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Abstract: Bromodomain-containing protein 9 (BRD9) is a newly identified subunit of the 
non-canonical barrier-to-autointegration factor (ncBAF) complex and a member of the 
bromodomain family IV. Studies have confirmed that BRD9 plays an oncogenic role in 
multiple cancer types, by regulating tumor cell growth. The tumor biological functions of 
BRD9 are mainly due to epigenetic modification mediated by its bromodomain. The bro-
modomain recruits the ncBAF complex to the promoter to regulate gene transcription. This 
review summarizes the potential mechanisms of action of BRD9 in carcinogenesis and the 
emerging strategies for targeting BRD9 for cancer therapeutics. Although the therapeutic 
potential of BRD9 has been exploited to some extent, research on the detailed biological 
mechanisms of BRD9 is still in its infancy. Therefore, targeting BRD9 to study its biological 
roles will be an attractive tool for cancer diagnosis and treatment, but it remains a great 
challenge. 
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Introduction
The switch/sucrose non-fermentable (SWI/SNF) complex, a chromatin remodeling 
complex whose subunits are mutated in most malignant tumors, is one of the most 
common chromatin regulators in human malignancies.1 It is typically divided into 
two categories based on the subunit composition and function: the barrier-to- 
autointegration factor (cBAF) complex and polybromo-associated BAF (PBAF) 
complex. The core subunits of the cBAF complex are BAF250a (ARID1A) and 
BAF250b (ARID1B), and those of the PBAF complex are BAF180 (PBRM1) and 
BAF200 (ARID2).2,3 In addition to the core subunits, 7–15 auxiliary subunits such 
as BRM (SMARCA2), BRG1 (SMARCA4), BAF155 (SMARCC1), BAF170 
(SMARCC2), and BAF47 (SMARCB1) participate in the assembly of the SWI/ 
SNF complex.4 Numerous studies have established that the SWI/SNF complex is 
altered in many tumor types. For example, in malignant rhabdoid tumors 
(MRT),5–7 biallelic inactivation of SMARCB1 was first reported, and thereafter, 
in myoepithelial tumors8 and hepatoblastomas,9 repeated mutations were reported. 
In adenoid cystic carcinoma,10 SMARCA2, SMARCE1, and ARID1A genes were 
reported to be mutated. Several studies have revealed that SMARCA4 undergoes 
mutations at different frequencies in Burkitt’s lymphoma,11 lung 
adenocarcinoma,12 esophageal adenocarcinoma,13 and medulloblastoma.14–16 

Moreover, researchers have found that the mutation frequency of ARID1A, which 
encodes the BAF250a subunit, is high in hepatocellular carcinoma,12,17 gastric 

Correspondence: Yi Liao  
Tel +86-23-68765333  
Email science0528@163.com   

Liling Tang  
Tel +86-23-65102507  
Email tangliling@cqu.edu.cn

submit your manuscript | www.dovepress.com OncoTargets and Therapy 2020:13 13191–13200                                                         13191

http://doi.org/10.2147/OTT.S286867 

DovePress © 2020 Zhu et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php 
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

OncoTargets and Therapy                                                                    Dovepress
open access to scientific and medical research

Open Access Full Text Article

O
n

c
o

T
a

rg
e

ts
 a

n
d

 T
h

e
ra

p
y
 d

o
w

n
lo

a
d

e
d

 f
ro

m
 h

tt
p

s
:/

/w
w

w
.d

o
v
e

p
re

s
s
.c

o
m

/ 
o

n
 2

8
-A

u
g

-2
0

2
2

F
o

r 
p

e
rs

o
n

a
l 
u

s
e

 o
n

ly
.

http://orcid.org/0000-0001-6640-0857
mailto:science0528@163.com
mailto:tangliling@cqu.edu.cn
http://www.dovepress.com
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress
http://www.dovepress.com/permissions.php
http://www.dovepress.com


cancer,18,19 bladder cancer,20,21 colorectal cancer,22 pan-
creatic cancer,23 Burkitt’s lymphoma,11 and 
cholangiocarcinoma.24 Overall, these studies have indi-
cated that the SWI/SNF complex plays a critical role in 
the development and progression of human malignant 
tumors and could be a therapeutic target.

Notably, Wang et al25 defined a third category of the 
SWI/SNF complex in mouse stem cells: the non-canonical 
BAF (ncBAF) complex. BRD9 and glioma tumor suppres-
sor candidate gene 1 (GLTSCR1) or GLTSCR1-like 
(GLTSCR1L) are unique members of the ncBAF complex. 
In addition, the ncBAF complex contains the following 
BAF subunits: BAF155, BAF60, SS18, BAF53a, and 
BRG1/BRM.26 Moreover, the ncBAF complex has not 
been reported to mutate repeatedly in cancer, unlike the 
cBAF and pBAF complexes. A study reported that pros-
tate cancer cell line (PC3) proliferation and colony forma-
tion was dependent on GLTSCR1 expression, and 
knocking out GLTSCR1 could decreased PC3 cell prolif-
eration and colony formation.26 Meanwhile, another study 
demonstrated that BRD9 was highly expressed and 
required for in SMARCB1-deficient MRT cells.25 In addi-
tion, researchers found that the protein level of BRD9 was 
significantly increased in acute myeloid leukemia (AML) 
cells than in CD34+ cells.27 Kang et al28 confirmed the 
presence of BRD9 amplification on chromosome 5p in 
patients with non-small cell lung cancer (NSCLC) through 
high-resolution array comparative genomic hybridization 
analysis. A previous study revealed that the gene copy 
number of BRD9 was significantly increased in the 
5p15.33 region in 12.5% (2/16) of patients with papillary 
thyroid carcinoma.29 Similarly, based on single nucleotide 
polymorphism and fluorescence in situ hybridization ana-
lyses, Luigi Scotto et al30 demonstrated that BRD9 protein 
was overexpressed in cervical cancer. In addition, studies 
have demonstrated that BRD9 acted as a co-factor to 
stabilize the structure of the SS18-SSX fusion and to 
maintain its oncogenic transcription in synovial sarcoma 
(SS).31–33 These findings were in line with the finding that 
BRD9 and SS18-SSX were co-localized.34 Furthermore, 
BRD9 has been inextricably linked to inflammation and 
type 2 diabetes due to β-cell dysfunction.35–37 Wei et al38 

confirmed that BRD9 inhibitors could restore β-cell func-
tion and reduce inflammation to a certain extent. Based on 
Kyoto Encyclopedia of Genes and Genomes analysis and 
Gene Set Enrichment Analysis, researchers found that 
genes involved in oxidative phosphorylation and the ribo-
somal pathway were significantly upregulated in cancers 

with BRD9 amplification, such as liver cancer and 
sarcoma.39

Interestingly, BRD9 appears to play a significant role 
in tumor suppression. SF3B1 is an RNA splicing factor 
that is frequently mutated in various cancer types, such as 
myelodysplasia,40,41 chronic lymphocytic leukemia,42 and 
melanoma.43 Inoue et al44 suggested that mutant SF3B1 
recognized BRD9 introns and induced mis-splicing of 
BRD9, which ultimately led to the degradation of BRD9, 
and thus, promoted melanomagenesis. The whole exome 
sequencing revealed that BRD9 is one of the susceptibility 
genes for melanoma, and Gene Ontology analysis revealed 
that BRD9 is involved in cellular processes, such as DNA 
replication, DNA repair, and cell response to DNA 
damage stimuli.45 Furthermore, Park et al46 reported that 
the combination of BRD9 and lysine-specific histone 
demethylase 1 (LSD1) inhibitor may be a potential novel 
treatment for Merkel cell carcinoma (MCC), they claimed 
that LSD1 inhibition reduces the growth of MCC whereas 
inhibition reverses, at least partially, the anti-cancer benefit 
of LSD1 inhibition. Moreover, the AIPuFu database ana-
lysis revealed that BRD9 was differentially expressed in 
23 malignancies (Figure 1); however, the function of 
BRD9 in these tumor types is yet to be determined, 
which will be interesting and meaningful.

Overall, these studies have indicated that BRD9 plays 
a critical role in tumor development. It is essential to 
explore the molecular mechanism of BRD9 in cancer 
progression, and targeting BRD9 will provide new direc-
tions for disease prevention and treatment.

BRD9 Structure
BRD9 contains a bromodomain and a DUF3512 domain.27 

Although many researchers have focused on the bromodo-
main to determine the biological function of BRD9, few 
have studied the function of the DUF3512 domain. Till 
date, we only know that the DUF3512 domain is essential 
for the assembly of the ncBAF complex.25

“Epigenetics” first defined by Conrad Waddington, is 
a discipline that studies heritable changes in gene expres-
sion without involving changes in the nucleotide sequence 
of genes.47 These changes include DNA modifications 
(such as DNA methylation), covalent histone modifica-
tions (such as histone methylation, phosphorylation, acet-
ylation, and ubiquitination), and RNA-mediated gene 
silencing.48,49 Functional bromodomains, usually approxi-
mately to 100 amino acids in length, can specifically 
recognize acetylated lysine residues on histone tails, and 
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recruit different chromatin-modifying factors to specific 
sites to participate in transcription regulation.50,51 One 
common feature among all bromodomains: is that they 
have a hydrophobic pocket to which acetylated lysine 
residues bind. This hydrophobic region is formed between 
the helices αZ and αA (ZA loop) and between the helices 
αB and αC (BC loop).52 Histone acetylation is involved in 
protein stabilization,48 DNA repair,53 signal 
transduction,54 and post-translational modifications.55–57 

Studies have indicated that an acetylated lysine is recog-
nized and immobilized on a conserved asparagine residue 
in the hydrophobic pocket.58,59 The bromodomain family 
is divided into 8 subfamilies based on structural differ-
ences. BRD9, Bromodomain-containing protein 7 (BRD7), 
bromodomain and PHD finger containing 1 (BRPF1), bro-
modomain and PHD finger containing 2 (BRPF2), bromo-
domain and PHD finger containing 3 (BRPF3), ATPase 
family AAA domain containing 2 (ATAD2), and ATPase 
family AAA domain containing 2B (ATAD2B) belong to 
the bromodomain family IV.60 The BRPF1 protein is 
a component of the MOZ/HAT complex, and its bromo-
domain recognizes H2AK5ac, H4K12ac, H3K14ac, 
H4K8ac, and H4K5ac.61 BRPF2 and BRPF3 have high 
sequence similarity and are the subunits of the HBO1/HAT 
complex, which can acetylate histone H4.62 The HBO1/ 
HAT complex is reportedly involved in DNA transcription 
and replication, and these processes are inseparable from 
the contribution of BRPF2/BRPF3.63 Although ATAD2 
and ATAD2B are highly conserved, their functions appear 
to be quite different.64 ATAD2 is mainly located in repro-
ductive tissues,65,66 and its bromodomain can recognize 
H4K5ac,67 H4K12ac, and H4K5acK12ac;68 ATAD2B is 

expressed in neural tissues,69 and its bromodomain and 
histone ligand have not been fully studied. BRD7 and 
BRD9 are the subunits of the PBAF and ncBAF com-
plexes, respectively. Their bromodomains are highly 
homologous.70 However, their roles in tumor progression 
are quite different. BRD7 has been reported as a tumor 
suppressor,71 whereas BRD9 plays a role in cancer 
promotion.27 Although few biological ligands for the 
BRD9 bromodomain are known, BRD9 has been demon-
strated to bind to diacetylated H4K5acK8ac and dipropio-
nylated H4K5prK8pr.72

Potential Mechanisms of BRD9
BRD9-STAT5 Axis Participates in Tumor 
Progression
A recent study reported that the proliferation of AML cells 
depends on the function of BRD9.27 BRD9 is enriched in 
the downstream region of the MYC promoter and drives 
its transcription. Further analysis of this process revealed 
that the role of BRD9 in AML depends on the recognition 
of the acetyl lysine region by the bromodomain. Several 
studies have demonstrated that proteins containing bromo-
domains play a pivotal role in epigenetic regulation,73,74 

because the bromodomain specifically recognizes acety-
lated lysines of histones and other proteins.51,74 BRD9 is 
recruited to chromatin binding sites. Another study 
demonstrated that BRD9 was overexpressed in the AML 
cell line,75 and acted as a key regulator of AML occur-
rence. The study revealed that the BRD9-STAT5 axis 
played an important role in the occurrence and mainte-
nance of leukemia. In leukemia, BRD9 is overexpressed, 
and induces the activation of the signal transducer and 

Figure 1 The tumor types with BRD9 differential expression. BDR9 is highly expressed in 19 cancer types including CHOL, LIHC, and BRCA, but is lowly expressed in four 
cancer types, such as THYM, PAAD, GBM and PRAD. According to the AIPuFu database, the URL: http://www.aipufu.com/index.html.
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activator of transcription 5 (STAT5) pathway. The activa-
tion of STAT5 is known to promote the proliferation and 
survival of AML cells and the occurrence of 
inflammation.76–79 Currently, no clinically effective 
STAT5 inhibitor is available for the treatment of 
leukemia.80 Therefore, knocking down BRD9 to decrease 
the activation of STAT5 and induce apoptosis through the 
Caspase8 signaling cascade may be a possible therapeutic 
strategy.

miR-140-3p-BRD9 Axis Participates in 
Tumor Progression
Lung cancer is one of the malignant tumors with high 
morbidity and mortality.81 It is divided into three sub-
classes: lung carcinoid, Squamous cell lung cancer 
(SCLC) and NSCLC.82 SCLC is a histological subtype 
of NSCLC. Patients with SCLC accounts for approxi-
mately one-third of those with NSCLC.83 However, no 
clinically effective, targeted therapeutic strategy for 
SCLC has been found. Many studies have demonstrated 
that the differential expression of miRNAs in lung cancer 
makes miRNAs carcinogenic or suppressive. For example, 
in lung cancer, miR-342-3p84 and miR-30d-5p85 are inhib-
ited in lung cancer, whereas miR-29b,86 hsa-miR-3180, 
and miR-14,081 are highly expressed. Huang et al87 

demonstrated that miR-140-3p was downregulated in 
NSCLC cells and tissues, and regulated the process of 
NSCLC by directly targeting BRD9. A negative correla-
tion exists between the expression level of BRD9 and that 
of miR-140-3p. miR-140-3p directly targets BRD9 
mRNA, inhibiting its protein translation and consequently 
downregulating the expression level of C-myc, and sup-
pressing the proliferation of SCLC. Therefore, the miR- 
140-3p-BRD9 axis may be a promising therapeutic 
approach for the clinical treatment of SCLC.

Interaction Between the 
Phosphatidylinositol 3-Kinase Pathway 
and the Mitogen-Activated Protein Kinase 
Pathway Induces BRD9 Expression to 
Participate in Tumor Progression
Usually, tumor formation is closely related to 
a combination of multiple oncogenes or multiple onco-
genic processes. A study reported that the activation of 
the phosphatidylinositol 3-kinase (PI3K) pathway was 
closely related to a variety of tumor biological processes, 

such as tumor cell proliferation, migration, metabolism, 
and other important processes.88 The PI3KCA gene cata-
lyzes the activation of PI3K.89 Studies have demonstrated 
that the kirsten rat sarcoma (KRAS) and PIK3CA genes are 
significantly associated with colorectal cancer,90 lung 
cancer,91 and breast cancer,92–94 and their common muta-
tions drive the malignant transformation. KRAS plays an 
indispensable role in the activation of the mitogen- 
activated protein kinase pathway.95 A study96 used double 
knock-in (DKI) breast epithelial (MCF-10A) cells harbor-
ing PIK3CA and KRAS to explore the interaction between 
PIK3CA and KRAS, and found that the carcinogenicity of 
KRAS-PIK3CA was because the KRAS-PIK3CA interac-
tion induced the expression of BRD9. BRD9 regulated the 
proliferation and migration of DKI MCF-10A cells by 
combining with the MYC promoter.

Cancer Therapeutics for Targeting 
BRD9
Recently, the BET family has been extensively studied as 
a therapeutic target, and bromodomain inhibitors as anti-
tumor agents have demonstrated remarkable clinical 
effect.97–101 Bromodomain inhibitors are divided into two 
categories: non-acetylated, and acetylated lysine mimetics. 
The former is a weak inhibitor, whereas the latter directly 
mimics the binding of an acetylated lysine to the bromo-
domain and competitively inhibits the binding of acety-
lated lysine residues to the hydrophobic binding pocket of 
the bromodomain.60 Gradually, as the biological function 
of BRD9 in tumorigenesis becomes clear, targeting the 
bromodomain of BRD9 will become a new and effective 
tumor treatment method. For example, small-molecule 
inhibitors of the BRD9 bromodomain selectively suppress 
tumor cell proliferation and survival and induce 
apoptosis.27,75,102,103 Indeed, scientists have researched 
and developed several effective BRD9 bromodomain inhi-
bitors, such as BRD9 selective inhibitors (I-BRD9,104 BI- 
7273,105 and BI-9564106) and BRD7/9 inhibitors.107,108 

LP99 is the first reported selective BRD7/9 inhibitor that 
effectively inhibits the binding of BRD7/9 to acetylated 
histones in vivo and in vitro; Moreover, LP99 inhibits the 
secretion of proinflammatory cytokine IL-6. These results 
suggest a role of BRD9 in inflammation.109 Notably, the 
probe compound of BRD9 designed by Crawford et al110 

can inhibit the expression of the drug resistance gene 
aldehyde dehydrogenase 1 family member A1 
(ALDH1A1). Interestingly, both ALDH1A1 and its 
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promoter are involved in the regulation of 
acetylation,111,112 whereas the relationship between BRD9 
and cancer resistance has not been described before. BRD9 
inhibitors, BI-7273 and BI-9564, used to investigate the 
biological functions of BRD9 in vivo and in vitro were 
proven to be non-toxic by fragment-based screening.105,106 

Based on the structural design, I-BRD9 has been identified 
as a selective cytochemical probe for BRD9.113 In addition, 
I-BRD9 downregulates cancer and immunology-related 
genes, such as SAMSN1,114 CLEC1,115 FES,116 and 
DUSP6.117 Studies on the selection mechanism of 
I-BRD9 for the BRD9 bromodomain have demonstrated 
that several residues in the ZA and ZB loops of the bro-
modomain, such as Asp144, Ile53, Lys91, Thr104, Pro82, 
Asn140, Asn100, and Phe44, can be used as important 
references for designing BRD9 inhibitors.104 The imidazo 
[1,5-a] pyrazin-8 (7H) -one derivative was designed and 
synthesized using the interaction of the inhibitor with the 
Asn and Tyr residues to inhibit BRD9 activity.118

In addition to the synthesis and design of protein inhibi-
tors, targeting protein degradation by hijacking the ubiquitin- 
proteasome system can be another therapeutic strategy.119,120 

Encouragingly, Remillard et al121 designed the heterobifunc-
tional ligand dBRD9, a direct chemical degrader for BRD9, 
which linked the BRD9 bromodomain and the cereblon E3 
ubiquitin ligase complex. Thereafter, they designed VZ185, 
a highly effective and fast degrader for BRD9.122 A previous 
study confirmed that BRD9 protein degraders are more 
effective than BRD9 bromodomain inhibitors.123 These 

data suggest that in addition to the bromodomain, other 
uncharacterized domains play vital roles in cancer.

Conclusion
Recently, the role of the SWI/SNF complex has been 
extensively studied in various malignant cancers. 
Repeated mutations in the subunits of the SWI/SNF com-
plex in cancer make it a promising therapeutic target. 
Based on different subunit combinations, the SWI/SNF 
complex is classified into three categories: the cBAF, 
PBAF, and ncBAF complexes. The ncBAF complex lacks 
SNF5 and ARID subunits. BRD9 is one of the subunits that 
make up the ncBAF complex and is a member of the 
bromodomain family IV. BRD9 has been found to be over-
expressed in malignant cancers, such as MRT, AML, SS, 
and SCLC. BRD9 is especially important for maintaining 
the growth and proliferation of MRT and AML cells. 
Meanwhile, BRD9 plays an anti-tumor role in melanoma 
and MCC. BRD9 is closely related to the biological pro-
cesses of cells, such as cell proliferation and apoptosis 
(Figure 2). It consists of a bromodomain and a DUF3512 
domain. The deletion of the DUF3512 domain affects the 
assembly of the ncBAF complex. The bromodomain is 
required for the biological functions of BRD9 during 
tumor formation. Bromodomain-containing proteins are 
involved in epigenetic regulation. The regulatory mechan-
ism involves the binding of the bromodomain to acetylated 
lysine residues on histones and non-histones, and the 
recruitment of molecular chaperones to regulate gene 

Figure 2 The potential mechanism of BRD9. BRD9 regulates tumor progression through the miR-140-3P-BRD9 axis and BRD9-STAT5 axis. BRD9 inhibitors and degraders 
can disrupt the tumor process. (The yellow lines in the figure represent the promotion between molecules, and the red lines represent the inhibition between molecules.).
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transcription. Therefore, understanding the function of the 
bromodomain will aid in understanding the complex bio-
logical functions of BRD9. Currently, two treatment stra-
tegies targeting BRD9 are available. First, designing 
inhibitors to prevent the binding of bromodomains to 
acetylated lysine residues; and second, designing protein 
degraders to degrade proteins and inhibit their activity. 
Although the bromodomain inhibitors and degraders have 
demonstrated good therapeutic effect only to some extent, 
their great potential in cancer treatment has been demon-
strated. However, the detailed mechanisms of the biologi-
cal functions of BRD9 are unclear. We intend to focus on 
these mechanisms in our future research.
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