This analysis revealed that only IL-13Rα2-positive
(TNBC) spheroids exhibited significant dead-cell staining (EthD-1) with the concomitant
disruption of spheroid integrity after Pep-1-Phor21 treatment (Figure 9). After 3 h of
treatment, dead-cell staining was present throughout the disrupted spheroid with only
a few remaining live cells (Vybrant DiO staining) detectable within the inner core of the
spheroid. Furthermore, given the potentially altered growth characteristics of cancer cells
in spheroids, we further tested the ability of HDAC or DNMT inhibitors to modulate
IL-13Rα2 expression. Indeed, as with monolayer cells, TSA or 5-aza-dC treatments signif-
icantly increased IL-13Rα2 mRNA expression in non-TNBC MCF-7 spheroids, whereas
MCF-10A spheroids maintained their resistance to the modulating effects of these com-
pounds (Figure 10a). Only treatment with 10µM TSA or 5-aza-dC significantly increased
IL-13Rα2 expression in TNBC MDA-MB-231 spheroids. Notably, this up-regulation of
IL-13Rα2 expression concomitantly enhanced the sensitivity of spheroids to subsequent
Pep-1-Phor21 treatment in that non-TNBC MCF-7 spheroids developed sensitivity to Pep-
1-Phor21-mediated cytotoxicity (Figure 10b). MDA-MB-231 (TSA- or 5-aza-dC-treated)
and LM2 (TSA-treated) spheroids also exhibited a further significant increase in relative
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sensitivity to Pep-1-Phor21. Therefore, IL-13Rα2 expression in breast cancer spheroids is se-
lectively amenable to epigenetic upregulation and Pep-1-Phor21 rapidly disrupts spheroid
integrity, efficiently killing multiple layers of IL-13Rα2-positive tumor cells.
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Figure 8. IL-13Rα2 expression in breast cancer spheroids and targeting with Pep-1-Phor21. (a) IL-
13Rα2 mRNA expression was determined by RT-PCR in the indicated cell lines cultured as 3-D
spheroids for 48 h (fold-change relative to MCF-10A cells). (b) Established spheroids (48 h) were
treated for 3 h with the indicated peptides (dose-response range = 0–120 µM) and their cytotoxicity
was assessed (CellTox assay). Only IL-13Rα2-positive, TNBC spheroids exhibited susceptibility to
the cytotoxic effect of Pep-1-Phor21 (MDA-MB-231, LM2; IC50 = 22.98 µM ± 1.5, 12.22 µM ± 2.5,
respectively). Data = mean value ± SEM of three independent experiments (* p ≤ 0.05; *** p ≤ 0.001).
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assessed for the presence of live and dead cells using confocal fluorescent microscopy. IL-13Rα2-
positive TNBC spheroids (MDA-MB-231, LM2) exhibited diffuse dead cell staining (red fluorescence,
EthD-1) with the concomitant disruption of spheroid integrity after Pep-1-Phor21 treatment. Some
foci of live cells (green fluorescence, Vybrant DiO) were detectable within the core of the disrupted
spheroid after 3 h. In contrast, IL-13Rα2-negative MCF-10A breast epithelial and non-TNBC MCF-7
cells exhibited only viable cell staining with no observable loss of spheroid structure post-treatment.
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Figure 10. Epigenetic modulation of IL-13Rα2 expression in spheroids and targeting with Pep-1-
Phor21. (a) Established spheroids (48 h) were treated with either 5-aza-dC or TSA (−10 µM, 24 h), and
relative IL-13Rα2 mRNA expression was determined by RT-PCR (fold-change relative to expression
in untreated spheroid cells). Whilst non-malignant MCF-10A spheroids remained refractory to
treatment, both compounds significantly upregulated IL-13Rα2 expression in non-TNBC MCF-7
spheroids. Similarly, 10µM 5-aza-dC/TSA significantly upregulated IL-13Rα2 expression in TNBC
MDA-MB-231 spheroids. (b) Spheroids pre-treated with 5-aza-dC or TSA (dose-response range
0–10 µM) were subsequently treated with Pep-1-Phor21 (MCF-10A, MCF-7, MDA-MB-231, and LM2
were treated with 100 µM, 50 µM, 25 µM, and 10 µM, respectively, based on pre-determined IC50

values for each spheroid type, Figure 8b) for 3 h, and relative cytotoxicity was evaluated (CellTox
assay, relative to untreated spheroids). Data = mean value ± SEM of three experiments (* p ≤ 0.05;
** p ≤ 0.01; ns = not significant).

4. Discussion

Although the 5-year survival rate for breast cancer has significantly improved, in part
due to the development of endocrine-based therapies [44], significant challenges to suc-
cessful therapy remain, in that breast tumors exhibit heterogeneous phenotypes, including
receptor-positive (ER+, PR+, HER2+), triple-negative (ER−, PR−, HER2−), and combina-
tions of these variants. Therefore, selecting appropriate treatments can be problematic, and
to compound this, the development of drug resistance poses a major hurdle to achieving
a permanent cure [45]. TNBC poses particularly significant challenges in that these ag-
gressive tumors are refractory to hormone receptor-targeting strategies, with treatment
predominantly confined to a combination of surgery, radiotherapy, and chemotherapy with
cytotoxic drugs. Improved therapies for TNBC-type tumors are therefore required [46],
and we hypothesized that our cytolytic peptide-based approach to targeting IL-13Rα2-
expressing tumors would provide a selective and potentially more effective strategy.

IL-13Rα2 is reportedly over-expressed in a variety of malignancies [47], and targeting
this receptor, therefore, has garnered considerable interest as a possible therapeutic strat-
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egy [16,24]. With regard to TNBC, previous studies have shown an association between
predominant IL-13Rα2 expression and metastasis [7,48] and our findings corroborate these
findings in that elevated expression of IL-13Rα2 was readily detectable in TNBC-type
tumors and cell lines. Furthermore, IL-13Rα2-mediated signaling has been shown to pro-
mote the metastasis of ER-negative breast cancer cells [8], and targeting IL-13Rα2 may
be a particularly relevant strategy for these metastasis-prone tumors. In formulating an
IL-13Rα2-targeting strategy, the Pep-1 sequence motif was selected, as it exhibits a high
affinity for IL-13Rα2, binding the receptor at an extracellular site that is distinct from the IL-
13-binding region [24] and theoretically avoiding off-target effects. Moreover, incorporating
the cell-surface-active lytic Phor21 motif predicted that in contrast to exotoxin-drug conju-
gates, internalization would not be required for the cell-killing activity of Pep-1-Phor21.
Indeed, we demonstrate that Pep-1-Phor21 rapidly mediates cytolytic-based necrosis, con-
sistent with previous studies in which lytic peptides of this type caused rapid membrane
disruption [27,49]. Given these properties, Pep-1-Phor21 should, therefore, circumvent
many intracellularly active drug-resistance mechanisms. We have shown recently that
Pep-1-Phor21 kills pancreatic cancer cells by targeting IL-13Rα2 since the cells lost sensitiv-
ity to this hybrid peptide when the receptor expression was downregulated in these cells
by using its siRNA [31]. While this work was in progress, two more anti-cancer peptides
that target IL-13Rα2 were identified [50,51]. The first peptide, which is derived from the
D1 domain of IL-13Rα2, has been shown to exhibit therapeutic activity against metastatic
colorectal cancer by competitively inhibiting IL-13 binding to IL-13Rα2 and thereby the
receptor signaling [50]. The second peptide, which was isolated as an IL-13Rα2 binding
peptide by screening a T7 phage display library, has shown effects in glioblastoma therapy
when conjugated with a lytic peptide [51].

As a relatively small peptide (34 amino acids, molecular weight = 3.5 kDa), Pep-1-
Phor-21 should be able to penetrate vascular endothelium and solid tumor structures.
However, standard monolayer cultures poorly represent the physical barriers encountered
within the in vivo tumor microenvironment and, consequently, can be poor predictors
of drug efficacy [52]. To address such limitations, multi-cellular spheroid models have
been developed [53–56], which, in addition to presenting more relevant tumor cell gene
expression patterns [54], also permit the analysis of the presence of extracellular matrix
proteins and cell–cell interactions [57]. The latter is particularly relevant in that tight
junctions between different cell types within tumors can limit efficient drug penetration [58].
This study reports data from such a 3-D spheroid model which utilized live cell imaging
in conjunction with cytotoxicity assays to quantitatively analyze spheroid growth. Pep-1-
Phor21-mediated cytotoxicity was less efficient against spheroids (moderately higher IC50
values), and although the requirement for the penetrance of multiple cell layers could be
partly responsible for this observation, IL-13Rα2 mRNA expression was also moderately
reduced in spheroid-cultured cells (Figure S1). Indeed, given the rapid physical disruption
of spheroid integrity, we speculate that the latter observation forms the predominant
basis for the differences in cytotoxic effect observed between monolayer and spheroid
cultures. This reduction in IL-13Rα2 expression is potentially explained by the findings
of previous studies in that the central layers of multi-cellular spheroids were shown to
be hypoxic [59,60] and, notably, IL-13Rα2 mRNA expression in glioblastoma cells was
reportedly decreased under hypoxic conditions [61]. Whether hypoxia within the breast
cancer spheroids accounts for the moderate reduction in IL-13Rα2 expression requires
further investigation. Nevertheless, despite such obstacles, diffuse dead cell staining and
spheroid rupture were rapidly detectable post-treatment, indicating that Pep-1-Phor21
could efficiently penetrate breast cancer spheroids, selectively killing IL-13Rα2-expressing
tumor cells in the process.

Epigenetic changes, including DNA methylation and histone modifications, have
been linked to the progression of breast cancer with markedly different epigenetic profiles
discernible between the early and late stages of breast cancer [21–23]. Of note, it has been
shown that ER expression can be re-established in breast cancer cells through treatment
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with HDAC inhibitors [23], and we demonstrate in this study that IL-13Rα2 expression is
similarly regulated in that the inhibition of either histone deacetylation or DNA methylation
produced an upregulation of IL-13Rα2 expression, enhancing consequent susceptibility
to Pep-1-Phor21 treatment. Encouragingly, this modulation of IL-13Rα2 expression was
only demonstrable in malignant cells, pointing to potentially specific tumor cell targeting
when using Pep-1-Phor21 in combination with epigenetically active anti-cancer compounds.
The reason for this selective effect of epigenetic modifiers on breast cancer cells remains
unclear. However, studies on other cancers revealed that IL-13Rα2 expression requires
AP-1/c-jun signaling and this pathway was shown to be quiescent in non-malignant cells,
which, similar to the findings of this study, were refractory to HDAC inhibitor-induced
IL-13Rα2 expression [19]. Whether these specific signaling events also account for the
variable expression of IL-13Rα2 in the various sub-types of breast cancer requires further
study. It is also possible that combinations of epigenetically active drugs will more potently
upregulate IL-13Rα2 in breast cancer cells and, in this regard, it is notable that combination
therapy with 5-azacytidine and the HDAC inhibitor Entinostat is currently undergoing
evaluation in clinical trials as a therapy for advanced breast cancer [62].

5. Conclusions

We have shown that IL-13Rα2 exhibits potential as a therapeutic target, particularly
for TNBC types of breast cancer. Furthermore, IL-13Rα2-expressing cells are efficiently
targeted with Pep1-Phor21, even within solid spheroid cultures, consistent with the small
molecular weight of this type of drug and its rapid cytolytic mode of action. Importantly,
drug-induced cytolysis could be enhanced by treatment with epigenetically active anti-
cancer compounds, suggesting that the combination adjuvant therapy of Pep1-Phor21 with
such compounds may be a more effective treatment for non-TNBC-type tumors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15102772/s1, Figure S1: RT-PCR analysis of IL-13Ra2
mRNA expression in non-malignant (MCF-10A), non-TNBC (MCF-7), and TNBC (MDA-MB-231) cells
cultured either as monolayers (2-D) or as 3-D spheroids. RNA was extracted from cells after 3 days of
culture and subjected to RT-PCR using β-actin expression as a housekeeping control. Data = mean
value± SEM of three independent experiments (* p≤ 0.05), fold change relative to expression in MCF-
10A cells cultured as monolayers; Figure S2: Time-dependent analysis of breast non-tumor (MCF-10)
and cancer (MCF-7, and MDA-MB-231) cell growth using Alamar Blue assay. MCF-10A, MCF-7,
and MDA-MB-231 were seeded into a 96-well µClear® half area black plate at cell concentrations of
10,000, 20,000, 40,000, and 80,000 cells per well. After 24 h, the medium was replaced with a medium
containing Alamar Blue. Fluorescence was measured using 544 nm (excitation) and 590 nm (emission)
settings on a POLARstar Omega microplate reader (BMG LABTECH). Measurements were taken on
days 0, 1, 2, 3, and 4. File S1: original-images.
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