
Proliferating cancer cells exhibit considerably different 
metabolic requirements to most normal differentiated 
cells1. For example, in order to support their high rates of 
proliferation, cancer cells consume additional nutrients 
and divert those nutrients into macromolecular synthesis 
pathways (FIG. 1a). Metabolic pathways must therefore be 
rewired in such a way that balances biosynthetic processes 
with sufficient ATP production to support cell growth and 
survival. As all cancer cells are dependent on this change 
in metabolism, these altered pathways represent attractive 
therapeutic targets2,3. However, because normal prolifer­
ating cells have the same metabolic requirements as cancer 
cells, finding a therapeutic window between proliferating 
cancer cells and proliferating normal cells remains a 
major challenge in the development of successful cancer 
therapies targeting metabolic pathways.

Unlike their normal counterparts, many cancer cells 
metabolize glucose by aerobic glycolysis1,4,5. This phenom­
enon, known as the Warburg effect, is characterized by 
increased glycolysis and lactate production regardless 
of oxygen availability. Aerobic glycolysis is often accom­
panied by increased glucose uptake, and this phenom­
enon may be visualized in tumours of patients using 
18F-deoxyglucose positron emission tomography (FDG–PET) 
imaging. FDG–PET is used clinically as a staging tool for 
diverse types of cancers, and experimental PET tracers 
can distinguish cancer cells from normal cells based on 
other aspects of cancer metabolism6.

Differential uptake of  11C-choline, 11C-acetate, 
11C-methionine and 18F-labelled amino acid analogues has 
been demonstrated in some human cancers6,7. Variable 
uptake of these molecules — as well as FDG — and  

variable secretion of lactate are all observed in cancers, 
even among tumours arising from the same tissue6–9. Why 
some cancers exhibit increased labelling with these tracers 
is not understood; however, these findings suggest that 
tumours exhibit heterogeneous metabolic alterations  
that extend beyond the Warburg effect (FIG.  1b). 
Nevertheless, all cancer cells must ultimately direct avail­
able nutrients into the synthesis of new biomass while 
maintaining adequate levels of ATP for cell survival. 
Therefore, it is likely that these phenotypic differences are 
manifestations of various metabolic solutions that enable 
the proliferation of cancer cells in individual tumours.

At least some of the metabolic heterogeneity that is 
observed in tumours is influenced by the tumour micro-
environment5. Abnormal tumour vasculature can result in 
gradients of nutrients, oxygen and pH. Glucose, amino 
acids and lipids provide the substrates to supply metabolic 
pathways, and therefore metabolism is altered depending 
on the cellular availability of these nutrients. In addition, 
the signalling mechanisms of cells are linked to growth 
control pathways that sense conditions such as amino 
acid availability and oxygen levels; these signalling mecha­
nisms also influence metabolism5,10–12. Genetic alterations 
that are associated with cancer often occur in these same 
signalling pathways, which suggests that both environ­
mental and genetic factors influence the metabolic het­
erogeneity that is present across tumours5.

Despite having an in-depth understanding of meta­
bolic regulation, which has been built on almost a century 
of biochemistry research, our knowledge of how pathways 
are regulated to facilitate cell proliferation is incomplete13. 
Success in targeting cancer metabolism will emerge from 
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Therapeutic window
A term describing the ability  
of a drug to treat a disease 
effectively without causing 
unacceptable toxicity.

Aerobic glycolysis
The metabolism of glucose to 
lactate in the presence of 
oxygen. This is sometimes  
also referred to as the 
‘Warburg effect’.

18F-fluorodeoxyglucose 
positron emission 
tomography
(FDG–PET). A medical imaging 
test that is used in the clinic to 
visualize tissues with increased 
glucose uptake, including 
tumours.
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Abstract | Genetic events in cancer activate signalling pathways that alter cell metabolism. 
Clinical evidence has linked cell metabolism with cancer outcomes. Together, these 
observations have raised interest in targeting metabolic enzymes for cancer therapy, but 
they have also raised concerns that these therapies would have unacceptable effects on 
normal cells. However, some of the first cancer therapies that were developed target the 
specific metabolic needs of cancer cells and remain effective agents in the clinic today. 
Research into how changes in cell metabolism promote tumour growth has accelerated in 
recent years. This has refocused efforts to target metabolic dependencies of cancer cells as 
a selective anticancer strategy.
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Tumour microenvironment
The local conditions 
experienced by cells in a 
tumour, including the levels  
of nutrients, oxygen and 
signalling molecules such as 
growth factors and cytokines.

Metabolic enzymes
Proteins that catalyse the 
interconversion of two 
metabolites.

a better understanding, in specific genetic contexts, of pre­
cisely how cells regulate the flux of nutrients into pathways 
that are required for biosynthesis. Understanding tumour 
cell metabolism requires the use of methods to assess 
metabolite flux and pathway regulation that are not often 
used in cancer drug discovery. However, akin to how anti­
biotics target the biosynthetic processes that are unique to 
microorganisms, the possibility of selectively targeting the 
biosynthetic processes of cancer cells holds promise as a 
strategy for improving cancer therapy.

Here, we review existing evidence supporting the 
therapeutic potential of targeting the metabolic adapta­
tions that are characteristic of cancer cells, discuss the 
associated challenges and limitations of this as an anti­
cancer strategy, and outline a framework for consider­
ing new targets in cancer metabolism. We also discuss 
emerging evidence involving specific metabolic enzyme 

targets, and examine how they might be used to limit 
cell proliferation. To date, only a handful of molecules 
that target metabolic pathways have been tested as a form 
of cancer therapy. However a growing body of evidence 
supports the notion that altered metabolism is a key 
consequence of important genetic drivers of cancer, thus 
inciting renewed interest in exploring metabolic enzymes 
as therapeutic targets.

Why target cancer cell metabolism?
Metabolism may influence cancer initiation and pro‑ 
gression. Clinical studies have linked altered whole-body 
metabolism to cancer development, progression and poor 
treatment outcomes. Indeed, obesity, hyperglycaemia and 
insulin resistance are all associated with an increased risk 
of developing cancer and are associated with worse clinical 
outcomes in patients with cancer14–18. However, how such 
changes in organismal metabolism influence metabolism 
at the cellular level to promote cancer is controversial.

Increased circulating levels of insulin and insulin-like 
growth factor (IGF) have been linked with cancer pro- 
gression, which suggests that obesity and insulin  
resistance promote cancer at least in part by activating sig- 
nalling pathways that drive cell growth15. These same 
signalling pathways also drive nutrient uptake into cells 
and regulate enzymes in glycolysis, which implies that 
hormonal changes can have important indirect effects 
on cancer cell metabolism16. Furthermore, elevated levels 
of glucose alone may promote increased glucose uptake 
in some cells, and lower circulating levels of glucose are 
associated with better cancer treatment outcomes19–22.

As a result, antidiabetic drugs are being explored 
for antitumour activity, and retrospective clinical stud­
ies have shown a reduction in cancer-related mortality 
in patients with diabetes who are taking metformin23,24. 
However, this effect appears to be independent of blood 
glucose levels, as patients with diabetes whose blood glu­
cose levels are controlled by other means do not derive 
the same anticancer effect as patients taking metformin24. 
Metformin is widely used for the treatment of type 2 dia­
betes and acts by inhibiting mitochondrial complex I in 
the liver to interfere with ATP production25,26. This causes 
energy stress, increased AMP-activated protein kinase 
(AMPK) activity and inhibition of gluconeogenesis, which 
results in lower blood glucose levels, improved insulin 
sensitivity and decreased insulin27. Thus, it is controver­
sial whether metformin benefits patients with cancer by 
directly acting on the tumour or by indirectly decreasing 
levels of insulin and insulin-related growth factors. 

Other antidiabetic therapies that act by raising insulin 
levels may therefore lead to worse clinical outcomes in 
patients with cancer. Dietary restriction, which has been 
known to prolong survival in cancer models, has no effect 
on tumours that proliferate in the absence of IGF signal­
ling28. These findings are consistent with metformin pro­
viding an indirect benefit to patients with high circulating 
levels of IGF. However, high doses of metformin are toxic 
to cancer stem cells29, and women taking metformin have 
an increased tumour response to neoadjuvant chemo­
therapy for breast cancer that may extend to patients with 
cancer who do not have diabetes30.

Figure 1 | Cancer cell metabolism. Proliferating cell metabolism involves a shift in 
nutrient metabolism towards biosynthesis. a | Mammalian cells are exposed to ~5 mM 
glucose and ~0.5 mM glutamine in serum, and these nutrients are the primary metabolic 
fuel for cancer cells and many normal cells. Additional nutrients, including lipids and other 
amino acids, can also be an important source of ATP and biosynthetic precursors for some 
cells. Most of the increased nutrient uptake in proliferating cells is used to support 
biosynthetic reactions. As a result, cancer cell metabolism involves many complex 
changes in metabolite flux beyond a switch in the amount of glucose metabolized by 
oxidative phosphorylation and aerobic glycolysis. Understanding how different cancer 
cells regulate metabolism to achieve a balance between ATP production and biosynthesis 
is vital for successfully targeting enzymes for cancer therapy. b | Not all tumours exhibit 
the same metabolic phenotype. Tracer uptake studies in patients and in model systems of 
cancer have demonstrated that cancer cells exhibit differential uptake of nutrients. This 
variety is seen even among different tumours that arise from the same normal tissue. This 
heterogeneity underlies observed differences in 18F-deoxyglucose positron emission 
tomography (FDG–PET) and acetate–PET scans in patients, as well as why some tumour 
cells are ‘glutamine-addicted’ or exhibit the Warburg effect, and should be considered 
when stratifying patients for trials using novel therapies that target cancer metabolism. 
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Cancer cell metabolism
The enzymes and pathways 
used by cancer cells to 
transform nutrients into the 
chemical precursors that make 
up a cell, and to generate ATP 
and reducing equivalents that 
support cellular processes.

LKB1 (also known as STK11), a kinase that is impor­
tant for AMPK activation in response to metformin27, is 
frequently deficient in human cancers5. Thus, the admin­
istration of metformin to induce energy stress may be par­
ticularly beneficial for treating LKB1‑deficient tumours 
because these cells are unable to activate AMPK and cope 
with this stress31. Planned adjuvant clinical trials of met­
formin in patients with breast cancer will provide addi­
tional insight into which patients benefit from metformin. 
Metformin could also be used as a form of chemopreven­
tion in patients with a high risk of developing cancer32,33, 
although the best strategy for identifying individuals to 
include in such trials has yet to be determined34.

Regardless of whether the benefit that is observed with 
metformin involves a direct effect on cell metabolism, 
blocking the signals that link whole-body metabolism to 
cellular metabolism presents several therapeutic oppor­
tunities. Antibodies and small-molecule kinase inhibi­
tors that target the IGF receptor (IGFR) have been well 
tolerated by patients35. Early studies with these agents 
have focused on sarcomas, based on preclinical evidence 
suggesting that these tumours are dependent on IGFR 
signalling. In fact, some patients with rare sarcomas 
develop tumour-associated hypoglycaemia that is related 
to increased production of an isoform of IGF, and dra­
matic anecdotal responses have been reported in these 
individuals36. Unfortunately, overall these agents have 
demonstrated limited efficacy in clinical trials, which sug­
gests that their clinical utility has yet to be determined35.

Further efforts to identify tumours with altered meta­
bolism that is dependent on IGFR signalling may enable 
the selection of patients who could benefit from these  
therapies. IGFs are thought to increase tumour growth 
by activating the phosphoinositide 3‑kinase (PI3K) 
signal transduction pathway, which influences metabolic 
pathways as one downstream consequence of increased  
signalling4,37. In addition, mammalian target of rapamycin 
(mTOR) — a major effector downstream of PI3K — is reg­
ulated by nutrient availability12. Activation of mTOR stim­
ulates a metabolic programme to promote cell growth38; 
consequently, mTOR inhibitors are increasingly being used 
in the clinic to treat various cancers, and many compounds 
targeting the PI3K pathway are in clinical development39,40. 
A better understanding of how these drugs affect tumour 
metabolism may define mechanisms of resistance to 
these agents or identify synergistic targets in metabolism 
that could convert mTOR inhibitors from cytostatic to 
cytotoxic agents and thus increase their efficacy in patients.

Targeting metabolism could improve existing approaches. 
Many genetic alterations that are known to promote 
cancer lead to a single converging metabolic phenotype 
that is characterized by enhanced cell-autonomous nutri­
ent uptake and reorganization of metabolic pathways to 
support biosynthesis4,5,41. Growth signalling pathways that 
are activated in cancer promote these metabolic changes, 
and compounds that target signal transduction pathways 
are available in the clinic. However, despite the consider­
able success of these agents in selective cancers42, for many 
common malignancies it remains a challenge to identify 
which patients are likely to respond to these drugs.

Interestingly, a decrease in glucose uptake — as meas­
ured by FDG–PET — has been predictive of a response to 
compounds that target the PI3K pathway in animal mod­
els43, and of a response to kinase inhibitors in patients44. 
These findings support the hypothesis that a major meta­
bolic consequence of dysregulated PI3K or tyrosine kinase 
activation is an increase in nutrient uptake. There is also 
evidence that increased nutrient uptake is a crucial effect 
of oncogenic RAS mutations45, and therefore decreased 
nutrient uptake can be predictive of a response to ther­
apy in KRAS-driven lung cancer43. This underscores 
the potential value of FDG–PET as an early predictor of 
response to molecules that target signalling pathways in 
the treatment of cancer.

Despite the availability of creative approaches, effective 
agents targeting many of the common driver mutations in 
cancer are not available. For instance, mutations in RAS 
or dysregulated expression of MYC are frequent events in 
human cancer, yet no specific therapies exist to treat can­
cers based on either genetic event, and many RAS-driven 
cancers are refractory to existing therapies46,47. Enzymes 
that are involved in metabolism appear to be key effectors 
of RAS- and MYC-dependent pathways. RAS-mutant cells 
are dependent on sufficient glucose uptake45, and MYC-
dependent cells have a particular reliance on glutamine 
metabolism48–50.

In preclinical models, targeting metabolic enzymes 
has been shown to be effective in the treatment of 
KRAS-mutant45,51 and MYC-dependent tumours52,53. For 
instance, small-molecule inhibitors that disrupt glucose 
metabolism can decrease the growth of xenograft tumours 
that are derived from cells driven by these oncogenes45,51,53. 
This suggests that targeting metabolism as an effector of 
signal transduction pathways that are required for cell 
growth might be an effective way of targeting cancers that 
are driven by genetic alterations and cannot be targeted 
directly. Furthermore, because kinase inhibitor therapies 
can result in decreased glucose uptake1,43, compounds that 
further impair glucose metabolism may be synergistic 
with these approaches. Cytotoxic therapies also compro­
mise glucose metabolism54, so targeting metabolism may 
sensitize cancers to these drugs as well.

Metabolism is a proven target of successful therapies. 
Given that all cancer cells rely on changes in metabolism 
to support their growth and survival, targeting metabo­
lism has the potential to affect cancers arising from many 
different tissues2. In fact, the possibility that agents tar­
geting cell metabolism could be effective across diverse 
cancer types has historical precedent. For example, anti­
folate drugs were developed before there was an under­
standing of how folic acid contributes to a metabolic cycle 
that allows single-carbon transfer reactions (BOX 1), which 
are critical for the generation of nucleic acids (FIG. 2). 
Consequently, the success of antifolate drugs led to the 
study of other metabolite analogues as potential antican­
cer agents that disrupt nucleotide synthesis55,56.

Today, the antimetabolite class of nucleoside analogues 
— which includes 5‑flurouracil, gemcitabine (Gemzar; 
Lilly) and fludarabine (Fludara; Bayer/Genzyme), along 
with hydroxyurea and a newer generation of antifolate 
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Auxotroph
A term describing the inability 
of a cell (or organism) to 
synthesize a chemical 
compound that is required for 
growth or survival.

drugs (for example, pemetrexed (Alimta; Lilly)) — is 
widely used in the treatment of diverse human tumours. 
Although these drugs are not considered by most to be 
‘targeted therapies’, they have clear targets in metabolism, 
such as dihydrofolate reductase and thymidylate synthase 
(FIG. 2; TABLE 1), and remain effective therapies for many 
human cancers.

The use of the enzyme l‑asparaginase to treat acute 
lymphoblastic leukaemia (ALL) and related lymphomas 
is another example of how the unique metabolism of 
tumour cells has been successfully exploited for cancer 
therapy. Like antifolate drugs, the potential utility of 
l‑asparaginase in treating cancer was discovered by 
accident and represents another example of rational drug 
design that was later revealed to exploit a metabolic differ­
ence between cancer cells and normal cells (BOX 2). It was 
found that ALL cells are functional asparagine (and glu­
tamine) auxotrophs57. l‑asparaginase deaminates aspara­
gine to aspartic acid, thereby limiting the availability of 
asparagine for cancer cells (FIG. 3). The bacterial l‑aspara­
ginase that is used in the clinic has preferential selectivity 
for asparagine over the structurally related amino acid 
glutamine58; however, the enzyme retains some ability to 
degrade glutamine, and this activity may have a role in 
the dose-limiting coagulopathy caused by the imbalanced 
synthesis of pro- and anticoagulant proteins58,59. However, 
glutamine is a crucial nutrient for many cancer cells  
and glutamine depletion may contribute to the effective­
ness of the drug in ALL3,60. l‑asparaginase has little utility 
in the clinic outside of ALL treatment, but other thera­
peutic uses of this enzyme have not been explored since 
the early days of chemotherapy.

Glutamine is the most abundant amino acid in serum 
and a key component of mammalian tissue culture 
media60, and several studies have identified a depend­
ence of some cancer cells on the nutrient48–50. Thus, 
l‑asparaginase — or analogous agents that are designed 
to specifically reduce levels of glutamine — may be 
effective for treating cancers other than ALL. A rational 
approach to identify other auxotrophies of cancer cells 
could lead to the development of similar treatment strat­
egies. Indeed, several types of cancer cells have low lev­
els of arginosuccinate synthetase, which is required for 
endogenous arginine synthesis3, and early experiments 

have suggested that tumours may be sensitive to argi­
nase61. Arginine deiminase conjugated to polyethylene 
glycol (PEG) is an agent that lowers extracellular levels of 
arginine and is currently in clinical trials for various solid 
tumours62. Early phase (Phase I/II) trials have shown that 
this drug can be administered safely, and some positive 
responses have been observed in both hepatocellular car­
cinoma and melanoma62,63.

Key issues in targeting cancer cell metabolism
Challenges of directly targeting metabolic pathways. 
Because all cells rely on the same metabolic pathways to 
generate ATP, it is often assumed that drugs that target 
metabolic pathways would have detrimental effects on 
normal tissues. Although this is the case for some meta­
bolic targets, the success of cytotoxic agents that target 
folate metabolism and DNA synthesis illustrates that a 
therapeutic window can exist for anticancer drugs that 
target metabolic pathways. 

These chemotherapies have side effects that are related 
to on-target inhibition of the same enzymes in rapidly 
proliferating normal tissues such as the gut epithelium and 
bone marrow64. The common assumption that the thera­
peutic window obtained by these agents is due to the more 
rapid proliferation of cancer cells is not necessarily true. 
Proliferating cells in the gut have a cell-cycle time that is 
estimated to be 30–40 hours and these cells may prolifer­
ate as frequently as every 10 hours65,66. Haematopoiesis 
is also very fast as humans generate 2 million red blood 
cell precursors per second67. Cancer cells can proliferate 
at similar rates under optimal tissue culture conditions, 
but most cancer cells proliferate more slowly in vivo66,68. 
Despite this difference in the rate of proliferation, sensitive 
cancers can be targeted using these therapies. 

Tumour sensitivity to these agents can be accounted 
for in part by the loss of cell cycle checkpoints that accom­
pany the transformation of normal cells into cancer cells 
(chemotherapy-based killing mechanisms reviewed in 
REF. 69). However, the fact that folinic acid can selec­
tively rescue dihydrofolate reductase inhibition in nor­
mal proliferating tissues (FIG. 2) and enhance the efficacy 
of 5‑fluorouracil in colon cancer therapy70 suggests that 
additional metabolic differences exist in cancer cells 
that also contribute to the therapeutic window. A better 
understanding of the molecular mechanisms underlying 
why some cancer cells are more dependent on specific 
metabolic pathways could result in more effective ways 
of targeting metabolic pathways, with fewer side effects 
on normal proliferating cells.

Unwanted toxicity caused by the effects of agents tar­
geting metabolic pathways in normal proliferating cells is 
likely to be a major challenge in the development of drugs 
that target proliferative cell metabolism. Several pathways 
often exist to generate the same metabolic end product, 
and redundant pathways that are present in normal cells 
but absent in cancer cells may provide a therapeutic win­
dow. However, this same redundancy may also impair the 
efficacy of drugs in tumours that can use more than one 
pathway. For instance, the success of targeting ATP citrate 
lyase as a means of blocking cytoplasmic levels of acetyl-
CoA is limited in part by the generation of acetyl-CoA via 

Box 1 | The discovery of antifolate drugs as effective anticancer agents

Targeting metabolism has been a prominent feature of some of the first efforts to treat 
cancer with drugs. Shortly after the discovery of folic acid as a nutrient that is needed 
to prevent anaemia in pregnancy, Sidney Farber152 noted that the administration of folic 
acid conjugates appeared to stimulate leukaemic cell proliferation in patients56. This led 
to one of the first examples of rational drug design as Farber, working with Yellapragada 
Subbarao and chemists at the Lederle Laboratories, developed the folate analogue 
aminopterin for use in humans. Aminopterin could antagonize the ability of folic acid to 
stimulate the growth of bacteria, and this compound was the first drug to induce 
remission in children with acute lymphoblastic leukaemia153. Another folate analogue, 
methotrexate (amethopterin), replaced aminopterin as the agent used for cancer 
chemotherapy and resulted in one of the first cures of a solid tumour (choriocarcinoma) 
by chemotherapy in the late 1950s154. Methotrexate was also the first successful 
adjuvant therapy for osteosarcoma155, and is still used for the management of several 
cancers in the clinic today.
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Lactic acidosis
A condition of low blood pH 
(metabolic acidosis) that is 
caused by the accumulation  
of lactate.

another route71. Nevertheless, there is mounting evidence 
that genetic changes that are associated with cancer create 
addictions to specific metabolic pathways4,5, and cancer 
cells often have chromosomal deletions that could elimi­
nate enzymes that are necessary for the use of redundant 
pathways. Combining agents to target complementary 
metabolic pathways might therefore be another strategy 
for reducing the dose of individual drugs and limiting 
unwanted effects on normal cells.

A therapeutic window does not exist for some targets 
in cancer metabolism, but drugging alternative targets in 
the same metabolic pathway may be feasible. Although 
it has never been used to treat cancer, the mitochondrial 
uncoupling agent 2,4‑dinitrophenol (DNP) was used as 
a weight-loss agent in the 1930s72. By uncoupling mito­
chondrial electron transport from ATP synthesis (FIG. 3), 
agents like DNP cause energy that is released from nutri­
ent oxidation to be lost as heat and also induce energy 
stress in cells. Unfortunately, only slight overdoses of DNP 
result in lethal hyperthermia. However, metformin also 
targets oxidative phosphorylation but in a different way 
(FIG. 3), is well tolerated and one of the most commonly 
prescribed drugs in the world. By slowing mitochondrial 
ATP generation, metformin causes mild cellular energy 
stress27. Metformin has an on-target, dose-dependent side 
effect of inducing lactic acidosis. Complex I inhibition by 
metformin decreases mitochondrial oxidation of NADH 
to NAD+. Regenerating NAD+ is necessary to allow con­
tinued glycolytic flux, and lactate synthesis allows the 
regeneration of NAD+ from NADH in the absence of 
mitochondrial electron transport. Thus, increased lactate 
production is an inevitable consequence of increased com­
plex I inhibition, and this defines the therapeutic window  
for this class of drugs. However, whether this window is 
large enough to achieve doses that have direct growth-
inhibitory effects on tumours in vivo remains to be 
determined.

Metabolism is often viewed as a housekeeping func­
tion for cells, whereas signalling pathways are viewed as 
unique pathways that act only in specific cell types and 
physiological situations. However, with the exception of 
gain-of-function mutations, no target is unique to cancer 
cells. Successful targeted therapies take advantage of the 
dependence of cancer cells on specific pathways. Similarly, 
cancer cells depend on specific metabolic pathways, and 
identifying these dependencies is crucial for generating 
drugs that can successfully target metabolic enzymes and 
have minimal effects on normal tissues.

Metabolic flux in cancer cells is not well understood. 
Resistance to therapy is an issue with all cancer treat­
ments, and metabolism is a complex network with 
built-in plasticity that may allow the cell to overcome 
inhibition at a single enzymatic step. This further high­
lights the importance of understanding precisely how 
metabolic pathways are regulated in cancer cells in vivo. 
Flux through metabolic pathways, rather than levels of 
individual pathway metabolites, provides the cell with the 
ability to continually generate ATP (to support cell sur­
vival) or crucial biosynthetic precursors (for cell growth). 
Thus, rather than focusing on levels of individual metab­
olites, determining flux through the cancer cell metabolic 
network is likely to provide a better insight into successful 
enzyme targets.

Recent advances in metabolite profiling methodologies 
are providing new tools for understanding flux through 
pathways, and will enhance our understanding of can­
cer metabolism. Furthermore, increased application of 
techniques such as magnetic resonance spectroscopy 
can allow direct visualization of how metabolism is 
altered in patients as a result of new therapies73,74. These 
techniques include the use of dynamic nuclear polariza­
tion to generate hyperpolarized 13C-labelled metabolites 
to track metabolism in tumours. These approaches for 

Figure 2 | Existing chemotherapies targeting specific metabolic enzymes. 5‑fluorouracil inhibits thymidylate 
synthase (TYMS), an enzyme that is required to generate thymidine for DNA synthesis. Methotrexate inhibits dihydrofolate 
reductase (DHFR), which catalyses the conversion of dihydrofolate (DHF) to tetrahydrofolate (THF) — a key step in folate 
metabolism. Interrupting folate metabolism compromises thymidine synthesis, but also interferes with purine synthesis 
and other reactions involving single-carbon transfers. Folinic acid can enter the folate pool downstream of DHFR and 
rescue the effects of DHFR inhibition in some cells. Glycine can also be used to convert THF to 5,10‑methylene-THF. 
dTMP, deoxythymidine monophosphate; dUMP, deoxyuridine monophosphate.
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Table 1 | Strategies to target metabolic enzymes for cancer therapy

Target (or targets) Agent (or 
agents)

Stage of 
development

Indications/key preclinical findings Refs

Nucleic acid synthesis

Folate metabolism 
(DHFR)

Methotrexate, 
pemetrexed

Approved 
agents

Effective therapies for various cancers -

Thymidine synthesis 
(TYMS)

5-Fluorouracil Approved 
agent

An effective therapy for various cancers -

Deoxynucleotide 
synthesis (RNR)  

Hydroxyurea Approved 
agent

An effective therapy for leukaemia -

Nucleotide 
incorporation  
(DNA polymerase/
RNR)

Gemcitabine, 
Fludarabine

Approved 
agents

Effective therapies for various cancers -

Ribose synthesis 
(TKTL1, G6PD)

Preclinical data 
only

Preclinical data 
only

TKTL1 allows non-oxidative ribose production and its expression correlates 
with poor prognosis; TKTL1 depletion via RNAi inhibits cell proliferation; G6PD 
is necessary for oxidative ribose production; high levels of G6PD seen in some 
cancers and its expression can transform fibroblasts

148, 
161

Amino acid metabolism/protein synthesis

Asparagine 
availability

l-asparaginase Approved 
agent

An effective therapy for leukaemia -

Arginine availability Arginine 
deiminase 
conjugated to 
PEG

Phase II clinical 
trials

Arginine auxotrophy is thought to be related to low levels of arginosuccinate 
synthase expression in some tumours; the clinical efficacy of this agent is being 
explored in hepatocellular carcinoma, melanoma, small-cell lung cancer and 
mesothelioma

62

Glutamine 
availability (GLS1)

Preclinical data 
only

Preclinical data 
only

GLS1 converts glutamine to glutamate, and is likely to be important as a means 
of generating anapleurotic carbon for the TCA cycle

162

PHGDH Preclinical data 
only

Preclinical data 
only

PHGDH is in a region of copy-number gain that is most commonly observed 
in melanoma and breast cancer, and cell lines with copy-number gain are 
dependent on PHGDH expression to proliferate

163, 
164

Lipid synthesis

FASN Preclinical data 
only

Preclinical data 
only

FASN is a key enzyme in de novo lipogenesis; the growth of human xenograft 
tumours in mice is inhibited by tool compounds

165

ACLY Preclinical data 
only

Preclinical data 
only

ACLY is necessary for exporting citrate from the mitochondria to the cytosol for 
de novo lipogenesis, and is important for cell proliferation and growth of human 
xenograft tumours

71,166

ACC Preclinical data 
only

Preclinical data 
only

ACC is necessary for de novo lipogenesis and is required for the growth of cancer 
cells in culture in the absence of exogenous lipids

161, 
167

Glycolysis

Glucose transport Preclinical data 
only

Preclinical data 
only

Efforts to inhibit glucose transport are ongoing -

Hexokinase 2-deoxyglucose Clinical data 
and preclinical 
data

Unacceptable toxicity observed at high doses; clinical trials at lower doses are 
currently on hold. Inhibition of hexokinase blocks proliferation, and is a rationale 
for the development of selective HK2 inhibitors

88,89, 
91,92

PFK2 Preclinical data 
only

Preclinical data 
only

PFK2 controls a key regulatory step in glycolysis; tool compounds targeting the 
FB3 isoform (PFKFB3) inhibit the growth of xenograft tumours

51

PGAM Preclinical data 
only

Preclinical data 
only

PGAM1 was identified in a screen as the target of a molecule that kills cancer cells 168

PKM2 Preclinical data 
only

Preclinical data 
only

Ongoing studies on both enzyme activation and inhibition; cancer cells 
expressing the PKM1 isoform do not grow as xenografts

99

LDHA Preclinical data 
only

Preclinical data 
only

LDHA is responsible for lactate production; tool compounds inhibit the growth 
of xenograft tumours

53

Lactate excretion 
(MCT4)

Preclinical data 
only

Preclinical data 
only

Lactate is excreted from cells via MCTs; MCT4 is used by some cancer cells, and 
small-molecule MCT inhibitors can block cell proliferation

111, 
114

TCA cycle/mitochondrial metabolism

PDK DCA Phase II clinical 
trials

DCA is available in the clinic for treating lactic acidosis resulting from inborn 
errors of metabolism; can modulate mitochondrial metabolism in human 
gliomas, and its clinical efficacy is being studied

81

IDH1, IDH2 Preclinical data 
only

Preclinical data 
only

2‑hydroxyglutarate production by mutated enzymes is linked to cancer pathogenesis 
Decreased expression of wild-type enzyme using RNAi can impair proliferation 
of wild-type IDH-expressing cancer cells

128– 
130
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Metabolite profiling
The measurement of multiple 
metabolite levels in cells or in 
body fluid. This is sometimes 
also referred to as 
metabolomics. Metabolites are 
usually detected using nuclear 
magnetic resonance 
spectroscopy or mass 
spectrometry.

tracking metabolism in vivo will be especially vital for 
understanding how cell metabolism is influenced by 
the tumour microenvironment5, and will help with the 
selection of the right patients for specific drugs that target 
cancer cell metabolism.

Potential of metabolic enzymes as drug targets. 
Mutations in oncogenes or tumour suppressor genes 
result in the addiction of cancer cells to downstream sig­
nalling events2,75. These genetic events define an ideal set 
of possible targets for cancer therapy, but unfortunately 
many of the gene products are transcription factors or 
signalling molecules that rely on protein–protein inter­
actions and present challenges to drug development. As 
a result, efforts have focused on targeting other tractable 
signalling molecules in a key pathway that is associated 
with the genetic event. These strategies have had limited 
success in the clinic, which suggests that blocking single 
downstream signalling targets is insufficient for inhibit­
ing the transforming effects of some driver mutations.

Altered expression of metabolic enzymes or changes in 
the regulation of metabolic pathways also occurs down­
stream of many oncogenes and tumour suppressor genes, 
and cancers with specific genetic lesions are addicted to 
at least some of these metabolic changes1,4,76. In addi­
tion, ATP is necessary for the survival of all cells, and 
the ability to convert nutrients into biomass is crucial for 
all cancer cells. Thus, attacking metabolism as a down­
stream consequence of driver mutations is an attractive 
strategy because it is central to the growth and survival of 
cancer cells. Furthermore, many metabolic enzymes are 
amenable to targeting with small molecules.

Tumour metabolism can be safely targeted
It is possible to safely target central metabolic pathways 
in patients. The small molecule dichloroacetate (DCA) 
is used to treat patients with lactic acidosis resulting 
from rare inborn errors of mitochondrial metabolism. 
At least one target of DCA is pyruvate dehydrogenase 
kinase (PDK) (FIG. 3). The expression of PDK is increased 
in many cancers as a result of increased activation of the 
transcription factor hypoxia-inducible factor (HIF)77,78. 
PDK is a negative regulator of the pyruvate dehydroge­
nase complex (PDH)79. PDH catalyses oxidative decar­
boxylation of pyruvate to acetyl-CoA, which allows 
the entry of pyruvate into the tricarboxylic acid (TCA) 
cycle and away from lactate production. Thus, DCA-
mediated inhibition of PDK leads to the activation of 
PDH, increased metabolism of pyruvate to acetyl-CoA 
and decreased lactate production. DCA can alter the 
mitochondrial membrane potential and inhibit lactate pro­
duction in cancer model systems80, and has been shown 
to alter mitochondria in patients with glioblastoma81. 
Importantly, even at doses that influence the mitochon­
drial membrane potential, DCA is well tolerated by 
patients81. Although there are insufficient data to deter­
mine whether DCA will provide clinical benefit, these 
studies demonstrate that a sufficient therapeutic window 
can exist to target cancer cell metabolism in patients.

Approaches for targeting cancer cell metabolism
Despite a renewed interest in exploring metabolic 
enzymes as targets for cancer therapy, very few mol­
ecules that target central carbon metabolism are currently 
in clinical trials (TABLE 1). However, mounting evidence 

Table 1 cont. | Strategies to target metabolic enzymes for cancer therapy

Target (or targets) Agent (or 
agents)

Stage of 
development

Indications/key preclinical findings Refs

Malic enzyme Preclinical data 
only

Preclinical data 
only

Key enzyme involved in NADPH production 1,139

Mitochondrial 
complex I

Metformin Approved 
agent (not for 
cancer)

Improved survival in patients with diabetes who have cancer; increased 
response rate observed in patients with breast cancer taking metformin; 
prospective trials planned to explore efficacy in several cancers

24,30

Glutamine 
availability (GLS1, 
GDH)

Preclinical data 
only

Preclinical data 
only

GLS1 converts glutamine to glutamate, and GDH converts glutamate to αKG 
as a source of anapleurotic carbon for the TCA cycle; GDH is required for 
proliferation of some cells; inhibition of GLS1 impairs proliferation of some cells

142, 
162, 
169

PC Preclinical data 
only

Preclinical data 
only

PC provides an alternative route to replenish the TCA cycle when GLS is 
inhibited, which suggests that PC inhibition could synergize with GLS inhibition 
in glutamine-addicted cells

170

Fatty acid metabolism

MGLL Preclinical data 
only

Preclinical data 
only

Inhibition of MGLL impairs the growth of xenograft tumours 147

CPT1C Preclinical data 
only

Preclinical data 
only

Tool compounds inhibit the growth of xenograft tumours 171

NAD metabolism

NAMPT Various Phase II clinical 
trials

FK866 had a dose-limiting toxicity of thrombocytopaenia in Phase I trials, and 
NAMPT inhibitors are being considered for further development as a cancer 
therapy

119, 
123, 
124

αKG, α-ketoglutarate; ACC, acetyl-CoA carboxylase; ACLY, ATP citrate lyase; CPT1C, carnitine palmitoyltransferase 1C; DCA, dichloroacetate; DHFR, 
dihydrofolate reductase; FASN, fatty acid synthase; G6PD, glucose‑6-phosphate dehydrogenase; GDH, glutamate dehydrogenase; GLS, glutaminase 1; HK2, 
hexokinase 2; IDH, isocitrate dehydrogenase; LDHA, lactate dehydrogenase A; MCT4, monocarboxylate transporter 4; MGLL, monoacylglycerol lipase; NAMPT, 
nicotinamide phosphoribosyltransferase; PC, pyruvate carboxylase; PDK, pyruvate dehydrogenase kinase; PEG, polyethylene glycol; PFK2, phosphofructokinase 2; 
PGAM, phosphoglycerate mutase; PHGDH, phosphoglycerate dehydrogenase; PKM2, pyruvate kinase M2 isoform; RNAi, RNA interference; RNR, ribonucleotide 
reductase; TCA, tricarboxylic acid; TKTL1, transketolase-like protein 1; TYMS, thymidylate synthase.
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Mitochondrial membrane 
potential
The electrochemical proton 
gradient across the inner 
mitochondrial membrane that 
is generated by the 
mitochondrial electron 
transport chain. This gradient 
is used to synthesize ATP and 
transport molecules across the 
inner mitochondrial 
membrane.

Central carbon metabolism
The core metabolic pathways 
used by cells to generate ATP, 
reducing equivalents and the 
main precursors for amino 
acid, nucleic acid and lipid 
biosynthesis.

Bioenergetics
A term referring to how energy 
flows through living systems.

supports several metabolic enzymes as candidate targets, 
and studies using tool compounds have yielded encourag­
ing results in preclinical models of cancer. New molecules 
directed against metabolic enzymes are likely to enter clin­
ical studies in the next few years. Such compounds have 
the potential to limit macromolecular synthesis needed 
for cell growth, a strategy that is employed by existing 
drugs that target nucleic acid synthesis. Alternatively, tar­
geting metabolism can limit pathways that are important 
for supplying nutrients to the cell and impair bioenergetics, 
thus preventing an adaptive response to cell stress. This 
latter approach is more likely to be synergistic with non-
metabolic therapies that also impair nutrient uptake54. 
Enzyme targets that fall into both classes are summarized 
in TABLE 1.

These approaches could have seemingly opposite 
effects on some metabolic phenotypes. For instance, 
both DCA and metformin target mitochondrial physiol­
ogy, yet DCA decreases lactate production and is used to 
treat lactic acidosis, whereas metformin increases lactate 
production and lactic acidosis is an important side effect 
of metformin treatment. Although paradoxical, there is 
evidence to suggest that both drugs are potentially ben­
eficial in cancer treatment. By increasing glucose entry 
into the TCA cycle, DCA directs carbon away from lactate 
production80 (FIG. 3) and, as a consequence, it may direct 
metabolism away from efficient biosynthetic reactions1. 
Conversely, metformin inhibits the transfer of electrons 
from NADH in the mitochondria to the electron trans­
port chain (FIG. 3). This increases reliance on lactate pro­
duction as a means to regenerate NAD+ from NADH, 
impairs mitochondrial production of ATP and causes 
cellular energy stress26,31. Both approaches to impair meta­
bolism could have therapeutic benefit in the right context. 
The former strategy (DCA) is likely to be more effective in 
tumours with increased reliance on high glucose uptake 
and lactate production, whereas the latter strategy (met­
formin) might synergize with other therapies that induce 
energy stress.

Directly targeting glucose metabolism. Various agents 
have been shown to block glucose uptake by cancer 
cells, but so far no specific glucose transport inhibitors 
have been reported. Glucose transporter 1 (GLUT1; also 
known as SLC2A1) is the glucose transporter with the 
largest tissue distribution and is thought to be responsible 

for basal glucose uptake in most cancer cells and normal 
cells82,83 (FIG. 3). Although GLUT1 is expressed at much 
higher levels in cancer cells than in normal cells, it may 
be difficult to directly inhibit glucose uptake in tumours 
without having an effect on normal tissues. Nevertheless, 
partial inhibition of glucose uptake may still sensitize can­
cer cells to other drugs (reviewed in REF. 84).

Many of the studies exploring glucose dependence 
rely on the withdrawal of glucose from cells in culture, 
which illustrates the need for pharmacological agents 
that inhibit glucose uptake. There are at least thirteen 
passive glucose transporters, most of which have poorly 
understood functions. Interestingly, some of these, such 
as GLUT3 (also known as SLC2A3), are not expressed in 
most normal cells but they can be expressed at high lev­
els in cancer cells, which suggests that these transporters 
could be possible therapeutic targets82. Antibodies that 
selectively target GLUT3 or other nutrient transporters 
with restricted expression may represent another way of 
blocking nutrient uptake and starving cancer cells.

2‑deoxy-d-glucose (2DG) is an inhibitor of glucose 
metabolism as it is phosphorylated in cells by hexoki­
nase to produce 2‑deoxyglucose‑6‑phosphate, which 
is a competitive inhibitor of enzymes that metabolize 
glucose‑6‑phosphate. Cells that are exposed to sufficient 
amounts of 2DG undergo growth arrest and/or apop­
tosis85, and 2DG may potentiate the effects of standard 
cytotoxic chemotherapy84,86. 2DG has been tested as an 
anticancer agent in patients87, but when it was admin­
istered to patients with glioblastoma at doses that were 
sufficient to limit glucose metabolism in cancer cells, 
unacceptable toxicity was observed88,89. Lower doses of 
2DG are better tolerated by patients, but limited efficacy 
has been observed at these doses90. However, because 
2DG is a competitive inhibitor of glucose, and glucose 
is present at millimolar concentrations in the blood, it 
remains to be determined whether a sufficient therapeutic 
window exists to competitively inhibit glucose uptake or 
the downstream enzymes in glycolysis. 

It appears that cancer cells preferentially rely on spe­
cific isoforms of glycolytic enzymes. Therefore, isoform-
selective targeting may provide an alternative approach 
for modulating glucose metabolism in cancer cells. 
Hexokinase is responsible for trapping glucose in cells 
(FIG. 3) and at least some cancers are specifically depend­
ent on the hexokinase 2 (HK2) isoform of this enzyme91,92. 
HK2 is normally expressed in skeletal muscle and adipose 
tissue, which provides a therapeutic window to target 
HK2 without risking on-target side effects in other nor­
mal tissues that express another isoform. The properties 
of HK2 that select for its expression over other hexokinase 
isoforms in cancers are not clear. Nevertheless, the fact 
that HK2 is specifically required by some cancers sug­
gests that re-expression of another hexokinase isoform is 
unlikely to provide an escape mechanism for tumours that 
are treated with an HK2‑selective inhibitor.

An association between hexokinase and mitochondria 
influences the regulation of apoptosis93, and compounds 
isolated from plants that disrupt this association are toxic 
to cancer cells in culture94. Hexokinase is also a target of 
3‑bromopyruvate, a compound that has been shown to 

Box 2 | Development of l‑asparaginase to treat ALL

The potential utility of l‑asparaginase in the treatment of cancer was first discovered 
when it was noted that guinea pig serum, but not the serum of other animals, had an 
inhibitory effect on the proliferation of lymphoma cells in mice156. Guinea pigs are 
unique among mammals as their serum has l-asparaginase activity157, and this 
l-asparaginase activity was found to be responsible for the antilymphoma effect that 
was observed in mice55,158. l-asparaginase was found to be a particularly effective agent 
in the treatment of acute lymphoblastic leukaemia (ALL) and associated high-grade 
lymphomas, and it induced remission as a single agent in more than 50% of children 
with the disease159. Although these remissions were not durable, when l‑asparaginase 
has been used as part of a combination chemotherapy regimen, it has contributed to a 
>80% cure rate for children with ALL, and its inclusion in adult chemotherapy regimens 
has contributed to improved clinical outcomes160.
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be toxic to cancer cells91,95. However, 3‑bromopyruvate 
is also toxic to some cancer cells at concentrations that 
are too low to inhibit hexokinase; it has therefore been 
argued that the combined inhibition of several metabolic 
enzymes accounts for the toxic effects of this compound 
on cancer cells96.

Pyruvate kinase is another glycolytic enzyme for 
which isoform-selective targeting may be therapeutically 
beneficial (FIG. 3). There are two pyruvate kinase genes in 

mammals, and both produce two distinct gene products 
by alternative splicing97,98. Most tissues express a product 
of the pyruvate kinase M (PKM) gene that is alternatively 
spliced to produce either the PKM1 or PKM2 isoform. 
All cancer cells express PKM2, whereas many differen­
tiated tissues express PKM1 (REF. 97). The expression of 
PKM2 promotes aerobic glycolysis, and PKM2 expres­
sion is selected for during growth of xenograft tumours in 
mice99. PKM1 is a constitutively active enzyme, whereas 

Figure 3 | Targeting metabolic enzymes as a strategy to block biosynthesis or induce energy stress. The pathways  
of central carbon metabolism are presented. Some of the metabolic enzymes that are currently being considered as 
therapeutic targets for cancer are marked with a target (shown as a pink circle in the figure). Five drugs that influence 
metabolism and have been tested in humans are shown in pink boxes. This figure illustrates how these enzyme targets  
are involved in the synthesis of important macromolecules (shown in brown boxes) that are needed for cell growth.  
αKG, α-ketoglutarate; DCA, dichloroacetate; DNP, 2,4‑dinitrophenol; F‑2,6‑BP, fructose‑2,6‑bisphosphate; F6P, fructose‑ 
6‑phosphate; FBP, fructose‑1,6‑bisphosphate; G6P, glucose‑6‑phosphate; GLS, glutaminase; GLUT1, glucose transporter 
type 1; HK2, hexokinase 2; I, complex I; IDH, isocitrate dehydrogenase; III, complex III; IV, complex IV; LDH, lactate 
dehydrogenase; MCT4, monocarboxylate transporter 4; OAA, oxaloacetate; PDH, pyruvate dehydrogenase complex; 
PDK, pyruvate dehydrogenase kinase; PEP, phosphoenolpyruvate; PFK1, phosphofructokinase 1; PFK2,  
phosphofructokinase 2; PKM2, pyruvate kinase M2 isoform; V, complex V.
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PKM2 is unique among pyruvate kinase isoforms in that 
its enzyme activity is inhibited following its binding to 
tyrosine-phosphorylated proteins downstream of cellular 
growth signals100. Surprisingly, it is this ability to inhibit 
the PKM2 enzyme that appears to be important for the 
promotion of aerobic glycolysis and cell proliferation 
in tumours.

Selection for a less active form of pyruvate kinase may 
help to divert glucose metabolites upstream of pyruvate 
kinase into biosynthetic pathways5,97,100. Efforts have been 
made to selectively inhibit PKM2 (REFS 101,102). Peptide 
aptamers that promote the less active form of pyruvate 
kinase have been shown to cause energy stress and cell 
death in cultured cancer cells101, and more modest effects 
were observed using small-molecule inhibitors of PKM2 
(REF. 102). Targeting PKM2 with short hairpin RNA can 
slow cell proliferation in cell culture99; however, these cells 
retain the ability to proliferate even in the near-complete 
absence of pyruvate kinase activity. These findings suggest 
that the activation of PKM2 to restore the high activity 
state of pyruvate kinase found in normal tissues may be an 
alternative strategy for targeting pyruvate kinase in cancer.

Isoform-specific small-molecule activators of PKM2 
have been reported103,104. However, whether these com­
pounds can induce the same growth disadvantage in vivo 
that is observed in PKM1‑expressing cells remains to be 
determined. PKM2 is unique among pyruvate kinase 
isoforms as it has the ability to switch between a low and 
high activity state; therefore, it is possible that disrupting 
this dynamic capability with either enzyme inhibitors or 
activators could be therapeutically beneficial in cancer. 
However, PKM2 is also expressed in many normal tis­
sues97, and it remains to be determined whether the acti­
vation or inhibition of PKM2 in these tissues will result 
in unacceptable toxicity.

Another example of a regulatory enzyme in gly­
colysis with isoform selectivity in some cancers is 
phosphofructokinase 2 (PFK2) (FIG. 3). By generating 
fructose‑2,6‑bisphosphate (F‑2,6‑BP), PFK2 activates 
phosphofructokinase 1 (PFK1) to increase flux through 
this step of glycolysis. Most isoforms of PFK2 are bifunc­
tional enzymes with both kinase and phosphatase activ­
ity, and can therefore also catalyse the destruction of 
F‑2,6‑BP and decrease PFK1 activity105. The FB3 isoform 
of PFK2 (PFKFB3) is expressed in many cancers and is 
required for anchorage-independent growth of RAS-
driven tumours106,107. PFKFB3 has almost no phosphatase 
activity, and its kinase activity is influenced by several 
factors that are implicated in controlling cancer meta­
bolism, including metabolite levels as well as RAS, MYC 
and AMPK signalling105,108,109. Small-molecule inhibitors 
of PFKFB3 have been reported to have a cytostatic effect 
on RAS-transformed cancer cells51. The compound tar­
geting PFKFB3 decreases levels of F‑2,6‑BP and impairs 
the growth of xenograft tumours51, thus raising interest 
in this enzyme as a target for cancer therapy. 

Inhibiting lactate production or transport. Because lac­
tate is excreted from the cell, inhibiting lactate production 
or lactate transport out of the cell are two strategies that 
directly target the Warburg effect in cancer. The family 

of monocarboxylate transporters (MCTs) comprises the 
major proteins that are responsible for lactate export in 
glycolytic cells, including cancer cells110–112 (FIG. 3). There 
is evidence that a symbiotic relationship exists among dif­
ferent cells within a tumour whereby some cells rely on 
the lactate produced by other cells as a fuel source, and 
so disrupting lactate transport can starve cells that are 
dependent on lactate for survival113. However, targeting 
MCTs using small molecules also inhibits the prolifera­
tion of lymphocytes that rely on aerobic glycolysis114,115. 
This suggests that impaired immune function could be a 
side effect of targeting lactate export in cancer, and that 
drugs targeting cancer metabolism may have applications 
as immunosuppressive therapies.

Additional potential side effects of inhibiting lactate 
transport include negative effects on other normal tissues 
— such as the liver, muscles and brain — that rely on lac­
tate as a fuel in certain physiological situations116. Lactate 
dehydrogenase (LDH) is the enzyme that interconverts 
pyruvate and NADH with lactate and NAD+, respectively 
(FIG. 3). When LDHA is knocked down using RNA inter­
ference, cancer cell proliferation is severely impaired both 
in vitro and in vivo52,117. LDHA is the form of LDH that 
is expressed in many cancer cells, and inhibitors of this 
enzyme are being developed. Most non-cancerous tissues 
are not dependent on LDHA, and LDHA can be selec­
tively inhibited over other forms of LDH118. Furthermore, 
LDHA inhibitors slow the growth of xenograft tumours 
in mice and can induce tumour regression when they are 
combined with nicotinamide phosphoribosyltransferase 
(NAMPT) inhibitors53, which indicates that LDHA could 
be a promising therapeutic target for cancer therapy.

Targeting NAD+ metabolism. Cells possess a limited 
pool of NAD+ and NADH, yet these molecules exist as 
important cofactors in metabolic oxidation–reduction 
reactions. They are also substrates for enzymes such as 
NAD-dependent deacetylase sirtuins and poly(ADP-
ribose) polymerases that are involved in the regulation 
of numerous processes related to cancer, including DNA 
repair, inflammation and protein acetylation119. Unlike 
oxidation–reduction reactions, these latter reactions con­
sume NAD+ and deplete the cellular pool of this impor­
tant cofactor.

Interestingly, NAMPT, the enzyme that is involved in 
regenerating NAD+ from nicotinamide and phosphori­
bosyl pyrophosphate via a salvage pathway, was identified 
as the target of a molecule that was discovered in a screen 
to find novel cytotoxic compounds120. Cells that are 
treated with NAMPT inhibitors die as a result of NAD+ 

depletion, and NAMPT inhibition has shown activity as 
an anticancer agent in preclinical models of cancer119. 

Because NAD+ is a required cofactor for the step of 
glycolysis that is catalysed by glyceraldehyde‑3‑phos­
phate dehydrogenase, cells must regenerate NAD+ from 
NADH to enable the continued flow of glucose carbon 
via glycolysis (FIG. 3). Consistent with NAMPT inhibitors 
limiting glucose metabolism in cells with a high activity 
of NAD+-consuming enzymes, NAMPT inhibition in 
cells primarily has an effect on the cytosolic rather than 
the mitochondrial NAD+ pool121. NAMPT inhibition can 

R E V I E W S

680 | SEPTEMBER 2011 | VOLUME 10	  www.nature.com/reviews/drugdisc

© 2011 Macmillan Publishers Limited. All rights reserved



Lymphopaenia
A clinical term referring to an 
abnormally low number of 
lymphocytes in the blood.

Metabolic flux
The rate by which molecules 
flow through a metabolic 
pathway. Flux through 
metabolic pathways is 
regulated by cells to support 
cellular processes, and is the 
composite outcome of: 
enzyme levels; genetic, 
allosteric and post-translational 
regulation of enzymes; and 
concentrations of metabolites.

Anapleurosis
A term describing the 
requirement of metabolites to 
replenish a metabolic cycle 
when the metabolic 
intermediates that are involved 
in the cycle are depleted for 
use in reactions outside the 
cycle. The classic example of 
this process is replenishing 
those intermediates that are 
depleted from the tricarboxylic 
acid cycle for biosynthesis, in 
order to allow the cycle to 
continue functioning.

Redox state
A term capturing the 
reduction–oxidation state of a 
system. For cells this refers to 
the propensity of redox 
couples — such as reduced 
and oxidized glutathione or 
NADH and NAD+ — to be in 
one state or the other.

also be toxic to lymphocytes122, which suggests that the 
use of NAMPT inhibitors in patients might be limited 
by immunosuppression. Mild lymphopaenia was observed 
in early clinical trials of NAMPT inhibitors, but throm­
bocytopaenia was the dose-limiting toxicity123. Limited 
clinical efficacy has been observed so far with NAMPT 
inhibitors, although there is ongoing research to develop 
more potent compounds and define those patients who 
are most likely to benefit from NAMPT inhibition124.

Targeting metabolic enzymes that are mutated in  
cancer. The idea that metabolic alterations are not the 
same across all cancers is supported by the discovery 
of a novel metabolic flux that is dictated by mutations in 
isocitrate dehydrogenase (IDH). Point mutations in isoci­
trate dehydrogenase 1 (IDH1) and IDH2 that are found in 
cancer always involve a residue in the active site of only 
one allele125–127, and lead to the production of d-2‑hydrox­
yglutarate (2HG) — a metabolite that is only found at 
very low levels in normal cells128–130. Mutations in IDH 
define a clinically distinct subset of both glioma and leu­
kaemia, which suggests that these mutations contribute 
to a unique biology within each tumour type125,127,131,132. 

It is not clear how mutations in IDH and the produc­
tion of 2HG promote cancer, nor is it clear whether exist­
ing cancers remain dependent on the abnormal enzyme 
activity; however, 2HG is an inhibitor of α‑ketoglutarate 
(αKG)-dependent dioxygenases133–135. αKG-dependent 
dioxygenases are involved in an oxygen-sensing path­
way that leads to the stabilization of the HIF transcrip­
tion factor, which controls the expression of many genes 
that have an important role in cancer progression and 
metabolic regulation10,11. αKG-dependent dioxygenases 
are also involved in demethylation reactions that affect 
chromatin structure, and they have pleiotropic effects 
on global transcription and cellular differentiation136,137; 
this methylation pattern is altered in cells with IDH 
mutations133,134. Thus, the development of small mol­
ecules that inhibit the production of 2HG by mutated 
IDH may restore normal αKG-dependent dioxygenase 
function and normalize both HIF levels and chromatin 
structure. In addition, because αKG-dependent dioxy­
genases are influenced by the αKG/succinate ratio, the 
delivery of αKG analogues may be another way to restore 
normal dioxygenase activity. These cell-permeable esters 
of αKG can increase both αKG levels and dioxygenase 
activity138. This latter strategy to increase αKG has shown 
some success in models of human cancer with abnormal 
αKG/succinate ratios that are caused by loss-of-function 
mutations in succinate dehydrogenase or fumarate 
hydratase138.

Additional strategies for targeting glutamine metabolism. 
As discussed above, glutamine is an important nutrient 
for some cancer cells. Glutamine is the major source of 
nitrogen for nucleotide and amino acid synthesis, but 
many cells metabolize glutamine in excess of their nitro­
gen requirement. Glutamine also has an important role 
in replenishing intermediates of the TCA cycle that are 
depleted by biosynthetic reactions139 (anapleurosis) (FIG. 3). 
The enzyme glutaminase catalyses the conversion of 

glutamine to glutamate in a pathway involved in produc­
ing αKG. Glutaminase has two major isoforms in mam­
mals, glutaminase 1 (GLS1) and GLS2, and the expression 
of these enzymes can have opposite effects on cell prolif­
eration140. GLS1 is an important downstream effector of 
MYC and promotes the entry of glutamine into the TCA 
cycle49,50, whereas GLS2 is regulated by the tumour sup­
pressor p53 and influences the cellular redox state141.

These different functions of GLS1 and GLS2 are 
likely to have key roles in cancer metabolism, and the 
growth of transformed cells can be selectively inhibited 
by targeting glutaminase activity142,143. Blocking GLS1 
activity can prevent the entry of glutamine into cells as 
a source of 2HG production by mutated IDH1, and can 
therefore slow the growth of these cells143. GLS1 has also 
been identified as the target of a molecule that blocks 
cell transformation by RHO GTPases; this molecule can 
slow the growth of RHO GTPase-transformed fibroblasts 
and breast cancer cells142. However, lymphocytes are also 
dependent on glutamine metabolism144, which suggests 
that immunosuppression may be a side effect of drugs 
that target glutamine metabolism for cancer therapy.

Targeting other metabolic dependencies in cancer cells. 
Therapies that target cancer metabolism should attack 
those metabolic pathways that meet the specific needs 
of cancer cells. This approach is analogous to targeting 
nucleic acid metabolism with antimetabolites, but need 
not be limited to approaches that interfere with DNA 
replication. Many cancer cells rely on de novo fatty acid 
synthesis to generate new membranes for cell growth, 
and the enzymes that are directly involved in fatty acid 
synthesis have been suggested as cancer targets145,146. 
Lipids also have important signalling functions in cells, 
and chemical genetic screens have identified lipases that 
release fatty acyl chains from glycerol as therapeutic tar­
gets in some cancers147. However, it remains to be deter­
mined whether targeting lipid synthesis to alter signal 
transduction or to structurally interfere with cell growth 
will have a better therapeutic index.

NADPH is the major cofactor carrying electrons for 
reductive biosynthesis and must constantly be regener­
ated from NADP+ to maintain reducing conditions in 
the cell and feed biosynthetic reactions. Targeting the 
major sites of NADPH production in cancer cells could 
limit biosynthesis and lead to cellular damage by pro­
moting a more oxidizing intracellular environment1. 
The pentose phosphate pathway is a source of NADPH 
production and may represent a target for cancer ther­
apy148. However, decreased NADPH production via the 
pentose phosphate pathway is a characteristic of patients 
with glucose‑6‑phosphate dehydrogenase deficiency, 
and this deficiency has not been found to be protective 
against cancer149. Furthermore, some cancers do not have 
a large pentose phosphate pathway flux150. Cells can gen­
erate NADPH via other pathways, and malic enzyme — 
which can be involved in the conversion of glutamine to 
lactate — has been suggested both as a therapeutic target 
and a major source of NADPH in glioblastoma cells139. 
Whether there are other targets that are important for 
NADPH generation remains to be determined.
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