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Abstract Abstract 
Complement-mediated inflammation exacerbates the tissue injury of ischaemic necrosis in heart attacks 
and strokes, the most common causes of death in developed countries. Large infarct size increases 
immediate morbidity and mortality and, in survivors of the acute event, larger non-functional scars 
adversely affect long-term prognosis. There is thus an important unmet medical need for new 
cardioprotective and neuroprotective treatments. We have previously shown that human C-reactive 
protein (CRP), the classical acute-phase protein that binds to ligands exposed in damaged tissue and 
then activates complement1, increases myocardial and cerebral infarct size in rats subjected to coronary 
or cerebral artery ligation, respectively2,3. Rat CRP does not activate rat complement, whereas human 
CRP activates both rat and human complement4. Administration of human CRP to rats is thus an 
excellent model for the actions of endogenous human CRP2,3. Here we report the design, synthesis and 
efficacy of 1,6-bis(phosphocholine)-hexane as a specific small-molecule inhibitor of CRP. Five molecules 
of this palindromic compound are bound by two pentameric CRP molecules, crosslinking and occluding 
the ligand-binding B-face of CRP and blocking its functions. Administration of 1,6-bis(phosphocholine)-
hexane to rats undergoing acute myocardial infarction abrogated the increase in infarct size and cardiac 
dysfunction produced by injection of human CRP. Therapeutic inhibition of CRP is thus a promising new 
approach to cardioprotection in acute myocardial infarction, and may also provide neuroprotection in 
stroke. Potential wider applications include other inflammatory, infective and tissue-damaging conditions 
characterized by increased CRP production, in which binding of CRP to exposed ligands in damaged cells 
may lead to complement-mediated exacerbation of tissue injury. 
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Complement-mediated inflammation exacerbates the tissue injury of ischaemic necrosis in heart attacks and 
strokes, the most common causes of death in developed countries. Large infarct size increases immediate 
morbidity and mortality and, in survivors of the acute event, larger non-functional scars adversely affect 
long-term prognosis. There is thus an important unmet medical need for new cardioprotective and 
neuroprotective treatments. We have previously shown that human C-reactive protein (CRP), the classical 
acute-phase protein that binds to ligands exposed in damaged tissue and then activates complement1, 
increases myocardial and cerebral infarct size in rats subjected to coronary or cerebral artery ligation, 
respectively2,3. Rat CRP does not activate rat complement, whereas human CRP activates both rat and 
human complement4. Administration of human CRP to rats is thus an excellent model for the actions of 
endogenous human CRP2,3. Here we report the design, synthesis and efficacy of 1,6-bis(phosphocholine)-
hexane as a specific small-molecule inhibitor of CRP. Five molecules of this palindromic compound are 
bound by two pentameric CRP molecules, crosslinking and occluding the ligand-binding B-face of CRP and 
blocking its functions. Administration of 1,6-bis(phosphocholine)-hexane to rats undergoing acute 
myocardial infarction abrogated the increase in infarct size and cardiac dysfunction produced by injection of 
human CRP. Therapeutic inhibition of CRP is thus a promising new approach to cardioprotection in acute 
myocardial infarction, and may also provide neuroprotection in stroke. Potential wider applications include 
other inflammatory, infective and tissue-damaging conditions characterized by increased CRP production, in 
which binding of CRP to exposed ligands in damaged cells may lead to complement-mediated exacerbation 
of tissue injury. 
 
No inhibitors of calcium-dependent binding of human CRP to phosphocholine, the natural ligand for which 
it has highest affinity, were detected in a screen of the comprehensive 500,000 small-molecule library of a 
pharmaceutical company. We therefore rationally designed novel ligands for CRP based on the crystal 
structure of the CRP–phosphocholine complex5 and the structure of a potent drug we have developed that 
targets the homologous protein, serum amyloid P component (SAP)6. The SAP inhibitor consists of two D-
proline residues linked by a hexanoyl chain, and the SAP–drug complex contains two SAP molecules 
crosslinked by five drug molecules, with each D-proline located in the calcium-dependent ligand-binding 
pocket of an SAP protomer6. 
 
In the CRP–phosphocholine complex, one phosphocholine molecule is positioned parallel to the pentamer 
surface on each of the five CRP subunits, and is oriented with the choline moieties, pinned between Glu 81 



and Phe 66, towards the fivefold axis5. Two oxygen atoms of the phosphocholine phosphate group directly 
coordinate the two bound calcium ions of CRP, but the third is oriented away from the protein surface5, 
providing a suitable exit point to direct a crosslinking chain towards a putative twofold-axis-related subunit 
of an adjacent CRP pentamer. We selected a six-carbon linker to connect the phosphate groups, expecting a 
greater separation between binding sites of a putative CRP decamer caused in part by rotation of ~20o of 
each CRP subunit towards the fivefold axis of the pentamer compared to SAP. This new chemical entity, 
composed of two phosphocholines with a hexane linker, 1,6-bis[{[(trimethylammonium) 
ethoxy]phosphinyl}-oxy]hexane, colloquially 1,6-bis(phosphocholine)-hexane (bis(PC)-H, Fig. 1), was 
synthesized at high yield (see Supplementary Information). 
 
 
 

 
 
Figure 1. Synthesis and structure of  bis-phosphocholine compounds. a. Synthesis and structure of 
bis(phosphocholine)-hexane. b. Structures of bis-phosphocholine compounds with different linkers. See 
Supplementary Information. 
 
Bis(PC)-H was bound by human CRP in a calcium-dependent manner in physiological saline solution, with 
a dissociation constant (Kd) of ~300nM by isothermal titration calorimetry. Bis(PC)-H inhibited calcium-
dependent binding of CRP to all of its other known ligands, including phosphoethanolamine, modified 
lowdensity lipoprotein, and late apoptotic or necrotic cells. The IC50 for inhibition by bis(PC)-H of CRP 
binding to immobilized pneumococcal C-polysaccharide was ~2 µM, compared to ~20 µM for free 
phosphocholine. Bis(PC)-H also blocked complement activation by human CRP and C-polysaccharide in 



human serum. In mixtures of drug and CRP at molar ratios between 1:1 and 1:1,000 with respect to CRP 
protomers, all CRP molecules became associated in pairs, as shown by size-exclusion chromatography, 
electron microscopy and mass spectrometry (Fig. 2). Addition of bis(PC)-H to isolated CRP, or to CRP in 
whole serum, resulted in disappearance of CRP immunoreactivity using a monoclonal antibody assay 
(Roche) specific for a calcium-dependent epitope on the binding (B) face of the CRP molecule7, suggesting 
that this epitope was occluded in the CRP–drug complex. The IC50 was at the ratio of three bis(PC)-H per 
two pentameric CRP molecules. Covalent crosslinking of CRP molecules in the CRP–drug complex, 
followed by fragmentation and mass spectrometric analysis (data not shown), confirmed the B face–B face 
association. 
 
The X-ray crystal structure of the CRP–bis(PC)-Hcomplex revealed two pentameric CRP molecules lying 
face-to-face with a common fivefold symmetry axis, crosslinked via their phosphocholine-binding sites by 
five drug molecules (Fig. 3; see Supplementary Information). The CRP pentamers are displaced by a relative 
rotation of 20o about this axis, separating the binding sites by 15Å and inclining the axis of the bound 
bis(PC)-H from that of the protein complex. The structures of the protein subunits and the bound 
phosphocholine component of bis(PC)-Hare very similar to those observed in the CRP complex with free 
phosphocholine5 (r.m.s. best fit over all Cα = 0.4Å ). However, a considerably worse fit (r.m.s. all Cα = 
0.8Å) was observed upon overlaying complete pentamers. This was due to a systematic movement of ß-
strands by ~1Å towards the fivefold axis, resulting in a contraction of ~2Å in the pore diameter at the centre 
of the pentamer in the CRP-bis(PC)-H complex. There are ~25% more inter-atomic contacts of less than 
3.5Å per CRP subunit than in the complex with phosphocholine. Identical cryopreservation methods were 
used during data collection, indicating that this effect is a specific consequence of bis(PC)-H binding by 
CRP. There are also two additional calcium ions bound per subunit: one by the side chain of Asp 60 and the 
carbonyl of Asn 59, close to the ligand-binding double calcium site, and the other by the main-chain 
carbonyl of Glu 70 and the side-chain carboxylate of the same residue from the twofold-symmetry-related 
subunit of the adjacent pentamer, providing decamer stabilization. The ligand fields of these calcium ions 
are limited, and they are likely to be occupied only by virtue of the high calcium ion concentration (50mM) 
in the crystallization cocktail. Further decamer stability is provided by ten inter-pentamer ion pairs between 
Lys 69 Nε and Glu 85’Oδ. All of these interactions between pentamers are orthogonal to the observed 
direction of contraction, and are unlikely to be its cause. 
 
The electron density for the phosphocholine component of bis(PC)-H and the first carbon of the crosslinker 
is very good but, not unexpectedly for such a flexible linker, the density for the central four carbon atoms is 
weaker (Fig. 3c). In order to fit these atoms within the space available and to achieve the required approach 
path to the phosphate groups, there is an unfavourable eclipsed rotamer about the C3–C4 bond of the linker. 
However, 1,5-bis(phosphocholine)-pentane, with a shorter linker, was bound with substantially lower 
affinity (Kd ~3.7 µM), and there was no binding at all to the more rigid bis(phosphocholine)-
dimethylcyclohexane (Fig. 1 and Supplementary Information). In contrast 1,7-bis(phosphocholine)-heptane 
(Fig. 1; Kd  ~300 nM) evidently had sufficient linker length and flexibility to permit this mechanism of 
drug–protein interaction. 
 
 
 



 
 
 
Figure 2. Nano electrospray mass spectra of CRP. 

a, b, CRP alone yielded peaks corresponding to the native pentamer and traces of decamer, reflecting the 
known tendency of native CRP to aggregate. Accelerating the ions (with increasing cone voltage in the 
atmospheric pressure region of the mass spectrometer) increases their internal energy and causes the 
decamers and pentamers to dissociate, yielding predominantly free protomers at the highest cone voltages. c, 
d, Addition of bis(PC)-H yields exclusively decameric CRP, which is resistant to gas phase collision-
induced dissociation. The peaks in the mass spectrum are shifted towards higher m/z values, indicating drug 
binding. The inset in c compares the 36 + charge state in the mass spectrum of the decamer in the absence of 
bis(PC)-H (blue) and the peak anticipated for the addition of five bis(PC)-H molecules (green), 
demonstrating the stoichiometry of binding (five bis(PC)-H molecules and two pentameric CRP molecules). 
 
Bolus intravenous or intraperitoneal injections in mice and rats of up to 1 mmol kg-1 bis(PC)-H in 
physiological saline solution, or continuous infusion at 1mmol kg-1  per day for seven days via subcutaneous 
osmotic pump, were tolerated without noticeable adverse effects, and inhibited binding of injected human 
CRP to other ligands and its reactivity using the Roche assay7. The plasma half-life of bis(PC)-H in mice 
was ~90 min. Continuous infusion of 1 mmol bis(PC)-H per kg per day in rats completely blocked the 
effects of daily subcutaneous injections of 40 mg kg-1 human CRP (~1.74 µmol CRP protomer), despite the 
presence of rat CRP, which binds the drug with Kd  ~150 nM, circulates at 300–500 mg l-1, and is produced 
at the rate of ~10 µmol protomer per kg per day. 
 
Clinical treatment with a CRP inhibitor could be started immediately upon admission to hospital following 
acute myocardial infarction— this would precede the acute phase CRP response, which starts about 6 h after 
onset of pain and peaks at about 50 h (refs 8, 9). We therefore initiated infusion of bis(PC)-H before 
coronary artery ligation in rats, and gave the first of five daily subcutaneous injections of human CRP 
immediately after recovery from surgery, closely replicating the initial dynamics of the endogenous human 
CRP response. Administration of human CRP was associated with increased mortality compared to vehicle-
only controls, as we have previously reported2. In contrast, there were no deaths among the rats receiving 
bis(PC)-H in addition to CRP (Table 1) (Fisher’s exact test for comparison of mortality in all groups, P = 
0.08). Infarct size on day 5 was substantially larger in the rats treated with CRP (unpaired t-test, P = 0.0001 



compared to vehicle-treated rats), but in rats receiving bis(PC)-H as well as CRP, infarct size was the same 
as in vehicle-only controls (Table 1). Electro- and echocardiographic indices of cardiac function on day 5 
were consistent with the larger infarcts in CRP-treated rats and with a protective effect of bis(PC)-H (Table 
1). 
 

 
Figure 3. Structure of the complex of CRP with 1,6-bis(phosphocholine)-hexane. 

a, Two CRP pentamers viewed down the fivefold axis, one in red and one in blue, crosslinked via their B-
faces by five molecules of bis(PC)-H (green). b, View of the complex perpendicular to the fivefold axis and 
along the local twofold axis, relating pairs of subunits. A-face helices are in pink. Both views show the 
rotation of pentamers relative to each other, with corresponding displacement of calcium ions (yellow) and 
inclination of the drug molecules. c, Stereo view of electron density (2|Fo| - |Fc|) contoured at 3σ (blue), 1σ 
(red) and 0.75σ (green), and the fitted bis(PC)-H molecule showing how the buckled linker chain directs the 
phosphocholine head group into the double calcium site, with the choline moiety sandwiched between 
Phe 66 and Glu 81, and two phosphate oxygens coordinating the calcium ions. Images were prepared using 
PyMol.23 



 

Table 1. Effect of human CRP and bis(PC)-H on of myocardial infarct size and cardiac dysfunction. 

 

 
Values shown are mean ± s.d except for ST elevation, where the number of individuals with ST elevation and their 
proportion as a percentage of each group are shown. P values are from unpaired t-tests. Infarct size on day 5 is shown 
as a percentage of the left ventricle, measured by planimetry (p) and by weight (w). VEDD, left ventricular end 
diastolic diameter; LVEDP, left ventricular end diastolic pressure; LVESD, left ventricular end systolic diameter; ST, 
ST segment of the electrocardiogram. 
*n =14 for these measurements. 
 
At bleed-out on day 5, 24 h after the last dose of human CRP, the mean (±.d.) concentration of human CRP 
in the serum of CRP-treated rats was 16.7 ^ 10.6 mg l21, but human CRP was detectable by standard 
immunoassay in only 4 of the 11 CRP-treated rats receiving bis(PC)-H (mean 3.3 ^ 1.5mg 2l), and was not 
detected at all by the Roche assay, demonstrating complex formation between bis(PC)-H and CRP. 
Continuous infusion of bis(PC)-H thus resulted in accelerated clearance of human CRP and blocked its 
function. 
 
In a separate experiment, administration of the same dose of bis(PC)-H to rats (n = 11) that underwent 
coronary artery ligation but did not receive human CRP had no effect on infarct size at day 5, compared to 
coronary artery ligation controls receiving vehicle alone (n = 6). The mean infarct size (±s.d.) as a 
percentage of the left ventricle was 19.0 ± 1.9% for the bis(PC)-H group and 20.0 ± 2.0% for the vehicle 
group. There was also no difference in haemodynamic measures, indicating that bis(PC)-H had no 
significant cardiovascular effect in the absence of human CRP. 
 
The physiological role of human CRP is unknown because no deficiency or structural polymorphism in 
human CRP, or experimental CRP knockout, has yet been reported. Experimental animal studies suggest 
that CRP may contribute to innate immunity, can be anti-inflammatory, and may protect against 
autoimmunity, and we have shown that the administration of human CRP exacerbates pre-existing tissue 
damage in a complement-dependent fashion2,3. Previously reported pro-inflammatory effects of human CRP 
preparations on cells in vitro were due to bacterial endotoxin and other contaminants rather than CRP 
itself10–12, and pure human CRP is not pro-inflammatory when injected into healthy animals12,13. 
Furthermore, transgenic human CRP is not pro-atherogenic or pro-thrombotic in apolipoprotein-E-knockout 
mice14. However, the evolutionary conservation of CRP does not exclude potentially harmful effects—
although CRP may have evolved to promote beneficial functions, it might also enhance lesion severity, 
especially in post-reproductive-age diseases such as atherothrombosis, autoimmune and other chronic 
inflammatory conditions, which are not subject to evolutionary pressure. Our rationally designed CRP-
targeting drug demonstrates that CRP inhibition is a valid therapeutic strategy that is unlikely to have 
adverse effects, and that may prove informative about the physiological and pathological roles of human 
CRP. 
 
METHODS 



Reagents and assays. Human CRP was isolated from malignant ascites fluid as reported3,13. Human CRP 
was assayed by the Roche7 and Dade-Behring methods15 and by electroimmunoassay16. Rat CRP and 
complement C3 were measured by electroimmunoassay4. Calcium-dependent binding of 125I-labelled CRP 
to pneumococcal C-polysaccharide (Statens Serum Institut) and modified human low-density lipoprotein17, 
which were covalently immobilized on Corning Costar N-hydroxysuccinimide microtitre plates, was 
compared in the presence and absence of inhibitor compounds. Binding of CRP to phosphoethanolamine-
Sepharose was determined as reported previously for SAP18. Activation of complement in whole human 
serum by CRP and C-polysaccharide in the presence and absence of bis(PC)-H was monitored by two-
dimensional immunolectrophoresis4 with monospecific antiserum against human C3. 
 
Binding affinity of CRP for ligands in solution in 0.01M Tris, 0.14M NaCl, 0.002M CaCl2, 0.1% NaN3 pH 
8.0 (TC buffer plus azide) was measured at 37oC by isothermal titration calorimetry6. The effects of bis(PC)-
H on CRP molecules were monitored by chromatography on a Superdex 200 HR10/30 column in the �KTA 
Explorer 100 HPLC system (Amersham Biosciences) eluted with TC buffer, by uranyl acetate negative-
staining electron microscopy on carbon grids, and by electrospray mass spectrometry (Supplementary 
Information). 
 
Myocardial infarction. ALZET osmotic mini-pumps, delivering 10 µl h-1 for seven days, were implanted 
subcutaneously in male Wistar rats (200–220 g) two days before coronary artery ligation. Groups A and B 
received TC buffer; and group C received 1.0Mbis(PC)-H in TC buffer, providing 1 mmol kg-1 per day. 
Coronary artery ligation or sham operations were performed under intraperitoneal anaesthesia with 75 mg 
kg-1 ketamine, 0.6 mg kg-1 xylazine and 0.2mg kg-1 atropine19,20, and post-operative atipamezole 0.5 mg kg-1 
two days after pump implantation. Five daily subcutaneous injections of either TC buffer alone (group A) or 
human CRP at 40mg kg-1 per day in TC buffer (groups B and C) were given, starting immediately after 
recovery from coronary surgery. Echocardiography (10–22MHz probe, Dynamic Imaging)21,22, right carotid 
artery cannulation (using a pressure-transducer tipped catheter 1.4 F, Millar Instrument Inc.) and cardiac 
catheterization were performed on day 5, with the rats under isofluorane anaesthesia. The rats were then 
bled, and their hearts excised, cleaned, weighed and frozen. Frozen hearts were then cut transversely into 
2.5-mm slices and stained with 1% (w/v) 2,3,5-triphenyl tetrazolium chloride in phosphate buffer. Infarct 
size was measured by planimetry (using an MCID image analysis system, Imaging Research Inc.) on 
formalin-fixed, glass-mounted sections, and confirmed by dissection and weighing. All treatments and 
measurements were performed by an experimenter blind to the treatment group. 
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METHODS 

Synthesis. 

1,6-bis(phosphocholine)-hexane (bis(PC)-H) 

Systematic name: 1,6-bis[{[(trimethylammonium)ethoxy]phosphinyl}-oxy]hexane.  A solution of ethylene 
chlorophosphate (15.1 g, 106.4 mmol) in dichloromethane (5 ml) was added to a stirred suspension of 
potassium carbonate (14 g, 107.6 mmol) in dichloromethane (15 ml) at –10°C.  A solution of 1,6-hexanediol 
(2.5 g, 21.1 mmol) in tetrahydrofuran (10 ml) was added dropwise over 10 min, and the reaction was 
allowed to warm to room temperature over 4 h and stirred for 18 h.  N-(2-Aminoethyl)aminomethyl 
polystyrene resin (22 g, loading ca 3 mmol/g) and dichloromethane (10 ml) were added and the mixture was 
agitated for 15 min before being filtered through Celite, eluting with dichloromethane (250 ml).  The 
filtrate was concentrated in vacuo to afford the intermediate bis-phosphate as a pale yellow oil (9.5 g).  The 
bis-phosphate was dissolved in anhydrous acetonitrile (10 ml/g) and divided amongst Smith Process VialsTM 
(2 ml/vial).  Trimethylamine (2 ml/vial) was added and the vials were sealed before being heated to 100°C 
for 30 min under microwave irradiation (300W).  The supernatant liquid was decanted and the residues were 
dissolved in methanol (5 ml/vial) and combined.  The mixture was concentrated under vacuum to afford 1,6-
bis(phosphocholine)-hexane (10 g) as a thick yellow oil. 

(Intermediate bisphosphate): 1H-NMR (400 MHz, CD3CN): δ 4.4 (8H, m, OCH2CH2O); 4.1 (4H, m, 
CH2OP); 1.7 (4H, m, CH2CH2OP); 1.4 (4H, m, CH2CH2CH2OP); 13C-NMR (100 MHz, CD3CN): δ 68.4, 
66.4, 29.8, 24.5. 

(1,6-bis(phosphocholine)-hexane): 1H-NMR (400 MHz, CD3CN): δ 4.3 (4H, m, CH2N); 4.1 (4H, m, 
CH2CH2N); 3.8 (4H, m, CH2OP); 3.3 (18H, s, N(CH3)3); 1.6 (4H, m, CH2CH2OP); 1.3 (4H, m, 
CH2CH2CH2OP); 13C-NMR (100 MHz, D2O): δ 65.9, 65.8, 54.4, 45.1, 29.6, 25.0; [M]+ calculated for 
C16H39N2O8P2, 449.2182; found 449.2196. 

1,7-bis(phosphocholine)-heptane 

Systematic name: 1,7-bis[{[(trimethylammonium)ethoxy]phosphinyl}-oxy]heptane.  A solution of ethylene 
chlorophosphate (5.11 g, 35.9 mmol) in dichloromethane (5 ml) was added to a stirred suspension of 
potassium carbonate (4.76 g, 36.6 mmol) in dichloromethane (15 ml) at –10°C.  A solution of 1,7-
heptanediol (0.95 g, 7.98 mmol) in tetrahydrofuran (10 ml) was added dropwise over 10 min, and the 
reaction mixture was allowed to warm to room temperature over 4 h and then stirred for further 18 h.  N-(2-
Aminoethyl)aminomethyl polystyrene resin (7.18 g, loading ca 3 mmol/g) and dichloromethane (10 ml) 
were added and the mixture was agitated for 2 h before being filtered through Celite, eluting with diethyl 
ether (100 ml).  The filtrate was concentrated in vacuo to afford intermediate bis-phosphate as an orange oil.  
The bis-phosphate was dissolved in anhydrous acetonitrile (10 ml/g) and divided amongst Smith Process 
VialsTM (2 ml/vial).  Trimethylamine (2 ml/vial) was then added and the vials sealed before being heated to 
100°C for 30 min under microwave irradiation (300W).  The supernatant liquid was decanted and the dark 



yellow residues were dissolved in methanol (5 ml/vial) and combined.  The mixture was concentrated under 
vacuum to afford 1,7-bis(phosphocholine)-heptane (4.4 g) as a thick orange oil. 

(Intermediate bisphosphate): 1H-NMR (400 MHz, CD3CN): δ 4.5 (8H, m, OCH2CH2O); 4.1 (4H, m, 
CH2OP); 1.7 (4H, m, CH2CH2OP); 1.4 (6H, m, CH2CH2CH2CH2OP); 13C-NMR (100 MHz, D2O): δ 68.5, 
67.3, 66.4, 66.3, 29.8, 28.1, 24.8; [M]+ calculated for C11H22O8P2Na, 367.0688; found 367.0681. 

(1,7-bis(phosphocholine)-heptane): 1H-NMR (400 MHz, MeOD): δ 4.2 (4H, m, CH2N); 3.9 (4H, m, 
CH2CH2N); 3.7 (4H, m, CH2OP); 3.2 (18H, s, N(CH3)3); 1.7 (4H, m, CH2CH2OP); 1.4 (6H, m, 
CH2CH2CH2CH2OP); 13C NMR (100 MHz, DMSO): 66.5, 60.7, 55.1, 45.7, 32.1, 30.3, 27.2; [M]+ calculated 
for C17H41N2O8P2, 463.2260; found 463.2242. 

1,5-bis(phosphocholine)-pentane 

Systematic name: 1,5-bis[{[(trimethylammonium)ethoxy]phosphinyl}-oxy]pentane).  A solution of ethylene 
chlorophosphate (6.84 g, 48 mmol) in dichloromethane (5 ml) was added to a stirred suspension of 
potassium carbonate (6.4 g, 49 mmol) in dichloromethane (15 ml) at –10°C.  A solution of 1,5-pentanediol 
(1 g, 9.6 mmol) in tetrahydrofuran (10 ml) was added dropwise over 10 min and the reaction was allowed to 
warm to room temperature over 4 h and then stirred for further 18 h.  N-(2-Aminoethyl)aminomethyl 
polystyrene resin (9.6 g, loading ca 3 mmol/g) and dichloromethane (15 ml) were added and the mixture 
was agitated for 2 h before being filtered through Celite, eluting with diethyl ether (100 ml).  The filtrate 
was concentrated in vacuo to afford intermediate bis-phosphate as a colourless oil.  The bis-phosphate was 
dissolved in anhydrous acetonitrile (10 ml/g) and divided amongst Smith Process VialsTM  (2 ml/vial).  
Trimethylamine (2 ml/vial) was then added and the vials were sealed before being heated to 100°C for 
30 min under microwave irradiation (300W).  The supernatant liquid was decanted and the dark yellow 
residues were dissolved in methanol (5 ml/vial) and combined.  The mixture was concentrated under 
vacuum to afford 1,5-bis(phosphocholine)-pentane (1.3 g) as a thick dark yellow oil. 

(Intermediate bisphosphate): 1H-NMR (400 MHz, CD3CN): δ 4.4 (8H, m, OCH2CH2O); 4.1 (4H, m, 
CH2OP); 1.7 (4H, m, CH2CH2OP); 1.5 (2H, m, CH2CH2CH2OP); 13C-NMR (100 MHz, CD3CN): δ 67.0, 
66.2, 29.0, 20.7; [M]+ calculated for C9H18O8P2Na, 339.0375; found 339.2989.  

(1,5-bis(phosphocholine)-pentane): 1H-NMR (400 MHz, CD3CN): δ 4.3 (4H, m, CH2N); 3.9 (4H, m, 
CH2CH2N); 3.5 (4H, m, CH2OP); 2.9 (18H, s, N(CH3)3); 1.8 (4H, m, CH2CH2OP); 1.5 (2H, m, 
CH2CH2CH2OP); 13C-NMR (100 MHz, DMSO): δ 66.3, 63.2, 50.0, 45.7, 20.0; [M]+ calculated for 
C15H37N2O8P2, 435.2025; found 435.2043. 

1,4-bis(phosphocholine)-dimethylcyclohexane 

Systematic name: trans-1,4-bis[{[(trimethylammonium)ethoxy]phosphinyl}-oxymethyl]-cyclohexane.  A 
solution of trans-1,4-cyclohexanedimethanol (1 g, 6.9 mmol) in tetrahydrofuran (10 ml) was added dropwise 
to a stirring solution of ethylene chlorophosphate (1.9 ml, 20.8 mmol) in a mixture of dichloromethane 
(40 ml) and pyridine (1.68 ml, 20.8 mmol) at –30°C.  The reaction mixture was allowed to warm to room 
temperature over 4 h and then allowed to stir for 18 h at room temperature.  N-(2-Aminoethyl)aminomethyl 
polystyrene resin (4.6 g, loading ca 3 mmol/g) and dichloromethane (10 ml) were added and the reaction 
was then shaken for 2 h before filtration through Celite, eluting with diethyl ether (50 ml).  The filtrate was 



concentrated in vacuo to afford intermediate bis-phosphate as an orange oil.  The bis-phosphate was 
dissolved in anhydrous acetonitrile (10 ml/g) and divided amongst Smith Process VialsTM  (2 ml/vial).  
Trimethylamine (2 ml/vial) was added and the vials were sealed before being heated to 100°C for 30 min 
under microwave irradiation (300W).  The supernatant liquid was decanted and the dark yellow residues 
were dissolved in methanol and combined.  The mixture was concentrated under vacuum to afford 1,4-bis-
(phosphocholine)-dimethylcyclohexane (0.9 g).  

(Intermediate bisphosphate): 1H-NMR (400 MHz, MeOD): δ 4.5 (8H, m, OCH2CH2O); 4.0 (4H, m, 

CH2OP); 1.9 (4H, m, CH2CHCH2OP); 1.8 (2H, m, CH); 1.1 (2H, m, CH2CHCH2OP); 13C-NMR (100 MHz, 

DMSO): δ 68.5, 62.4, 29.7, 29.6; [M]+ calculated for C12H22O8P2Na, 379.0688; found 379.0688.  

(1,4-bis-(phosphocholine)-dimethylcyclohexane): 1H-NMR (400 MHz, MeOD): δ 4.2 (2H, m, CH2N); 4.9 

(2H, m, CH2N); 3.7 (8H, m, CH2CH2N and CH2OP); 2.9 (18H, s, N(CH3)3); 1.8 (4H, m, CH2CHCH2OP); 

1.7 (2H, m, CH); 1.1 (4H, m, CH2CHCH2OP); 13C-NMR (100 MHz, DMSO): δ 72.6, 68.9, 63.1, 56.3, 40.5, 

30.2; [M]+ calculated for C18H40N2O8P2Na, 497.2158; found 497.2136. 

Electrospray mass spectrometry.  CRP at 10 �M in 200 mM NH4Ac, 1 mM CaCl2, pH 7.0 was analysed 
in the presence and absence of 1 mM 1,6-bis(phosphocholine)-hexane on an LCT mass spectrometer 
(Waters, UK) modified to allow higher pressures in the ion-transfer stage of the instrument, and from 
conditions which allow the preservation of non-covalent interactions in the gas-phase: capillary 1550 V, 
sample cone 120 V, extractor cone 8 V, ion transfer stage pressure 900 Pa.  Results were processed 
(MassLynx) and spectra shown are without background subtraction and with minimal smoothing.  Peaks 
were simulated in SigmaPlot and Gaussian curves constructed using the measured mass of CRP with and 
without the addition of five 1,6-bis(phosphocholine)-hexane molecules, and a peak width at half height 
identical to that observed for CRP alone. 

X-ray analysis.  Crystals of the CRP-drug complex were grown by hanging drop vapour diffusion from 
11 mg/ml CRP with a ten-fold molar excess of 1,6-bis(phosphocholine)-hexane in 150 mM NaAc pH 4.6, 
50 mM CaCl2, and 52% v/v 2-methyl-2,4-pentanediol..  The crystals were orthorhombic, space group 
P212121 with unit cell dimensions a=96.2, b=158.9, c=165.1 Å.  X-ray diffraction data from a single crystal 
at 100 K to a resolution of 2.3 Å on beam line ID14.1 (ESRF, Grenoble) were processed with MOSFLM1,2.  
Molecular replacement with MOLREP3 used a previously derived CRP pentamer as the search model.  
There were two CRP pentamers in the asymmetric unit with a solvent content of 50%.  The structure was 
refined with CNS4 and REFMAC5 and progress monitored with WHATIF and PROCHECK6,7.  The final 
model showed no residues within the disallowed region of the Ramachandran plot. 
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Table 1 Data collection and refinement statistics for the complex of CRP with 

1,6-bis(phosphocholine)-hexane (bis(PC)-H) 

Parameter Value 

Space Group P212121 

Unit Cell (Å) a=96.17 b=158.94 c=165.12 

Resolution range (Å) 60.0-2.3 

Measured reflections 842,376 

Unique reflections 112,504 

Multiplicity 7.5 (7.6) 

Completeness (%) 99.7 (99.6) 

Rmerge (%) 11.7 (73.8) 

Mean (I)/sd(I) 17.0 (2.5) 

Solvent content (%) 50.17 

Model Rfactor (%) 18.9 

Model Rfree (%) 24.3 

r.m.s. bond lengths (Å)  0.02 

r.m.s. bond angles (degree) 2.4 
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