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Cancer cells are often hypersensitive to the targeting of transcriptional regulators, whichmay
reflect the deregulated gene expression programs that underlie malignant transformation.
One of the most prominent transcriptional vulnerabilities in human cancer to emerge in
recent years is the bromodomain and extraterminal (BET) family of proteins, which are
coactivators that link acetylated transcription factors and histones to the activation of RNA
polymerase II. Despite unclear mechanisms underlying the gene specificity of BET protein
function, small molecules targeting these regulators preferentially suppress the transcription
of cancer-promoting genes. As a consequence, BET inhibitors elicit anticancer activity in
numerous malignant contexts at doses that can be tolerated by normal tissues, a finding
supported by animal studies and by phase I clinical trials in human cancer patients. In this
review, we will discuss the remarkable, and often perplexing, therapeutic effects of BET
bromodomain inhibition in cancer.

I
n eukaryotic cells, sequence-specific DNA-
binding transcription factors (TFs) activate

their target genes by recruiting multisubunit

coactivator complexes, which use diverse bio-
chemical mechanisms to activate RNA poly-

merase II (Pol II). One important class of coac-

tivators possess lysine acetyltransferase (KAT)
activity, which transfers acetyl groups from ace-

tyl-coenzyme A to the epsilon amino group of

lysine residues of various substrate proteins.
Many KATenzymes (e.g., p300/CBP) have per-
missive substrate specificity and will acetylate

unstructured, lysine-rich peptides found on
TFs, histones, and various other components

of the transcription apparatus (Dancy and

Cole 2015). The pervasiveness of TF–KAT in-
teractions in transcriptional regulation leads to

a global partitioning of eukaryotic genomes

into hyperacetylated and hypoacetylated do-
mains, which strongly correlate with active

and inactive cis-regulatory regulatory elements,

respectively (Wang et al. 2008).
One mechanism by which acetylation influ-

ences transcription is by neutralizing the posi-

tive charge of lysine side chains to disrupt
electrostatic interactions (e.g., between histones

and DNA), which can lead to chromatin

decompaction (Roth et al. 2001). In an alterna-
tive mechanism, lysine side-chain acetylation

of many transcriptional regulators will create

docking sites for proteins possessing acetylly-
sine binding/reader domains. In this setting,

acetyllysine serves a vital function in the assem-

bly of the transcriptional apparatus at enhancer
and promoter elements. The most well estab-

lished acetyllysine reader is the bromodomain,
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which is present on 46 different proteins encod-

ed in the human genome (Dhalluin et al. 1999;
Filippakopoulos et al. 2012). A bromodomain

is composed of a left-handed bundle of four

a helices, with interhelical loops forming a
hydrophobic binding pocket that engages in

acetyllysine recognition (Dhalluin et al. 1999).

Studies spanning nearly two decades have im-
plicated bromodomain-containing coactivator

proteins as integral components of TF-mediat-

ed gene regulation by linking lysine acetylation
to downstream effects on chromatin structure

and transcription (Sanchez and Zhou 2009).

Moreover, the functional diversity and emerging
“drugability” of bromodomain modules with

small molecules has motivated a widespread in-

terest in this class of proteins as therapeutic tar-
gets (Filippakopoulos and Knapp 2014).

BET PROTEIN FAMILY OF
TRANSCRIPTIONAL COACTIVATORS

The mammalian BET (bromodomain and ex-
traterminal domain-containing) protein family

consists of four members, including the ubiq-

uitously expressed BRD2, BRD3, BRD4, and

the germ-cell-specific BRDT (Fig. 1) (Wu and
Chiang 2007; Shi andVakoc 2014). All four BET

proteins have two conserved bromodomains

that preferentially bind to multiacetylated pep-
tides (Fig. 1) (Dey et al. 2003; Moriniere et al.

2009; Gamsjaeger et al. 2011; Filippakopoulos

et al. 2012). The preferred ligand of the first
bromodomain (BD1) is KacXXKac, with the in-

tervening X amino acids having small side

chains (e.g., glycine or alanine), whereas the sec-
ond bromodomain (BD2) is more permissive to

binding multiacetylated peptides in diverse se-

quence contexts (Dey et al. 2003;Moriniere et al.
2009; Gamsjaeger et al. 2011; Filippakopoulos

et al. 2012). The acetylated tails of core histones

H3 andH4 and acetylated regions of TFs are the
most well-validated binding partners of BET

bromodomains, which are generated as conse-

quence of TF-mediated KAT recruitment (Dey
et al. 2003; Lamonica et al. 2011; Shi et al. 2014;

Roe et al. 2015). ChIP-seq studies in several cell

types have shown that BRD4 localizes preferen-
tially to the nucleosome-free site occupied by

TFs at enhancers and promoters, which is
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Figure 1.Domain structure of the bromodomain and extraterminal (BET) protein family and BET–NUT fusion
proteins. Each BET protein contains two bromodomains (BD1 and BD2) and an extraterminal (ET) domain.
BRD4 and BRDT have an additional carboxy-terminal motif (CTM). BRD3/BRD4–NUT fusion proteins
found in NUTmidline carcinoma (NMC) patients fuse the amino terminus of BRD4 (or BRD3) with almost
the entire NUT protein.
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consistent with acetylated TFs being important

recruiters of BET proteins (Roe et al. 2015;
Stonestrom et al. 2015). It is likely that

a multitude of acetylated peptides contribute

to BET protein recruitment to a particular
DNA element, with different acetylated pep-

tides being relevant at different cis elements.

However, it is challenging to pinpoint the com-
plete repertoire of acetylated peptides responsi-

ble for recruiting BET proteins to chromatin.

In addition to two bromodomains, all four
BET proteins possess a conserved extraterminal

(ET) domain that performs an effector role in

transcriptional activation and in chromatin re-
modeling. The ET domain interacts with several

different cofactors, including the demethylase

protein JMJD6, the methyltransferase/adaptor
protein NSD3, and the chromatin remodeling

ATPases CHD4 and BRG1 (Rahman et al. 2011;

Shen et al. 2015). The ET domain also interacts
with the virally encoded proteins, such as

murine leukemia virus (MLV) integrase and la-

tency-associated nuclear antigen (LANA) pep-
tide of Kaposi’s sarcoma-associated herpesvirus

(KSHV) (Hellert et al. 2013; Crowe et al. 2016).

All of these interactions are mediated by a hy-
drophobic groove on the ET domain that rec-

ognizes a consensus motif of alternating lysine

and hydrophobic residues found on several of
the above-mentioned cofactors (e.g., an IKLKI

motif on NSD3 and a LKIKL motif on CHD4)

(Hellert et al. 2013; Shen et al. 2015; Crowe et al.
2016; Zhang et al. 2016). The available evidence

indicates that BRD4 relies on a unique subset

of these ET-interacting proteins for transcrip-
tional activation in particular cell types. In

HEK293T cells, BRD4 uses JMJD6 as its ET-

domain effector, which will demethylate his-
tones and noncoding RNA to promote enhanc-

er-mediated gene activation (Liu et al. 2013). In

acute myeloid leukemia (AML) cells, the ET
domain of BRD4 activates transcription by

interacting with NSD3, which functions as a

scaffold to recruit the chromatin-remodeling
enzyme CHD8 (Shen et al. 2015). This apparent

context-specificityof ET domain function is not

well understood at present.
BRD4 and BRDT possess a unique carboxy-

terminal motif (CTM), which binds to the

serine/threonine kinase P-TEFb as an addition-
al mechanism of gene activation (Bisgrove et al.
2007; Krueger et al. 2010). P-TEFb is a hetero-

dimer of the kinase Cdk9 and a K, T1, or T2-

type cyclin, which together can phosphorylate
the serine 2 position of the Pol II carboxy-

terminal domain (CTD), as well as serine and

threonine residues on the pausing factors DSIF
and NELF (Krueger et al. 2010; Jonkers and

Lis 2015). Thus, BRD4-mediated P-TEFb re-

cruitment will drive a variety of local phosphor-
ylation events to bypass the paused state of

Pol II and promote transcription elongation.

At the biochemical level, BRD4 uses multiple
mechanisms to regulate P-TEFb activity. Using

purified proteins, the interaction with BRD4 is

sufficient to stimulate P-TEFb kinase activity
(Itzen et al. 2014). In cells, this BRD4 interac-

tion is competitive with the interaction of

P-TEFb with HEXIM1/7SK RNA, which are
inhibitors of its kinase activity (Jang et al.

2005; Yang et al. 2005). BRD4 also contributes

to the localization of P-TEFb to hyperacetylated
enhancers and promoters across the genome,

thus guiding P-TEFb to it relevant substrates

near TF-bound sites (Jang et al. 2005; Yang
et al. 2005). Another key player in the functional

linkage between BRD4 and P-TEFb is the Me-

diator complex, which is a 30 subunit coactiva-
tor complex that physically associates with

BRD4 and with P-TEFb (Jiang et al. 1998;

Jang et al. 2005; Donner et al. 2010; Allen and
Taatjes 2015). Although the precise interaction

surface between BRD4 and Mediator has yet to

be mapped, the MED23 subunit has been
implicated in this interaction (Wang et al.

2013). BRD4 and Mediator stabilize each oth-

er’s occupancy at specific sites across the ge-
nome, and these two machineries cooperate in

recruiting P-TEFb (Jang et al. 2005; Donner

et al. 2010; Bhagwat et al. 2016). It should be
noted that the CTM region is found on BRD4

(and BRDT), but not on BRD2 and BRD3,

which may explain why BRD4 performs a
broader nonredundant role in transcriptional

activation than the other BET proteins. For ex-

ample, genetic inactivation of BRD4 will lead to
slow growth phenotypes in essentially all mam-

malian cell lines, whereas BRD2 and BRD3 lead
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to only subtle phenotypes when targeted (Vakoc

CR, unpubl.). Only a few cellular contexts have
been identified in which redundancy exists

among the BET proteins, as was recently shown

for BRD2 and BRD3 in hematopoietic cells
(Stonestrom et al. 2015).

Recent studies have found that BRD4 pro-

tein possesses intrinsic kinase and KAT activity
in in vitro assays (Devaiah et al. 2012, 2016).

Similar to P-TEFb, BRD4 can directly phos-

phorylate the CTD of Pol II at the serine 2
position and can acetylate multiple residues

on histone H3 and H4, including H3K112

found on the globular region of the nucleosome
(Devaiah et al. 2012, 2016). Earlier work had

also identified an intrinsic kinase activity in

purified BRD2 and in FSH, the Drosophila mel-

anogaster ortholog of BRD4 (Denis and Green

1996; Chang et al. 2007). The presence of these

activities in biochemical assays is difficult to
reconcile with the lack of an obvious kinase or

KAT domain in the BRD4 polypeptide, and

hence these activities should be considered
provisional at present and await further valida-

tion to confirm their importance in vivo.

SMALL-MOLECULE INHIBITORS OF BET
BROMODOMAINS

The above description of BET proteins suggests

a general role of these regulators in transcrip-

tional control, particularly because acetylated
TFs and histones are found at all active promot-

ers and enhancers in the genomes. It is only

recently that the attention of the field has turned
toward identifying biological processes that are

disproportionately BET protein-dependent.

This avenue of research was invigorated by
two studies published in 2010 describing the

first selective small-molecule inhibitors of BET

bromodomains (Filippakopoulos et al. 2010;
Nicodeme et al. 2010). The potency, specificity,

and in vivo activity of these molecules in mod-

ulating BET proteins has allowed numerous
studies in a myriad of animal models of disease.

This work has exposed a remarkable gene spe-

cificity of transcriptional effects of BET inhibi-
tion that underpins a broad interest in BET

proteins as therapeutic targets.

The first class of BET bromodomain inhib-

itors, which are a series of thienotriazolodiaze-
pines, were originally filed as patents by the

Mitsubishi Tanabe Pharmaceutical Corpora-

tion (Adachi et al. 2006; Miyoshi et al. 2010,
2013). The compounds belong to the diazepine

family and are analogs of benzodiazepine,

which has been used extensively in the clinic
as psychoactive drug (Smith et al. 2014). There-

after, the Bradner laboratory and researchers at

GlaxoSmithKline independently published the
highly potent and selective BET bromodomain

inhibitors JQ1 (a thienotriazolodiazepine) and

iBET (a benzodiazepine), respectively (Filippa-
kopoulos et al. 2010; Nicodeme et al. 2010). Of

note, both JQ1 and iBET are pan-BET bromo-

domain inhibitors, which do not discriminate
between the two bromodomains within the

same BET protein, nor among the four BET

family members (Filippakopoulos et al. 2010;
Nicodeme et al. 2010). Because the tandem bro-

modomains within the same BET protein have

distinct functions and binding affinities toward
acetylated peptides, the lack of specificity of

JQ1 and iBET limits the potential use of these

chemical probes to study the roles of individual
BET proteins. Nonetheless, the paninhibitory

activity of these compounds may contribute to

their high potency in modulating biological
processes in vivo. Because BRD4 tends to be

the dominant transcriptional regulator within

the BET protein family in somatic cell types,
most studies have linked the transcriptional ef-

fects of BET inhibitors to BRD4 inhibition, with

BRD2 and BRD3 contributing to a lesser degree.
Chemists have continued to optimize these

compounds with the aim to improve the

selectivity among the BET protein family and
enhance drug potency and in vivo pharmaco-

dynamics, in an effort to make these com-

pounds suitable for clinical investigation. This
includesmultiple pan inhibitors, some of which

have entered clinical trials (see below), BD1 se-

lective inhibitors, such asMS-436, Olinone, and
BI-2536, as well as the BD2 selective inhibitors

RVX-208 and RVX-297 (Steegmaier et al. 2007;

Park et al. 2013; Picaud et al. 2013; Zhang et al.
2013; McLure et al. 2014; Kharenko et al. 2016).

As expected, inhibition of individual BET bro-
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modomains will lead to different transcription-

al and phenotypic outcomes. For example, the
BD1-specific inhibitor Olineone induces differ-

entiation of mouse primary oligodendrocytes,

whereas pan BET bromodomain inhibitors have
the opposite effect (Gacias et al. 2014). The

BD2-selective inhibitor RVX-208 was originally

identified in a cell-based chemical screen to
enhance the production of apoA-1, and only

recently was discovered to target BET proteins

after completing phase III clinical trials for
treatment of atherosclerosis (Bailey et al. 2010;

Nicholls et al. 2011, 2012; Picaud et al. 2013;

McLure et al. 2014). Interestingly, RVX-208
causes a milder effect on the transcriptome

of cells when compared with inhibitors that

bind to both BET bromodomains (Picaud
et al. 2013).

All of the compounds described above bind

to BET bromodomains in a competitivemanner
with acetyllysine to displace BET-containing

protein complexes from chromatin. A more re-

cent innovation in BET inhibitor design has
been to conjugate JQ1 with chemical moieties

that promote recruitment of E3 ubiquitin li-

gases, which leads to polyubiquitylation of
BET proteins and proteasome-dependent deg-

radation, a strategy known as proteolysis target-

ing chimera (PROTAC) (Lu et al. 2015; Winter
et al. 2015; Zengerle et al. 2015). This new gen-

eration of inhibitors (known as dBET1, ARV-

825, or MZ1) leads to more potent suppression
of BET proteins in cells, and may provide an

additional strategy for therapeutic targeting.

Recent studies have shown that many clini-
cal-stage kinase inhibitors, including the

CDK inhibitor dinaciclib, the JAK2 inhibitor

TG101209, and the PLK1 inhibitor BI-2536,
potently inhibit BET bromodomains as an un-

intended off-target effect (Martin et al. 2013;

Ciceri et al. 2014; Dittmann et al. 2014; Ember
et al. 2014). These findings raise the possibility

that the off-target effect on BET proteins might

contribute to the therapeutic effect of these ki-
nase inhibitors. Moreover, these findings reveal

an opportunity for the rational design of drugs

that simultaneously target specific kinases and
BET proteins to augment anticancer activity or

prevent drug resistance (Ciceri et al. 2014).

TARGETING THE BRD4–NUT FUSION
ONCOPROTEIN IN NUT MIDLINE
CARCINOMA

The first malignant context in which BET pro-
teins were proposed as therapeutic targets is in

a rare cancer called NUT midline carcinoma

(NMC), which is an aggressive subtype of
squamous cell carcinoma with a median sur-

vival of only 6.7 months (French et al. 2003;

French 2010). Most cases of NMC possess a
chromosomal translocation that generates a

fusion of the amino terminus of BRD4 (or less

commonly BRD3 or NSD3) to the carboxyl
terminus of NUT, which is normally only

expressed in testes (French et al. 2007, 2014;

French 2010). The resulting BRD4–NUTonco-
protein retains the two bromodomains and the

ET domain fused to a region of NUT that binds

to p300, a protein with KAT activity (French
et al. 2003, 2007; Reynoird et al. 2010; Wang

and You 2015). It is interesting to note that

BRD4–NUT (and presumably BRD3–NUT)
requires an interaction with NSD3 via its ET

domain for its oncogenic function, whereas

the NSD3–NUT fusion requires its BRD4-
binding motif for its oncogenic function

(French et al. 2014). This highlights a remark-

able convergence ofmolecular functions among
BRD3–, BRD4–, and NSD3–NUT fusion pro-

teins, and implies that each of these proteins

function through similar multisubunit com-
plexes to regulate transcription.

The tumorigenic properties of BRD4–NUT

stems from the coupling of its bromodomains
with the p300 binding site on NUT, which

leads to a positive feedback loop that generates

hyperacetylation-driven nuclear foci (Fig. 2)
(French et al. 2007, 2014; Yan et al. 2011;

Grayson et al. 2014; Alekseyenko et al. 2015;

Wang and You 2015). At a genomic level, this
positive feedback loop of acetylation and bromo-

domain-mediated binding generates large con-

tiguous “megadomains” of active chromatin,
which are enriched for BRD4–NUT, p300, and

histone hyperacetylation, which span .1 Mb

of the genome (Alekseyenko et al. 2015). The
BRD4–NUT-induced active chromatin do-

main seems to propagate unfettered until it

BET Inhibition in Cancer
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encounters the edge of a toplogical domain

defined by CTCF/cohesion (Alekseyenko et al.
2015). Active chromatin domains of this size are

not observed in normalmammalian chromatin,

highlighting a unique chromatin-based mecha-
nism of transformation used by BRD4–NUT.

Despite the enormity of these megadomains,

only a specific program of genes becomes aber-
rantly expressed by BRD4–NUT function,

which includes MYC and the epithelial fate de-

terminant TP63 (Alekseyenko et al. 2015).
Because the bromodomains of BRD4–NUT

are essential to its oncogenic function, NMC

provides a clear rationale for evaluating the
therapeutic activity of BET bromodomain in-

hibitors. Exposing cultured NMC cell lines to

JQ1 leads to a rapid eviction of BRD4–NUT
from chromatin, followed by a rapid suppres-

sion of its direct target genes, such asMYC, and

the induction of terminal squamous cell differ-
entiation (Filippakopoulos et al. 2010; Yan et al.

2011; Grayson et al. 2014; Alekseyenko et al.

2015).Moreover, JQ1 treatment ofmice bearing
subcutaneous NMC patient-derived xenograft

leads to a pronounced inhibition of tumor

growth in vivo, withminimal toxicity to normal
tissues (Filippakopoulos et al. 2010). This re-

markable study provided the first evidence for

BET inhibition having a therapeutic index in
treating cancer, and provided rationale for sub-

sequent clinical studies of BET inhibition in

NMC patients (see below).

AWIDESPREAD SENSITIVITY OF CANCER
CELLS TO BET BROMODOMAIN
INHIBITION

Given the rarity of NMC, a key question arises
as to whether malignancies that lack BRD4 re-

arrangements would also be sensitive to BET

inhibitors. Because the original description of
NMC sensitivity to BET inhibition, numerous

studies have shown that BRD4 is a non-onco-

gene dependency in several forms of cancer.
Two studies published in 2011 implicated

BRD4 as a vulnerability in the MLL-rearranged

subtype of AML (Dawson et al. 2011; Zuber
et al. 2011). One used shRNA screening to reveal

that AML cells were hypersensitive to genetic

knockdown of BRD4, whereas the other study

used a proteomic approach to link BRD4 with
MLL-fusion cofactors (Dawson et al. 2011;

Zuber et al. 2011). These studies, as well as oth-

ers using multiple myeloma and lymphoma
models, showed that BET inhibitors show ther-

apeutic effects in diverse genetic contexts of he-

matological malignancy, with effects compara-
ble to observations in NMC models (Dawson

et al. 2011; Delmore et al. 2011; Mertz et al.

2011; Zuber et al. 2011). Although BET inhib-
itors show broad efficacy in the blood malig-

nancies, the precise pattern of gene expression

changes incurred by BET inhibitor treatment is
remarkably heterogeneous among different

cancer cell lines. In addition, some cancer cell

types will terminally differentiate in response to
JQ1/iBET exposure, whereas others undergo

apoptosis (Dawson et al. 2011; Delmore et al.

2011; Mertz et al. 2011; Zuber et al. 2011). Al-
though there is generally a lack of consistent

gene-expression alterations following BET in-

hibitor treatment in these malignancies, the
well-established oncogenes MYC, BCL2, and

CDK6 are often suppressed by these drugs,

whereas housekeeping genes tend to be unaf-
fected (Shi and Vakoc 2014).

Over the past 5 years, the efficacy of BET

inhibitors has been shown in numerous preclin-
ical solid tumor models, including tumors of

the prostate, breast, colon, intestine, pancreas,

liver, and brain (Sahai et al. 2016). Large-scale
profiling studies in human cancer cell lines have

suggested that a specific subset of these different

tumors harbor exceptional sensitivity to BET
inhibitors (Rathert et al. 2015). However, it

has been challenging to identify biomarkers

that predict hypersensitivity to BET inhibition
that might guide patient enrollment into clini-

cal trials. Nonetheless, we can now appreciate

that sensitivity to BET inhibition is pervasive
across different malignancies.

Although the broad anticancer activity of

BET inhibitors is remarkable, it should be em-
phasized that normal cell types are also affected

in unique ways by these agents. This leads to

pleiotropic phenotypes in the normal tissues
of mice, and presumably in humans. Some of

these effects may present therapeutic opportu-
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nities in areas outside of oncology. For example,

iBET will attenuate cytokine production in in-
nate immune cells, which can allow iBET-treat-

edmice to survive septic shock (Nicodeme et al.

2010). BET inhibitors will also suppress the
pathological remodeling of cardiomyoctyes in

response to pressure overload (Anand et al.

2013). It has also been proposed that BET in-
hibitors might be used as a male contraceptive,

owing to the reversible impairment in sperma-

togenesis consequent to BRDT inhibition in the
testes (Matzuk et al. 2012; Berkovits andWolge-

muth 2013). BET inhibition will reactivate

latent HIV infection, which might prove useful
to eliminate viral reservoirs in infected patients

(Banerjee et al. 2012; Zhang et al. 2012; Zhu

et al. 2012; Li et al. 2013). However, it remains
to be determined whether these indications for

BET inhibition will be translated into human

clinical investigation.
There are also more concerning effects of

BET inhibition, such as an impairment inmem-

ory formation and an autism-like syndrome in
the central nervous system and a worsening of

viral/bacterial infections consequent to immu-

nosuppression (Marazzi et al. 2012; Korb et al.
2015; Sullivan et al. 2015). Transgenic Brd4

shRNA mice, in which BRD4 levels are reduced

conditionally in adult tissues, show stem cell
depletion in the small intestine and hyperplasia

of epidermal tissues (Bolden et al. 2014). The

latter phenotype may reflect the emerging role
for BRD4 in tumor suppression, and hence BET

inhibition might be expected to worsen certain

malignancies (Alsarraj and Hunter 2012; Fer-
nandez et al. 2014; Tasdemir et al. 2016). Nota-

bly, the side effects of BRD4 knockdown in vivo

are known to be reversible after restoring BET
protein function (Matzuk et al. 2012; Bolden

et al. 2014; Nagarajan et al. 2014).

PHASE I CLINICAL STUDIES OF BET
INHIBITORS IN HUMAN CANCER PATIENTS

The efficacy of BET inhibitors in preclinical

cancer models provided the rationale for a mul-

titude of ongoing human clinical trials, which
includes patients with hematological malignan-

cies, BRD4–NUTexpressing NMC, and various

solid tumors. A summaryof these ongoing trials

can be found in Table 1. Although we cannot
determine at the present time the ultimate im-

pact BET inhibitors will have in oncology, there

a few key observations than have been made
from the initial administration of these agents

to human patients thus far. Importantly, the

toxicities in humans have been determined for
three clinical BET inhibitors (OTX015, TEN-

010, and CPI-0610) (Abramson et al. 2015; Sha-

piro et al. 2015; Amorim et al. 2016; Berthon
et al. 2016; Stathis et al. 2016). In one set of

phase 1 trials in hematological cancers,

OTX015 was administered orally once or twice
a day for 21-day cycles. At the higher doses

(120–160 mg/d), OTX015 resulted in a sub-

stantial, yet reversible thrombocytopenia
(drop in platelet counts), severe gastrointestinal

events, and fatigue (Amorim et al. 2016; Ber-

thon et al. 2016). The recommended dose for
leukemia and lymphoma patients was identified

in this study as 80 mg/d given in repetitive cy-

cles of 14 days on followed by 7 days off
(Amorim et al. 2016; Berthon et al. 2016). At

different doses in these trials, evidence was re-

ported of disease reduction in five out of 37
acute leukemia patients and five out of 17 dif-

fuse large B cell lymphoma patients, whereas no

responses were observed in any of the 12 mul-
tiple myeloma patients treated (Amorim et al.

2016; Berthon et al. 2016). Consistent with ob-

servations in mouse models, OTX015 was
found to cause the terminal differentiation of

myeloid leukemia cells, as indicated by an in-

crease in peripheral neutrophil counts during
treatment (Dawson et al. 2011; Zuber et al.

2011; Berthon et al. 2016). Unfortunately, a spe-

cific genetic mutation in leukemia patients has
yet to be identified that correlates with respons-

es to OTX015. This highlights the formidable

challenge of identifying a predictive biomarker
to guide patient enrollment in future studies. In

NMC patients, rapid responses to OTX015 have

also been identified, in association with tumor
regression (Shapiro et al. 2015; Stathis et al.

2016). Although these findings are encouraging

and will motivate further phase II evaluation,
many of the patients that initially responded

later relapsed several months after initiating

Y. Xu and C.R. Vakoc
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Table 1. Clinical trials of BET bromdomain inhibitors

Compound Sponsor NCT identifier Conditions Clinical phase

ABBV-075 AbbVie NCT02391480 Advanced cancer; breast cancer; non-

small-cell lung cancer (NSCLC);

acute myeloid leukemia (AML);

multiple myeloma

Phase I

(recruiting)

BAY 1238097 Bayer NCT02369029 Neoplasms Phase I

(terminated)

BI 894999 Boehringer

Ingelheim

NCT02516553 Neoplasms Phase I

(recruiting)

BMS-986158 Bristol-Myers

Squibb

NCT02419417 Multiple indications cancer Phase I/IIa
(recruiting)

NCT01949883 Lymphoma Phase I

(recruiting)

CPI-0610 Constellation

Pharmaceuticals

NCT02157636 Multiple myeloma Phase I

(recruiting)

NCT02158858 Leukemia, myelocytic, acute;

myelodysplastic syndrome (MDS);

meylodusplastic/
myeloproliferative neoplasm,

unclassifiable; meylofibrosis

Phase I

(recruiting)

FT-1101 Forma

Therapeutics

NCT02543879 AML; acute myelogenous leukemia;

myelodysplastic syndrome

Phase I

(recruiting)

GS-5829 Gilead Sciences NCT02607228 Metastatic castration-resistant

prostate cancer (CRPC) (as a

single agent or in combination

with enzalutamide)

Phase I

(recruiting)

GSK2820151 GlaxoSmithKline NCT02630251 Cancer Phase I (not yet

open for

recruiting)

GSK525762/I-
BET762

GlaxoSmithKline NCT01587703 Carcinoma, midline Phase I

(recruiting)

NCT01943851 Cancer Phase I

(recruiting)

INCB054329 Incyte

Corporation

NCT02431260 Advanced cancer Phase I/II
(recruiting)

NCT02698189 AML including AML de novo and

AML secondary to MDSs; diffuse

large B-cell lymphoma (DLBCL)

Phase I

(recruiting)

MK-8628 Merck Sharp &

Dohme Corp.

NCT02698176 NUT-midline carcinoma (NMC);

triple-negative breast cancer

(TNBC); NSCLC; CRPC

Phase I

(recruiting)

N-methyl-2-

pyrrolidone

Peter MacCallum

Cancer Centre,

Australia

NCT02468687 Multiple myeloma Phase I

(recruiting)

NCT01713582 AML; DLBCL; acute lymphoblastic

leukemia; multiple myeloma

Phase I (active,

not recruiting)

OTX015/MK-

8628

OncoEthix

GmbH/Merck

NCT02259114 NMC; TNBC; NSCLC

with rearranged ALK gene/fusion
protein or KRASmutation; CRPC;

pancreatic ductal adenocarcinoma

Phase I (active,

not recruiting)

Continued
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treatment (Stathis et al. 2016). This indicates
the importance of studying mechanisms of re-

sistance and the potential of combining BET

inhibitors with other agents to provide more
durable responses. Taken together, these initial

studies have generated sufficient enthusiasm

within the pharmaceutical industry to justify a
continuing of phase II clinical investigation.

WHY ARE CANCER GENES HYPERSENSITIVE
TO BET INHIBITION?

When considering the basic molecular function
of BRD4 described above, it is difficult to un-

derstand why chemical inhibition of BET pro-

teins would lead to preferential impairment to
cancer cells versus nontransformed cell types.

Transcriptome-level studies have revealed that

BET inhibitors suppress hundreds of genes in
each cell type (Anand et al. 2013; Chapuy et al.

2013; Lovén et al. 2013; Asangani et al. 2014).

The identity of BET-dependent genes varies
dramatically from cell type to cell type, which

poses a major challenge in proposing a unified

mechanism to explain the anticancer effects of
BET inhibitors. At present, our understanding

of these effects is limited to correlative observa-

tions that these compounds will preferentially
suppress expression of cancer-promoting genes

versus that of housekeeping genes (Chapuyet al.

2013; Lovén et al. 2013; Nagarajan et al. 2014;
Roe et al. 2015; Bhagwat et al. 2016; Henssen

et al. 2016). An alternative summation of the

available evidence is that JQ1 preferentially sup-
presses “highly regulated” genes, that is, genes

that are dynamically expressed in response to

exogenous stimuli or those genes that are ex-
pressed in a lineage-specific manner, and hence

are influenced by numerous trans- and cis-act-

ing regulators. Indeed, many growth/cancer-
promoting genes (e.g., MYC and BCL2) fall

into this broad category (Lovén et al. 2013;

Asangani et al. 2014; Roe et al. 2015; Shu et al.
2016). Such a model would also explain why

JQ1 suppresses cytokine genes in immune cells

and the immediate-early genes in cardiomyo-
cytes and neurons (Nicodeme et al. 2010;

Anand et al. 2013; Brown et al. 2014; Korb

et al. 2015; Toniolo et al. 2015). It is important
to note that the effects of JQ1 on transcription

have been shown to be reversible, that is, with-

drawing JQ1 leads to a rapid restoration of the
preexisting transcription level (Mertz et al.

2011). This is likely to account for why normal

tissues are able to recover in the setting of 14-
day-on, 7-day-off BET inhibition treatment-cy-

cles in humans (Amorim et al. 2016; Berthon

et al. 2016). Cancer cells are perhaps less able to
recover following BET inhibitor treatment, ow-

ing to their “addiction” to oncogenes like MYC

Table 1. Continued

Compound Sponsor NCT identifier Conditions Clinical phase

NCT02296476 Glioblastoma multiforme Phase I

(terminated)

RVX-208/
RVX 000222

Resverlogix Corp. NCT02586155 Diabetes mellitus, type 2; coronary

artery disease; cardiovascular

diseases

Phase III

(recruiting)

TEN 010 Tensha

Therapeutics/
Roche

NCT01987362 Solid tumors; advanced solid tumors Phase I

(recruiting)

NCT02308761 MDSs; AML Phase I

(recruiting)

ZEN003694 Zenith Epigenetics NCT02711956 Metastatic CRPC (in combination

with enzalutamide)

Phase I (not yet

open for

recruiting)

NCT02705469 Metastatic CRPC Phase I

(recruiting)

See clinicaltrials.gov.
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(Arvanitis and Felsher 2006). Nevertheless, the

specific pattern of genes that are suppressed by
BET inhibition in each cell type is clearly of

central importance to the therapeutic efficacy

of these agents. Below, we describe studies that
have defined molecular mechanisms that un-

derlie the gene-specific transcriptional effects

of BET bromodomain inhibition.
One explanation for the context-specific ef-

fects of BET inhibition is that each cell type

expresses a different complement of acetylated
TFs that bind to BET bromodomains. In AML

cells, for example, it has been found that BRD4

binding across the genome is highly correlated
with a set of hematopoietic lineage TFs (ERG,

FLI1, PU.1, MYB, C/EBPa, and C/EBPb),
which can each physically associate BRD4 in
either a bromodomain-dependent or indepen-

dent manner (Roe et al. 2015). In JQ1-treated

leukemia cells, the downstream target genes of
this set of TFs are rapidly suppressed, whereas

TFoccupancy onDNA remains unaffected (Fig.

3) (Roe et al. 2015). Moreover, ectopic expres-
sion of these hematopoietic TFs in fibroblasts

can recapitulate the JQ1 transcriptional re-

sponse seen in leukemia cells, indicated that
these TFs are sufficient to specify the effects of

BET inhibition (Roe et al. 2015). An expanding

body of literature is continuing to link the an-

ticancer effects of BET inhibition to the func-
tional suppression key TFs—the androgen re-

ceptor in prostate cancer (Asangani et al. 2014),

the estrogen receptor and TWIST in breast can-
cer (Nagarajan et al. 2014; Shi et al. 2014), NF-

kB in lymphoma and lung cancers (Asangani

et al. 2014; Nagarajan et al. 2014; Zou et al. 2014;
Gao et al. 2015). The broad suppression of TF

function in normal cell types is also likely to be

related to the on-target toxicities of BET inhib-
itors seen in human patients. As an example, the

demonstrated interaction between the diacety-

lated TF GATA-1 and BET proteins provides a
potential explanation for the thrombocytope-

nia observed in BET inhibitor-treated patients

(Gamsjaeger et al. 2011; Lamonica et al. 2011;
Stonestrom et al. 2015).

It has been observed that many of the genes

that are sensitive to BET inhibition have an
unusually large repertoire of enhancer elements

in their vicinity, which might be interpreted

as another indicator of genes that are “highly
regulated.” Indeed, genes with a large number

of enhancers tend to encode lineage-specific

and growth-regulatory factors (Hnisz et al.
2013; Whyte et al. 2013). Such enhancers have

been given numerous labels (superenhancers,

FLI1 MYBC/EBP

 Lineage-specific enhancers/promoters

occupied by transcription factors

BET bromodomain

inhibitors 

(e.g., JQ1)

Mediator

NSD3

P300

ERG
PU.1

CHD8

BRD4

pTEFb

RNA polymerase II

Tumor-maintaining genes

(e.g., MYC, CDK6)

Ac
AcAc

Ac
AcAcAcAc P

P

Figure 3. The BRD4 pathway in acutemyeloid leukemia (AML) cells. In AML cells, BRD4 is recruited to lineage-
specific enhancers and promoters by acetylated histones and transcription factors (TFs), which are acetylated by
p300. BRD4 will then recruit several proteins to regions through direct physical interaction, including NSD3/
CHD8, the Mediator complex, and p-TEFb, which promotes transcriptional activation. BET bromodomain
inhibitors will release BRD4 from chromatin along with its cofactors to suppress transcription. Because many
BRD4-occupied enhancers are located at distal upstream or downstream sites, several of these activities are
occurring at a distance from the target gene promoter.
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locus control regions, stretch enhancers) and

often exist in clusters and harbor high levels of
BRD4 enrichment (Li et al. 2002; Chapuy et al.

2013; Lovén et al. 2013; Parker et al. 2013). Us-

ing genomic approaches applied to several dif-
ferent cell types, it has been observed that genes

with “superenhancers” nearby tend to be more

suppressed by JQ1 than randomly chosen ex-
pressed genes (Chapuy et al. 2013; Lovén et al.

2013; Peeters et al. 2015). More recent evidence

indicates that only aminority of superenhancers
are in fact targeted by JQ1, as indicated by mea-

surements of Mediator eviction following BET

inhibitor exposure (Bhagwat et al. 2016).
From these studies, it is clear that specific

cis-elements in the genome aremore suppressed

by BET inhibition than others, and this contrib-
utes to the biased effects of JQ1 on certain

genes. The mechanistic basis underlying these

heterogeneous effects is still not understood.
One possibility is that enhancer-binding pro-

teins like BRD4 have variable on–off rates at

each cis-regulatory element, and that perhaps
BET inhibitors will preferentially evict BRD4-

containing proteins complexes from chromatin

at sites that are more dynamic. Taken together,
the context-specific consequences of BET inhi-

bition can be attributed, at least in part, to the

specific complement of TF-bound cis-elements
(enhancers and promoters) that are suppressed

by these small molecules.

MECHANISMS OF RESISTANCE TO BET
INHIBITION

All cancer monotherapies are limited by the

emergence of drug-resistant cell populations,

with the ongoing clinical trials indicating that
BET inhibitors are not an exception. Hence, an

important area of ongoing investigation has

been to define mechanisms of resistance to
BET bromodomain inhibition. Several recent

studies have shown that acquired resistance to

BET inhibition is associated with nongenetic
mechanisms, in association with a global alter-

ation of gene expression that compensates for

the effects of BET inhibition (Tang et al. 2014;
Fong et al. 2015; Rathert et al. 2015; Shu et al.

2016). In MLL-fusion AML, this compensatory

change in gene expression is linked to activation

of the WNT signaling pathway, which can re-
store MYC expression despite chemical block-

ade of BRD4 (Fong et al. 2015; Rathert et al.

2015). In breast cancer cells, JQ1 resistance is
associated with an elevated level of BRD4 phos-

phorylation, which in turnwill bindmore tight-

ly to the Mediator complex to achieve bromo-
domain-independent recruitment to chromatin

(Shu et al. 2016). Across a panel of heteroge-

neous cell lines, it has been found that the sen-
sitivity to BET inhibitors can be correlated with

the preexisting expression level of genes that

encode apoptosis regulators (Conery et al.
2016). For example, leukemia cell lines with

high BCL2 expression and low expression of

BCL2L1 (also called BCL-xl) or BAD are gener-
ally correlated with higher sensitivity to BET

inhibition (Conery et al. 2016). Consistent

with this observation, acquired resistance to
BET inhibition can be linked to an increase in

the expression of BCL2L1 by gaining super en-

hancers upstream of the BCL2L1 gene (Shu
et al. 2016). What is notable across these studies

is that resistance to BET inhibition is not asso-

ciatedwith BRD2/BRD3/BRD4mutations, but
instead is associated with selection for a rare

(presumably preexisting) cell population har-

boring a pattern of gene expression that bypass-
es BET inhibition (Fong et al. 2015; Rathert

et al. 2015; Conery et al. 2016).

A clear objective for future clinical investi-
gation is to identify drugs that synergize with

BET inhibitors in causing anticancer effects, but

without having a synergistic increase in toxicity.
One promising area of drug combinations is to

use BET inhibition as ameans to eliminate drug

resistance to other targeted agents. In T-cell
leukemia driven by activating NOTCH1 muta-

tions, drug-tolerant cells are able to survive

NOTCH pathway inhibition (Knoechel et al.
2014). These resistant T-ALL cells are more sen-

sitive to BET bromodomain inhibition than the

parental population, thus providing a rationale
to combine NOTCH and BET-targeting agents

in this disease (Knoechel et al. 2014). A similar

scenario is found in breast cancer driven by PI3
kinase mutations, in which sensitivity to PI3K

inhibitors is attenuated by feedback pathways
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that bypass PI3K through the activation of

tyrosine kinase pathways (Stratikopoulos et al.
2015). Remarkably, these bypass pathways can

be suppressed transcriptionally via BET bromo-

domain inhibition. Hence, combinations of
BET and PI3K inhibitors are a promising ther-

apeutic approach in breast cancer. Resistance to

estrogen receptor modulation, Sonic hedgehog,
and androgen receptor blockade can also be

overcome by BET bromodomain inhibition,

thus providing numerous opportunities to ex-
plore drug combinations in the clinic (Asangani

et al. 2014; Nagarajan et al. 2014; Tang et al.

2014; Shu et al. 2016).

CONCLUDING REMARKS

There is a long history of treating cancer

patients with agents that disrupt fundamental

cellular processes (e.g., antimetabolites and
DNA alkylating agents), which can cause more

severe cell death responses in cancer cells than

in normal tissues. A similar description could
be applied to BET bromodomain inhibitors,

which target a set of transcriptional coactivators

to disrupt an important hub for numerous TF
pathways. As we have outlined in this review,

there is clearly specificity in the transcriptional

effects of BET inhibition, but only to a degree.
Hence, these agents can cause detrimental ef-

fects to cancer cells in association with tolerable

pleiotropic biological effects in normal tissues.
The basic and preclinical research performed in

this field has provided a roadmap for the im-

plementation of BET inhibition in the clinic.
In our view, the success of BET inhibition in

clinical studies will rest squarely on our ability

to find predictive biomarkers of therapeutic re-
sponse and the most effective drug combina-

tions for achieving durable disease remissions.
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