
To Appear in KDD-98

Targeting Business Users with Decision Table Classifiers

Ron Kohavi and Daniel Sommerfield
Data Mining and Visualization

Silicon Graphics, Inc.
2011 N. Shoreline Blvd

Mountain View, CA 94043-1389
{ronnyk,sommda}@engr.sgi.com

Abstract

Business users and analysts commonly use spread-
sheets and 2D plots to analyze and understand their
data. On-line Analytical Processing (OLAP) provides
these users with added flexibility in pivoting data
around different attributes and drilling up and down
the multi-dimensional cube of aggregations. Machine
learning researchers, however, have concentrated on hy-
pothesis spaces that are foreign to most users: hyper-
planes (Perceptrons), neural networks, Bayesian net-
works, decision trees, nearest neighbors, etc. In this
paper we advocate the use of decision table classifiers
that are easy for line-of-business users to understand.
We describe several variants of algorithms for learn-
ing decision tables, compare their performance, and
describe a visualization mechanism that we have im-
plemented in MineSet. The performance of decision
tables is comparable to other known algorithms, such
as C4.5/C5.0, yet the resulting classifiers use fewer at-
tributes and are more comprehensible.

Introduction
About two years ago we met with a director in charge
of sales analysis and forecasting at our company. We
extracted actual data and showed him and his team
(“the clients”) some data mining and visualization anal-
yses using two classifier models: decision trees and
Naive Bayes. The dataset we used was relatively large
for common machine learning techniques at the time:
about one million records with 70 attributes each. The
decision tree visualizer we used was interactive and al-
lowed fly-throughs over the model in order to cope with
large trees that were created, commonly with thousands
of nodes. The Naive Bayes visualizer also provided a
visual display of the classifier, but the model was less
complex, containing only a few visual elements for each
attribute and its size was independent of the number of
records (other than indirectly through discretization of
continuous attributes). After several meetings with the
clients, we made the following observations:

1. It took longer than we thought to explain to the
clients what the models mean.

Copyright c© 1998, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

2. The clients found the Naive Bayes classifier the much
more interesting of the two. It was relatively easy for
them to understand how an attribute value changes
the label probabilities. However, they soon realized
the “naive” nature of this model, which assumes con-
ditional independence of the attributes given the la-
bel. They still thought of it as a powerful tool, but
they themselves were looking at interactions through
spreadsheets and OLAP analysis, and those patterns
that they were finding “the hard way” could not be
seen in the Naive Bayes model.

3. The clients found some interesting patterns in the de-
cision trees, but they did not feel the structure was
natural for them. They were looking for those two
or three attributes and values (e.g., a combination of
geographies and industries) where something “inter-
esting” was happening. In addition, they felt it was
too limiting that the nodes in a decision tree repre-
sent rules that all start with the same attribute.

In response to the above observations, we considered
several possibilities and chose a spreadsheet-like classi-
fier model that can be presented visually. This direc-
tion was reinforced when the director mentioned in one
of the meetings that he wanted a Karnaugh-like map
of his data—a map commonly used to present Boolean
functions visually and which has been extended to non-
Boolean functions by several authors (Michalski 1978;
Wnek & Michalski 1994; LeBlank, Ward, & Wittels
1990) under the names General Logic Diagrams and
Dimensional Stacking. At the time, a new On-Line An-
alytical Processing (OLAP) system was being fielded
in our company, and our clients found the projections
of multi-dimensional cubes onto spreadsheets very in-
tuitive. Our prior work with decision tables (Kohavi
1995a; 1995b) and General Logic Diagrams (Kohavi,
Sommerfield, & Dougherty 1997) was encouraging and
we decided to develop the algorithm and the visualiza-
tions further. The prior work built decision tables by
conducting a wrapper-based attribute selection, start-
ing from the empty set of attributes.
Our contributions in this paper include:

1. A fast attribute selection mechanism based on en-
tropy.



2. A new mechanism for handling instances not found
in the decision table that has a desirable property
of breaking in favor of a local neighborhood (unlike
the global majority rule used in the original work on
decision tables).

3. A different way of storing the data using an oblivious
decision tree structure (Kohavi & Li 1995), which not
only provides an efficient structure for building deci-
sion tables, but also provides support for the above
mechanism and extends much better to parallel im-
plementations.

4. An empirical evaluation of several variants for select-
ing attributes.

5. A description of an interactive visualizer for decision
table classifiers.

The Decision Table Classifier
Given a training set of labeled instances, an induction
algorithm builds a classifier. We describe two variants
of decision table classifiers based conceptually on a sim-
ple lookup table. The first classifier, called DTMaj
(Decision Table Majority) returns the majority of the
training set if the decision table cell matching the new
instance is empty, i.e., it does not contain any training
instances. The second classifier, called DTLoc (Deci-
sion Table Local), is a new variant that searches for
a decision table entry with fewer matching attributes
(larger cells) if the matching cell is empty. This variant
therefore returns an answer from the local neighbor-
hood, which we hypothesized will generalize better for
real datasets that tend to be smooth, i.e., small changes
in a relevant attribute do not result in changes to the
label.

For the rest of this paper, we assume the attributes
are discrete. In our experiments, we pre-discretized the
data as described in Fayyad & Irani (1993) and Kohavi
& Sahami (1996), where the discretization thresholds
are determined based only on the training set and then
applied to the test set.

The Functional Definition

A decision table has two components:

1. A schema, which is a list of attributes1.

2. A body, which is a multiset of labeled instances.
Each instance consists of a value for each of the at-
tributes in the schema and a value for the label. The
set of instances with the same values for the schema
attributes is called a cell.

Given an unlabeled instance, ~x, the label assigned to
the instance by a decision table classifier is computed as
follows. Let I be the set of labeled instances in the cell
that exactly matches the given instance ~x, where only
the attributes in the schema are required to match and
all other attributes are ignored. If I 6= ∅, return the

1We require a list here and not a set as in Kohavi (1995b)
to support DTLoc.

majority class in I, breaking ties arbitrarily. Otherwise
(I = ∅), the behavior depends on the type of decision
table used:

1. A DTMaj returns the majority class in the decision
table.

2. A DTLoc removes attributes from the end of the list
in the schema and tries to find matches based on
fewer attributes until one or more matches are found
and their majority label is returned. This increases
the cell coverage until training instances match ~x.

Unknown values are treated as distinct values in the
matching process.

Given a dataset and a list of attributes for the
schema, a decision table is well defined functionally. Be-
fore we describe how to choose the list of attributes (the
induction step), we show how a DTLoc can be imple-
mented efficiently, i.e., we show how one can quickly
find the exact set of instances matching the largest pre-
fix of attributes in the schema.

The Implementation of the Decision Table
Classifier
A decision table can be stored in different data struc-
tures. A DTMaj can be implemented in a universal
hash table. Such a hash table provides very efficient
insert-instance and classify-instance operations, but a
DTLoc is harder to implement this way efficiently.

A DTLoc requires that we use smaller subsets of the
list if an instance is not found. The data structure we
used to implement this is an oblivious decision tree,
a structure similar to a decision tree except that at a
given level, every node tests the same attribute. As
in decision trees, leaves are labeled with the majority
class. Given an instance, a DTLoc classifier traces the
path from the root to a leaf, branching according to
the attribute values, and predicting the label at the leaf.
Because empty nodes are never created, this data struc-
ture provides an efficient implementation of the DTLoc.
The leaf represents the majority class for the instances
matching the longest prefix of the schema attributes.

Inducing Decision Tables
The task of the inducer is to find the optimal list of
attributes for the schema, i.e., the list of attributes such
that the decision table created from this list will have
the lowest possible error on the population from which
the training set was sampled.

Unlike previous work, which used the wrapper ap-
proach (Kohavi 1995a; Kohavi & John 1997), we chose
a much faster entropy-based attribute selection. This
methods finds the attribute that maximizes the mu-
tual information for each level of the oblivious tree as
described in Kohavi & Li (1995). Splitting continues
until the leaves are pure or until more than 200,000
leaves are required. The error for each oblivious tree is
estimated using cross-validation or holdout depending
on the size of the training set: below 5000 records 10-
fold cross-validation is used and above 5000 records a



1/3 holdout is used. The oblivious tree with the lowest
estimated error is chosen.

Because entropy is known to favor multi-way splits
(Cover & Thomas 1991; Quinlan 1993), we tested a
related variant, normalized mutual information,
which penalizes multi-way splits by dividing the gain
from the root by log `, where ` is the number of leaves.

During our initial experiments, we observed large dif-
ferences in error rates between the two approaches, yet
neither was significantly better on most datasets. We
therefore decided to run both methods and choose the
one that has lower estimated error on the training set
(the test set is never used). We found that this worked
well and usually selected the version that actually had
the lower estimated error on the test set.

Empirical Evaluation
We conducted an empirical evaluation of the induction
algorithms on several datasets from the UCI reposi-
tory (Merz & Murphy 1998). We chose the larger
datasets available, mostly natural but also a few ar-
tificial ones (m-of-n and the monk problems). The ar-
tificial datasets were tested on the given training and
test sets. The natural datasets were evaluated using 10-
fold cross-validation if the file size was less than 3,000
records (to ensure a small standard deviation of the
mean estimated error) and using 1/3 holdout if the file
size was over 3,000 records. We compared the following
algorithms:

C4.5 This is the well-known decision tree algorithm by
Quinlan (1993). We used release 8, the latest avail-
able. We also ran C5.0, which is a commercial suc-
cessor to C4.5, but the differences were very minor
and we could not easily parse the C5.0 trees in their
binary format to determine the number of attributes
used.

DTMaj-O Decision tables with majority predictions
for unknown cells. The “O” indicates the automated
“optimal” choice (based on the training set only) be-
tween the set of attributes suggested by mutual in-
formation and normalized mutual information.

DTLoc-O Same as DTMaj-O, except that the major-
ity predictions are replaced by local predictions.

Figure 1 shows a comparison of the above algorithms.
Between the two decision table variants, statistically
significant differences at the 95% confidence include2:
DTLoc is superior for m-of-n, segment, shuttle; DTMaj
is superior for monk1 and monk2.

Comparing C4.5 and DTLoc, statistically significant
differences occur include: C4.5 is superior for breast-
cancer (Ljubljana), letter, nursery, satimage; DTLoc is
superior for breast (Wisconsin), cleve, german, m-of-n,
monk1, and monk2-local.

We hypothesize that decision tables will generally be
inferior for multi-class problems because the need to

2The standard deviations are not given here due to lack
of space, but they were computed.

chose a split across a level forces compromises. Letter
has 26 classes, nursery has five, satimage has seven, seg-
ment has seven. We further hypothesize that decision
tables will generally be superior in noisy domains where
using the whole dataset for each choice of attribute en-
sures stability.

Decision tables use dramatically fewer attributes
than C4.5 in most datasets. In fact, it is quite surpris-
ing to see how well decision tables perform with five
or fewer attributes. Out of 16 natural datasets, only
DNA and german used more than five attributes (chess
is semi-natural) with DTMaj, and only DNA and letter
used more than seven attributes with DTLoc. Such rel-
atively small classifiers can be understood by humans,
especially if coupled with a good visualizer.

Running times for DTMaj and DTLoc were simi-
lar. The longest runs were for Adult and Letter, which
took about 12 minutes each on a 195Mhz R10K Silicon
Graphics Origin.

In addition to the above experiments, we also tried
forward search using the wrapper approach and a vari-
ant that starts the wrapper search from the attributes
selected using entropy. The error rates were slightly
lower, but perhaps not enough to warrant the run-
time difference. Because these completely different ap-
proaches achieved very similar error rates, we believe
that the induction algorithms are finding nearly opti-
mal attribute subsets.

Visualizing Decision Tables

Decision table classifiers can have hundreds or thou-
sands of cells on medium to large datasets. If the ta-
ble has 5 attributes, each with 4 values, then the table
might have 45 = 1024 cells3. It is unrealistic to expect
that users will want to look at such a table at this level
of detail without seeing coarser views of the data first.

Figure 2 shows two snapshots of an interactive deci-
sion table visualizer. On the left, the visualizer shows
the top-level coarse split based on the first two at-
tributes in the schema. For each intersection of the
attribute values, a cake is shown with slice sizes repre-
senting the class distribution for those two attributes.
In addition to the slices, the cake has a height, which
is relative to the number of records for that intersec-
tion. The user can click on any set of cakes and the
display will show the next pair of attributes, providing
drill-downs to the area of interest as shown on the right.

Intersections that do not have data are shown in the
background color in order to show where data is miss-
ing and help identify correlations and functional depen-
dencies. The ability to see contiguous areas with simi-
lar cake distributions allows users to quickly generalize
(e.g., similar cakes across three ranges of TSH for FTI
between 48.5 and 64.5 shown in Figure 2 on the left).

3This is an upper bound. In practice, the number is
usually significantly lower due to correlations in the data
and lack of sufficient data.



C4.5

DTMaj

DTLoc
ad

ul
t

br
ea

st

br
ea

st
-c

an
ce

r

ch
es

s

cl
ev

e

cr
x

D
N

A

ge
rm

an

ho
rs

e-
co

lic

hy
po

th
yr

oi
d

le
tte

r

m
of

n-
3-

7-
10

m
on

k1

m
on

k2
-lo

ca
l

m
on

k3

nu
rs

er
y

pi
m

a

sa
tim

ag
e

se
gm

en
t

si
ck

-e
ut

hy
ro

id

sh
ut

tle
*3

0

P
er

ce
nt

 e
rr

or

0.00

10.00

20.00

30.00

40.00

C4.5

DTMaj

DTLoc

ad
ul

t

br
ea

st

br
ea

st
-c

an
ce

r

ch
es

s

cl
ev

e

cr
x

D
N

A

ge
rm

an

ho
rs

e-
co

lic

hy
po

th
yr

oi
d

le
tte

r

m
of

n-
3-

7-
10

m
on

k1

m
on

k2
-lo

ca
l

m
on

k3

nu
rs

er
y

pi
m

a

sa
tim

ag
e

se
gm

en
t

si
ck

-e
ut

hy
ro

id

sh
ut

tle

N
um

be
r 

of
 a

ttr
ib

ut
es

0

5

10

15

20

25

Figure 1: The percent error and number of attributes used in the model for C4.5 and several variants of decision tables (lower
is better in both figures). Shuttle*30 has error multiplied by 30 for the appropriate scale. C4.5 used 46 attributes for DNA
and 36 for Satimage (both extend beyond the axis).

Figure 2: Visualizations of a decision table for the hypothyroid dataset. The left figure shows the top-level view with two
attributes: FTI and TSH. Users can see that several intersections are empty: high TSH values imply unknown FTI (probably
not measured), and that most data is in the low range of TSH (below 6.3). High values for FTI (above 64.5) are negative
hypothyroid with high probability (dark gray). The interesting intersections are for low FTI and high TSH. Drilling down on
the middle cake yields the figure on the right, which shows pure intersections once two more variables are taken into account
(query hypothyroid and t3). This is a relatively easy model to comprehend.



Future Work

Our work can be naturally extended in several areas.
The discretization is done only once at the beginning,
but could be done at each level in order to capture
interactions better. Our handling of unknowns (as a
value) is simple and more complex algorithms, such as
those employed in C4.5/C5.0 can be used.

We used decision tables for classification, but regres-
sion is a possible extension. The visualizer naturally ex-
tends to regression, but the entropy-based attribute se-
lection needs to be replaced by another criteria since it
relies on discrete labels. Common regression-tree mea-
sures (Breiman et al. 1984) might work well.

Techniques for multiple model generation, such as
Bagging Boosting, or Option Trees might be helpful,
especially if they yield different top-level attributes and
users can select between them.

Summary

Early work on decision tables (Kohavi 1995a) was
promising but was too slow for common use because
it was based on a forward selection of attributes using
the wrapper model. Our research showed that entropy-
based methods, which are much faster, are practically
indistinguishable from their more expensive predeces-
sors for error minimization.

We showed that for many of the larger datasets
from UCI, a very small number of attributes suffices to
achieve comparable accuracy to C4.5, our benchmark
algorithm. This observation reinforces claims by Holte
(1993) that on natural datasets, a few attributes usually
suffice for accurate classifications. When few attributes
were used, few test instances ended in empty cells, thus
performance differences between global and local han-
dling were small.

Coupled with a good visualizer, decision table clas-
sifiers are easy for business users to understand and
provide a natural complement to spreadsheets and on-
line analytical processing tools that are commonly used
in business settings. Decision tables move us a step
forward in satisfying one of the main goals of data
mining—improved time to insight.

Acknowledgments We would like to thank Barry
Becker for his design and implementation of the
decision-table visualizer and Jay Desouza for his ini-
tial work on writing the oblivious-decision-tree based
decision tables. Jay Desouza was funded by Silicon
Graphics for his work. We wish to thank Rick Kufrin
from NCSA for his initial help. The work for this pa-
per was done using MLC++ (Kohavi, Sommerfield, &
Dougherty 1997).

References

Breiman, L.; Friedman, J. H.; Olshen, R. A.; and
Stone, C. J. 1984. Classification and Regression Trees.
Wadsworth International Group.

Cover, T. M., and Thomas, J. A. 1991. Elements of
Information Theory. John Wiley & Sons.

Fayyad, U. M., and Irani, K. B. 1993. Multi-interval
discretization of continuous-valued attributes for clas-
sification learning. In Proceedings of the 13th Inter-
national Joint Conference on Artificial Intelligence,
1022–1027. Morgan Kaufmann Publishers, Inc.

Holte, R. C. 1993. Very simple classification rules per-
form well on most commonly used datasets. Machine
Learning 11:63–90.

Kohavi, R., and John, G. H. 1997. Wrappers for
feature subset selection. Artificial Intelligence 97(1-
2):273–324.

Kohavi, R., and Li, C.-H. 1995. Oblivious decision
trees, graphs, and top-down pruning. In Mellish, C. S.,
ed., Proceedings of the 14th International Joint Con-
ference on Artificial Intelligence, 1071–1077. Morgan
Kaufmann.

Kohavi, R., and Sahami, M. 1996. Error-based and
entropy-based discretization of continuous features. In
Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining, 114–119.

Kohavi, R.; Sommerfield, D.; and Dougherty, J. 1997.
Data mining using MLC++: A machine learning li-
brary in C++. International Journal on Artificial In-
telligence Tools 6(4):537–566.
http://www.sgi.com/Technology/mlc.

Kohavi, R. 1995a. The power of decision tables. In
Lavrac, N., and Wrobel, S., eds., Proceedings of the
European Conference on Machine Learning, Lecture
Notes in Artificial Intelligence 914, 174–189. Berlin,
Heidelberg, New York: Springer Verlag.
http://robotics.stanford.edu/~ronnyk.

Kohavi, R. 1995b. Wrappers for Performance En-
hancement and Oblivious Decision Graphs. Ph.D. Dis-
sertation, Stanford University, Computer Science de-
partment. STAN-CS-TR-95-1560,
http://robotics.Stanford.EDU/˜ronnyk/teza.ps.Z.

LeBlank, J.; Ward, M.; and Wittels, N. 1990. Explor-
ing n-dimensional databases. In Proceedings of Visu-
alization, 230–237.

Merz, C., and Murphy, P. 1998. UCI repository of
machine learning databases.

Michalski, R. S. 1978. A planar geometric model
for representing multidimensional discrete spaces and
multiple-valued logic functions. Technical Report
UIUCDCS-R-78-897, University of Illinois at Urbaba-
Champaign.

Quinlan, J. R. 1993. C4.5: Programs for Machine
Learning. San Mateo, California: Morgan Kaufmann.

Wnek, J., and Michalski, R. S. 1994. Hypothesis-
driven constructive induction in AQ17-HCI : A
method and experiments. Machine Learning
14(2):139–168.


