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New research has shown that the development of osteoarthritis (OA) is regulated by
different mechanisms of cell death and types of cytokines. Therefore, elucidating the
mechanism of action among various cytokines, cell death processes and OA is important
towards better understanding the pathogenesis and progression of the disease. This
paper reviews the pathogenesis of OA in relation to different types of cytokine-triggered cell
death. We describe the cell morphological features and molecular mechanisms of
pyroptosis, apoptosis, necroptosis, and ferroptosis, and summarize the current
research findings defining the molecular mechanisms of action between different cell
death types and OA.
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INTRODUCTION

Cell death plays a key role in the development of the body and maintains homeostasis to prevent the
development of diseases. Classically, apoptosis and necrosis were viewed as the main types of cell
death, however, this paradigm continues to evolve (Walker et al., 1988). Cell death can be defined as
programmed and non-programmed forms based on the regulation of the processes involved.

Programmed cell death (PCD) can be divided into lytic and non-lytic cell death (Jorgensen et al.,
2017). Non-lytic cell death mainly refers to apoptosis which can produce apoptotic bodies that are
cleared by phagocytes and does not involve the inflammatory response (Fuchs and Steller, 2011).
Lytic forms of cell death include necroptosis and pyroptosis (Christofferson and Yuan, 2010;
Jorgensen and Miao, 2015). These forms of cell death lead to leakage of intracellular components
including damage-associated molecular pattern molecules (DAMPs) which in turn activate a strong
inflammatory response also known as inflammatory death (Jorgensen and Miao, 2015).

Non-programmed cell death (Non-PCD) generally refers to necrosis which describes the process
of irreversible cell damage and final cell death caused by physical or chemical stimulation in extreme
environments (Majno and Joris, 1995). The main characteristics of necrosis include the destruction
of cell membranes, edema of cells and organelles (cytoplasmic vesicles), and the release of cell
contents, however, chromatin does not agglutinate during necrosis (Dondelinger et al., 2017).

A new type of cell death termed ferroptosis, was proposed by Stockwell in 2012 (Dixon et al.,
2012). Ferroptosis is a form of programmed cell death driven by iron-dependent lipid peroxidation.
The ferroptosis is characterized by changes in the mitochondrial phenotype, mitochondrial atrophy,
and an increase of membrane density (Dixon and Stockwell, 2014; Cao and Dixon, 2016). Different
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types of cell death have been shown to regulate the development
of multiple chronic diseases (Zhou et al., 2016; Anderton et al.,
2020).

Osteoarthritis (OA) is a chronic degenerative disease with
progressive features. OA involves structures all parts of the joints
in which undergo structural damage and functional imbalances
occur as a result of multiple factors (Loeser et al., 2016). The
influence of different types of cell death on the development of
OA has become a new research hotspot (Hosseinzadeh et al.,
2016; Loeser et al., 2016). The purpose of this review is to
summarize the pathogenesis of OA and to explore research
opportunities focusing on mechanisms of cell death including
pyroptosis, apoptosis and ferroptosis.

Osteoarthritis
OA is a common and complex chronic disease that affects 250
million people worldwide (Hunter and Bierma-Zeinstra, 2019).
Due to an aging population and a rise in obesity, OA has become
the fourth largest disabling disease in the world (Woolf and
Pfleger, 2003). It is estimated that the medical cost of OA
accounts for 1–2.5% of GDP in different high-income
countries (Hunter et al., 2014). OA is associated with all parts
of the joints and involves structural changes in hyaline articular
cartilage, subchondral bone, ligaments, joint capsule, synovium
and muscles around the joint (Martel-Pelletier et al., 2016). OA
involves metabolic, inflammatory, mechanical and other factors
leading to structural damage and repair imbalances. Currently,
the main risk factors associated with OA are age, female sex,
obesity, hip deformities, weight-bearing work, exercise, diabetes,
hypertension, cardiovascular disease, depression and hereditary
factors (Hunter and Bierma-Zeinstra, 2019).

Chondrogenic progenitor cells (CPCs) are mesenchymal stem
cells that differentiate into chondrocytes and are also known
as cartilage precursor cells (Koelling et al., 2009). Chondrocytes
and the extracellular matrix are the main components of
articular cartilage. No blood vessels or nerves are present in
the cartilage matrix, and chondrocytes are the only cellular
components present in the articular cartilage matrix. Under
physiological conditions, chondrocytes maintain the lowest
level of collagen turnover and do not show mitotic activity
(Houard et al., 2013). Collagen turnover gradually increases
with risk factors such as age, mechanical stress, diabetes and
hypertension. Subsequently, the composition and structure of the
cartilage matrix change resulting in the formation of fibrous
tissue. As this pathological process progresses, deep fissures
develop that are related to the shedding of cartilage fragments
and eventually lead to the delamination and exposure of calcified
cartilage and bone (Hunter and Bierma-Zeinstra, 2019). In the
early stages of this process, the surface receptors of chondrocytes
inhibit the low collagen turnover rate of chondrocytes through
integrins and other related factors. The synthetic activity of
chondrocytes also increases significantly due to the repair of
the perichondrial matrix which finally develops to invade the
collagen network (Xu et al., 2014). This marks the irreversible
progression of OA. Also, increases in chondrocyte activity result
in the increased production of inflammatory reactive proteins
including interleukin-1β (IL-1β), interleukin-6, tumor necrosis

factor-α (TNF-α) and matrix metalloproteinases (MMP1, 3
and 13).

Injury to the bone and cartilage around the joint is an
important factor in OA. The subchondral bone tissue is
composed of cortical and cancellous bone (Burr, 2004;
Goldring and Goldring, 2010). As AO progresses, the volume,
thickness and outline of the cortical bone gradually increase. Also,
the trabecular structure and bone mass of the subchondral bone
change as bone cysts form along with the appearance of
osteophytes (Goldring, 2008; Xu et al., 2014). A characteristic
feature of the OA is the gradual thickening of the subchondral
plate that reflects changes in mechanical loading owing to
cartilage damage and properties of the subchondral bone
(Martel-Pelletier et al., 2016). Shanchez et al., reported that
osteoblasts can express inflammatory cytokines and degrading
enzymes in response to mechanical stimulation and chondrocytes
(Sanchez et al., 2012) that can in turn act on cartilage or
subchondral bone to increase the severity of OA.

Synovitis is a common feature of OA (Scanzello and Goldring,
2012). The synovium includes the synovial membrane and the
fluid. The synovium is a thin cell layer arranged in the joint cavity
that contains macrophages and fibroblasts that regulate the
trafficking of molecules through the joint (Shiozawa et al.,
2020). The release of inflammatory factors and the secretion of
degrading enzymes in the synovial tissue are correlated with the
severity of OA (Scanzello and Goldring, 2012). Proteases released
by chondrocytes increase the production of pro-inflammatory
cartilage degradation products that interact with DAMPs, Toll-
like receptors (TLRs) and integrin. These changes further
aggravate inflammation and catabolic products to increase the
severity of OA (Loeser et al., 2012; Houard et al., 2013; Martel-
Pelletier et al., 2016). Baker and Roemer et al. reported that the
risk of synovitis progression and OA was positively correlated
with joint symptoms through MRI analysis (Baker et al., 2010;
Roemer et al., 2011). IL-1, IL-6, IL-15, tumor necrosis factor
(TNF), prostaglandin E2, matrix metalloproteinases (MMP1, 3
and 13) and collagenase (coLI, II) have also been detected in the
synovial fluid, cartilage and the synovium of patients with OA
(Kapoor et al., 2011; Scanzello and Goldring, 2012).

Pyroptosis
The first experimental observations of lytic death were made over
30 years ago when it was reported that Shigella fowleri could
induce lytic death in infected host macrophages. This form of
lytic death has characteristics that are common to apoptosis such
as chromatin agglutination, DNA fragmentation and cysteinyl
aspartate specific proteinase (Caspase) activity dependence
(Zychlinsky et al., 1992). This mode of death was initially
considered to be apoptosis, yet, it was not until 2001 that
Cookson et al. showed that this form of cell death depends on
Caspase-1 activity which is different from Caspase-3 activity-
dependent apoptosis (Cookson and Brennan, 2001). For the first
time, the authors defined pyroptosis as a form of Caspase-1-
dependent cell death. The term originates from “pyro” meaning
fire, indicating that this kind of programmed cell death causes
inflammation, and “ptosis” means falling (Gao et al., 2018),
indicating the nature of programmed cell death. When cells
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undergo pyroptosis, the nucleus becomes concentrated and the
chromatin DNA is randomly broken and degraded. Pores in the
cell membrane regulate the trafficking of substances to and from
cells. As this process becomes imbalanced, osmotic swelling
occurs and the membrane breaks (Hersh et al., 1999) releasing
the cell contents that contain molecules to stimulate the immune
response. During the process of cell death, the nucleus becomes
condensed and rounded (Fernandes-Alnemri et al., 2007) yet the
nuclear integrity remains unchanged (Santos et al., 2001;
Mariathasan et al., 2005).

Pyroptosis mainly leads to the splicing and polymerization of
members of the Gasdermin family (such as GSDMD). It can also
activate cell perforation and death through inflammatory corpuscle
activation and caspases. Based on the different mechanisms of
caspase-mediated cell death, pyroptosis can be defined as caspase-1
and caspase-4/5/11 types (Figure 1). Pyroptosis induced by
caspase-1 activation mainly occurs in macrophages and
dendritic cells (Fink et al., 2008; Broz et al., 2010). Caspase-4/5/
11 activation can also cause pyroptosis in macrophages and other
non-macrophage cell types (Kayagaki, Warming et al., 2011).

Gasdermin proteins are a family that has multiple functions and
are expressed in a variety of cell types and tissues. Human gasdermin
proteins are composed of Gasdermin A (GSDMA), Gasdermin B
(GSDMB), Gasdermin C (GSDMC), Gasdermin D (GSDMD),
Gasdermin E (GSDME, also known as DFNA5) and Pejvakin
(PJVK, also known as DFNB59) (Feng et al., 2018). Except for
PJVK, all gasdermin proteins have conserved double domain
arrangements including a C-terminal (GSDM-C) and N-terminal
domains (GSDM-N). The N terminal has a pore-forming activity
and can induce pyroptosis (Yang et al., 2018). GSDMD can be
specifically activated by caspases-1, 4, 5, 11, and can be cut by
caspase-1 and 11 into GSDMD-N (p30 fragment) and GSDMD-C
(p20 fragment) (Zhao L. R. et al., 2018; Kayagaki et al., 2015). The

activated GSDMD-N domain has lipophilic characteristics and can
be transported from the cytoplasm to the cell membrane (Liu et al.,
2016; Shi et al., 2017). The N-terminus of gasdermin can directly
interact with membrane lipids and oligomerize to form 10–33 nm
pores (Aglietti et al., 2016; Sborgi et al., 2016; Shi et al., 2017). New
research has shown that intracellular IL-1β can be released outside
the cell through channels formed by GSDMD. When exposed to
inflammation or hyperactivating stimuli, GSDMD and caspase-11
can form larger pores in the liposomes of cell membranes leading to
a massive release of IL-1β which in turn causes pyroptosis (Evavold
et al., 2018). Recently, it has been demonstrated that when GSDME
is stimulated by chemotherapeutic agents, tumor necrosis factor
(TNF) and viral infection, it is activated by caspase-3 which is
involved in apoptotic signaling. GSDME then releases the activated
N-terminal end causing perforation of the cell membrane which
converts cells that should undergo apoptosis into pyroptosis (Wang
et al., 2018). These data further suggest that the regulation of cell
death is highly complex and dependent on the mode of death.

The main types of inflammasomes include NLRP3, NLRP1,
NLRC4 and AIM2. The basic structure of inflammasomes
consists of pattern recognition receptors (PRRs), apoptosis-
associated speck-like protein containing a CARD (ASC) and
pro-caspase-1 (CASP1) (Man and Kanneganti, 2015; von
Moltke et al., 2013). Inflammasomes are multimeric protein
complexes that assemble in the cytosol and act as platforms
for caspase activation (An et al., 2020). When cells sense
inflammation or the invasion of viral microbes, they respond
by damaging tissues (Matzinger, 2002). A series of cascade
reactions mediated by the TLRs are initiated to activate
nuclear factor-κB (NF-κB), mitogen-activated protein kinase
(MAPK) and interferon signaling pathways leading to cell
activation and the production of related inflammatory
cytokines. These include tumor necrosis factor (TNF),

FIGURE 1 | The relationship between pyroptosis and osteoarthritis (OA). Pyroptosis: DAMPs and TLRs can interact to exacerbate the inflammatory response. TLRs
initiate a signaling cascade leading to cell activation, increased release of the NLRP3 inflammasome, activation of NF-κB andMAPK signaling pathway, and production of
associated inflammatory factors (including TNF, IL-12, IL-6, IL-8 and pro-IL-1β) that in turn activate a strong inflammatory response. The inflammatory response
promotes the increased release of IL-1β and IL-18 on the cartilage surface exacerbating cartilage damage and also enhancing pyroptosis signaling. The NLRP3
inflammasome can activate caspase-1 which further activates GSDMD to undergo shearing to form the N-terminal end. The N-terminal end of GSDMD leads to cell
membrane perforation and ultimately induces pyroptosis. Caspases-4/5/11 are also able to activate GSDMD and can induce pyroptosis.
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interleukin-6 (IL-6), interleukin-8 (IL-8) and type I interferons
(IFNs) in response to extracellular inflammatory stimulation
signals (Kawai and Akira, 2007). Nod-like receptors (NLRs)
also play an important role in the perception of inflammation
or viral invasion. Oligonucleotide binding of NLRs to domain-
containing protein 1 (NOD1) and NOD2 triggers a signaling
cascade after ligand recognition that is similar to the cascade
initiated by TLRs and which leads to the production of
inflammatory cytokines (Kufer and Sansonetti, 2007). The
other part of the NLR mediates the activation of caspase 1
which triggers caspase 1-dependent pyroptosis and releases
inflammatory cytokines IL-18 and IL-1β (Martinon and
Tschopp, 2007; Wang and Zhang, 2020). TLR, NOD1 and
NOD2 coactivate caspase1 and produce large amounts of IL-
1β (Kufer and Sansonetti, 2007).

Research Related to Osteoarthritis and
Pyroptosis
Currently, only a few studies have investigated the mechanism of
interaction between OA and pyroptosis and most studies have

focused on the role of the NLRP3 inflammasome (Table 1).
NLRP3 inflammasomes have an important role in the
pathogenesis of autoinflammation, cancer and degenerative
diseases. In OA, perichondral synovial cells stimulated by
DAMPs lead to the increased release of the NLRP3
inflammasomes, IL-1β and IL-18 on the cartilage surface to
further exacerbate inflammatory cytokine production and
promote pyroptosis (Man and Kanneganti, 2015). Shuya Wang
et al. reported that activation of the AMPK signaling pathway by
exogenous stromal cell-derived factor-1 (SDF-1) inhibits the
NLRP3 inflammasome which in turn inhibits the scorching
process of osteoarthritic synovial cells (Wang et al., 2021).
P2X7R is a purinoceptor that is a non-selective cation channel
gated by adenosine triphosphate. P2X7R mediates Na and Ca
influx and K efflux, and is involved in a variety of inflammatory
responses and different mechanisms of cell death (Surprenant
et al., 1996; Bartlett et al., 2014). P2X7R participates in NLRP3
and caspase-11 distinct pathway-mediated pyroptosis and
produces cartilage degrading enzymes to activate inflammatory
factors in synovial tissue (Haseeb and Haqqi, 2013; Viganò and
Mortellaro, 2013; Li et al., 2021a). Activated P2X7 promotes

TABLE 1 | Summary of the main areas of research and potential applications of pyroptosis in osteoarthritis (Wang et al., 2021; Li et al., 2021a; Li C. et al., 2021; Liu et al.,
2020; Yu et al., 2021; Yan et al., 2020; Hu et al., 2020; Zu et al., 2019; Zhao L. R. et al., 2018; Liu et al., 2019; Zhang and Xing, 2019; Xiao et al., 2021; Zhang et al.,
2019b; Qian et al., 2021).

Important
targets

Disease Experimental
subjects

Intervention factors Cytokines Biological
function

Activation pathway

NLRP1,
NLRP3

KOA Human FLSs LPS, ATP IL-1β, uricacid, IL-18 Promote
pyroptosis

Inflammasome, Caspase-l

NLRP3 OA Male Wistar mice
chondrocytes

Icariin (ICA), LPS MMP-1, MMP-13, NRLP3, IL-1β,
IL-18, Col II

Inhibits
pyroptosis

Inflammasome, Caspase-l

NRF2,
NLRP3

OA C57BL/6 male mice
chondrocytes

Lico A, LPS NLRP3, ASC, GSDMD, caspase-1,
IL-1β, IL-18, Col II, aggrecan

Inhibits
pyroptosis

NRF2/HO-1/NF-κB,
Inflammasome, Caspase-l,
p65, IκB-α

NLRP3 OA C57BL/6 male mice Loganin MMP-3, MMP-13, Col II, Col X,
CD31, cryopyrin, caspase-1,
endomucin

Inhibits
pyroptosis

NF-κB, Inflammasome,
Caspase-l, p65, IκB-α

NLRP1,
NLRP3

OA C57BL/6J mice
chondrocytes

Morroniside, DMM MMP13, NLRP3, Caspase-1,
Caspase-3, Ki67

Inhibits
pyroptosis

NF-κB, Inflammasome,
Caspase-l, p65, IκB-α

Hedgehog OA C57BL/6 male mice,
Human chondrocyte cell
(C28/I2)

GANT-61,
Indomethacin, LPS

TNF-α, IL-2, IL-6, IL-1β, IL-18,
caspase-1

Inhibits
pyroptosis

Caspase-l, Hedgehog,
Inflammasome

NLRP3 OA C57BL/6 male mice,
Human FLSs

SDF-1 aka CXCL12 NLRP3, Caspase-1, ASC, IL-1β,
GSDMD

Inhibits
pyroptosis

AMPK, PI3K–mTOR,
Caspase-l, Inflammasome

NLRP3 KOA SD male rats, fibroblasts,
synovial macrophage

LPS, ATP IL-1β, IL-18, HMGB1, Caspase1,
NLRP3, ASC, TGF-β, PLOD2,
COL1A1, TIMP1, GSDMD

Inhibits
pyroptosis

Inflammasome, Caspase-l

NLRP1,
NLRP3

KOA SD male rats, FLSs HMGB1, LPS, ATP IL-1β, HMGB1, Caspase1, NLRP3,
NLRP1, GSDMD

Promote
pyroptosis

Inflammasome, Caspase-l

NLRP1,
NLRP3

KOA SD female rats, FLSs HIF-1α, LPS, ATP IL-1β, IL-18, TGF-β, ASC, PLOD2,
COL1A1, TIMP1, GSDMD,
caspase-11

Promote
pyroptosis

Inflammasome, Caspase-l

NLRP3 OA SD rats, Chondrocytes USP7, NOX4, H2O2 Caspase1, MMP-1, MMP-13,
GSDMD, NLRP3

Promote
pyroptosis

Inflammasome,
Ubiquitinylation, Caspase-l,
NOX4, ROS, NLPR3

NLRP3 OA SD male rats,
Chondrocytes

P2X7 Receptor,
MIA, BzATP

MMP13, NF-κB, Col II, NLRP3,
Caspase-1, p65, P2X7, IL-1β

Promote
pyroptosis

NF-κB, NLPR3, Caspase-l,
Inflammasome

NLRP1,
NLRP3

OA C28/I2 chondrocytes LPS, ATP, Disulfiram,
Glycyrrhizic acid

Caspase-1, GSDMD, NLRP3, IL-
1β, IL-18, HMGB1

Inhibits
pyroptosis

Inflammasome, Caspase-l,
NLPR3

NLRP3,
miR-107

KOA Chondrocytes LPS, ATP, miR-107 IL-1β, HMGB1, IL-18, Caspase-1,
Col II, MMP13, GSDMD, TLR4

Inhibits
pyroptosis

Inflammasome, Caspase-l,
NLPR3
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extracellular matrix degradation and pyroptotic inflammation in
OA chondrocytes through NF-κB/NLRP3 crosstalk to aggravate
the symptoms of OA (Li et al., 2021b).

Recent studies have shown that the combined effect of
disulfiram and glycyrrhizic acid at standard concentrations
protects chondrocytes, inhibits the inflammatory responses
and reduces pyroptosis (Li C. et al., 2021). Ubiquitin (Ub)-
specific proteases (USPs), also known as deubiquitinating
enzymes, remove Ub from Ub conjugates and regulate a
variety of cellular processes (Ovaa et al., 2004). USP7 is a
member of the ubiquitin-specific proteases. USP7 inhibitors
attenuate H2O2-induced chondrocyte damage and pyroptosis
by inhibiting the NOX4/NLRP3 signaling pathway (Liu et al.,
2020).

The therapeutic role of Chinese medicine in the management
of OA is gaining increasing attention. For example, Morroniside
significantly inhibits the NF-κB signaling pathway, decreases the
expression of NLRP3 and Caspase-1, and reduces the nuclear
translocation of p65, thereby inhibiting the onset of pyroptosis
and delaying the progression of OA (Yu et al., 2021).
Chondrocyte pyroptosis is inhibited by licochalcone A (Lico
A) through inhibition of the NLRP3 inflammasome (Yan
et al., 2020). Jiaming Hu et al. reported that loganin
ameliorates cartilage degeneration and the development of OA
in a mouse model through inhibition of NF-κB activity and
pyroptosis in chondrocytes (Hu et al., 2020). In animal
models, Icariin (ICA) attenuates chondrocyte damage and OA
by inhibiting the NLRP3 signaling-mediated caspase-1 pathway
to reduce pyroptosis (Zu et al., 2019). NLRP1 and NLRP3
inflammasomes mediate the onset of pyroptosis in knee OA
(KOA) via the Caspase-l/IL-1β inflammatory pathway (Zhao
Y. et al., 2018). Shi et al. showed that increased
lipopolysaccharide (LPS) and ATP in joint-space may promote
KOA by NLRP3 Inflammasome (Shi et al., 2018). Overall, the role
of inflammasomes such as NLRP3 and its regulators in pyroptosis
suggests that NLRP3 may be a promising biomarker for the
diagnosis andmonitoring of OA. Therapeutic targeting of NLRP3
may be a potential strategy for the treatment of OA.

Ferroptosis
Ferroptosis is a newly discovered form of regulated cell death that
differs from the traditional cell death programs of necrosis,
apoptosis, and pyroptosis that are caused by iron-dependent
and lethal lipid peroxidation. Ferroptosis was first proposed by
Dixon in 2012 (Dixon et al., 2012) and describes a form of cell
death induced by the small molecule Erastin which inhibits
cystine import leading to glutathione depletion and
inactivation of the phospholipid peroxidase glutathione
peroxidase 4 (Gpx4) (Yang et al., 2014; Stockwell et al., 2017).
GPX4 converts potentially toxic lipid hydroperoxides (L-OOH)
to non-toxic lipid alcohols (L-OH) (Ursini et al., 1982; Stockwell
et al., 2017). Inactivation of Gpx4 by depletion of GSH with
Erastin or with a direct Gpx4 inhibitor, (1S,3R)-RSL3, ultimately
leads to overwhelming lipid peroxidation and cell death.

Inactivation of GPX4-RSL3 directly induces ferroptosis.
Erastin and RSL3 were first identified as ferroptosis-inducing
compounds (Dolma et al., 2003; Yang and Stockwell, 2008).

Erastin inhibits the transfer of cysteine causing loss. Cysteine
is an essential component of glutathione and so indirectly induces
ferroptosis (Latunde-Dada, 2017). Ferroptosis can be suppressed
by iron chelators, lipophilic antioxidants, inhibitors of lipid
peroxidation, and depletion of polyunsaturated fatty acids.
This process also correlates with the accumulation of markers
of lipid peroxidation (Stockwell et al., 2017). Recent studies
suggest that mobilization and upregulation of the transferrin
receptor (TfR) can be a potential marker of iron death
(Stockwell et al., 2017; Kajarabille and Latunde-Dada, 2019).
In contrast to other forms of programmed cell death,
ferroptosis exhibits specific morphological and biological
features (Table2).

The Relationship Between Ferroptosis and
Disease
The mechanisms of interaction between ferroptosis-inducing
compounds and ferroptosis signaling pathways remain to be
fully elucidated. A growing body of experimental evidence
suggests that excessive iron contributes to oxidative tissue
damage and organ dysfunction resulting in the development
of cirrhosis (Yu et al., 2020), cardiomyopathy (Fang et al.,
2020), diabetes and other diseases (Stockwell et al., 2020; Sha
et al., 2021). In an animal model of traumatic brain injury
(TBI), ferroptosis was shown to be involved in acute central
nervous system (CNS) trauma based on glutathione
peroxidase activity, lipid-responsive oxygen species and
observations of mitochondrial shrinking (Xie et al., 2019).
The characteristic products of ferroptosis have also been
demonstrated in spinal cord injury and the source of iron
is closely related to red blood cell rupture, hemolysis (Yao
et al., 2019).

The role of ferroptosis in the treatment of hepatocellular
carcinoma has also been a research focus. Urano et al. showed
that the combination of iron inhibitors and anti-angiogenic drugs
enhanced the tumor-killing effects of sorafenib by inducing cell
cycle arrest and apoptosis (Urano et al., 2016). Studies from as
early as 1992 have observed selective accumulation of iron in Aβ
aggregation areas and neurofibrillary tangles in the brain in
Alzheimer’s disease (Good et al., 1992). Ayton et al. showed
that excessive accumulation of iron in the brains of Alzheimer’s
patients may be associated with accelerated cognitive
decompensation (Ayton et al., 2020).

Currently, very few studies have focused on the role of
ferroptosis in OA. Recent research findings from the past
2 years are summarized in Figure 2. Yao X et al. used
chondrocytes extracted from the knee joints of C57BL/6J mice
as an in vitro experimental model of OA using interleukin-1β and
ferric ammonium citrate to mimic the inflammatory response
and iron overload (Yao et al., 2021). The study demonstrated that
ferrostatin-1 attenuates IL-1β and Fac induced cytotoxicity, the
accumulation of reactive oxygen species (ROS) and lipid-ROS,
and the expression of ferroptosis-related proteins to promote
activation of the NRF2 antioxidant system. This was the first
study to demonstrate that chondrocytes underwent ferroptosis
in vitro.
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In a lipopolysaccharide (LPS)-induced OA cell model, icariin
(ICA) reduced the expression of iron transport factor TFR1. ICA
activated the Xc-/Gpx4 axis to exert an inhibitory effect on the
expression of Gpx4, SLC7A11 and SLC3A2L which acted to
significantly reduce cell death in induced cells and inhibit
ferroptosis (Luo and Zhang, 2021). Zhang et al. identified a
new subpopulation of chondrocytes located in the nucleus

pulposus of the intervertebral disc using single-cell RNA-seq
analysis. The study revealed the presence of ferroptosis during
disc degeneration (Zhang et al., 2021).

Ferroptosis has also been shown to have an important role in
the development of cancer and inflammatory and chronic
diseases. In OA, high concentrations of iron can promote joint
degeneration and facilitate the development of OA. However,

TABLE 2 | The main morphological, biochemical, and signaling pathways involved in the regulation of pyroptosis, apoptosis, necroptosis, and ferroptosis (Kerr et al., 1972;
Xu and Shi, 2007; Charlier et al., 2016; Newton and Manning, 2016; Xie et al., 2016; Yang and Stockwell, 2016; Zargarian et al., 2017; Jiang and Stockwell, 2021).

Cell
Components/
Events

Cell Death Types

Pyroptosis Apoptosis Necroptosis Ferroptosis

Cell morphology Gradual flattening Shrinkage Swelling Smaller and rounder
Nucleus Enrichment Condensation and rupture Nuclear condensation

(pyknosis)
Normal nuclear size

Cytoplasm Osmotic swelling Retraction of pseudopods,
reduction of cellular volume

Cytoplasmic swelling,
swelling of cytoplasmic
organelles

Mitochondrial membrane rupture and atrophy

Cell membrane Formation of membrane
pores, loss of integrity

Plasma membrane blebbing Rupture of plasmamembrane Lack of rupture and blebbing of the plasma
membrane

Chromatine Random breakage
degradation

Condensation Fragmented Lack of condensation

DNA Random breakage
degradation

Intranucleosomal cleavage-DNA
laddering

Random cleavage DNA
Smear

None

Lysosomial enzyme Damage Inside apoptotic bodies Leakage None
Special
microstructure

Pyroptotic bodies Apoptotic bodies Necroptotic bodies Mitochondrial membrane rupture

Inflammation Yes No Yes Yes
Key role Caspase-1, Caspase-4/

5/11
Caspase-3, Caspase-6,
Caspase-7

RIP1, RIP3, TNF-α, Fas,
Necrostatin-1, MLKL

GPX4, Phospholipid peroxidation, Iron

signal pathway Gasdermin, NLRs Fas-FasL, TRAIL-DR, TNFa-
TNFR1, mitochondrial pathway

IKKα/IKKβ, NF-Κb, TNF-α Mevalonate, AMPK, Hypoxia, glutathione depletion,
Glutaminolysis, Transsulfuration, Heat shock protein
beta 1

ATP requirement Yes Yes No Yes

FIGURE 2 | The relationship between ferroptosis and osteoarthritis (OA). Ferroptosis: In cellular environments stimulated by iron overload, hyperlipidemia,
inflammation, the expression of Gpx4 in chondrocytes decreases. These changes lead to the accumulation of reactive oxygen species and lipid peroxides to ultimately
induce ferroptosis. Ferroptosis in turn can progressively exacerbate the inflammatory response leading to the increased expression of MMP-13 and decreased
expression of collagen II in chondrocytes to accelerate the progression of OA.
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evidence from relevant studies is lacking and the detailed
molecular mechanisms by which iron compromises to
cartilage remains to be understood.

Apoptosis
Apoptosis is the active, physiological process of cell death that is
activated under specific physiological or pathological conditions.
Apoptosis is regulated by intrinsic genetic mechanisms of
autologous damage to the organism (Rathmell and Thompson,
2002). Apoptosis is regulated by apoptosis-related genes and so
the process is also known as programmed cell death (PCD) or
type I cell death.

The concept of apoptosis was first introduced by Kerr, Wyllie
and Currie in 1972 (Kerr et al., 1972). “Apoptosis” is a Greek
word meaning “to leave or fall” implying that apoptosis occurs
when a cell dies similar to the natural withering of leaves or
flowers. This metaphor emphasizes that apoptosis is an
important part of the normal life cycle of an organism, and
that it is an active process under strict genetic control. Apoptosis
has a wide range of biological functions during the development
and differentiation of the organisms, in immune regulation, and
the maintenance of tissue stability. The process is also involved
in the removal of redundant or harmful cells and the prevention
of cancer (Honarpour et al., 2001; Luke et al., 2003; Ke et al.,
2018).

Apoptosis is morphologically characterized by reductions in
cell size, loss of connections, and detachment from surrounding
cells. The cytoplasmic density gradually increases and the
mitochondrial membrane potential disappears. During
apoptosis, the nucleoplasm becomes concentrated in the
nucleus, the nucleolus becomes broken, and DNA is degraded

into 180–200 bp fragments (Enari et al., 1998). The entire cell has
an intact cytosolic structure with vesicle formation which
eventually divides and wraps the apoptotic cell into several
apoptotic vesicles. This process does not involve the release of
cellular contents and the inflammatory response is not activated
(Mariño and Kroemer, 2013).

Apoptosis can be defined as either extrinsic or intrinsic
depending on the stimulus (Figure 3). Extrinsic apoptosis is
also known as the death receptor apoptotic pathway and intrinsic
apoptosis refers to the mitochondrial apoptotic pathway (Elmore,
2007). Death receptors refer to Fas (also known as DR2, APO-1,
or CD95), tumor necrosis factor receptor 1 (TNFR1) or tumor
necrosis factor-associated apoptosis-inducing ligand receptor
(TRAILR), all of which are members of the Tumor Necrosis
Factor Receptor Superfamily (TNFRSF) (Lavrik et al., 2005).

Death receptors are transmembrane glycoproteins located on
the surface of cell membranes that cause conformational changes
in cell membrane delivery when receiving death ligands from
extrinsic apoptotic signaling pathways and rapidly activate
caspase ultimately leading to apoptosis (Mariño and Kroemer,
2013). The engagement of the death receptor, Fas, binds to its
ligand FasL to assembly a typical multiprotein complex called the
death-inducing signaling complex (DISC). DISC formation
allows the recruitment and activation of initiator caspase-8,
mediated by the Fas-associated protein with death domain
(FADD) adaptor molecule (Charlier et al., 2016). The
recruitment of caspase-8 leads to autoproteolytic cleavage and
subsequent activation (Medema et al., 1997; Charlier et al., 2016).
The active fragment of caspase-8 propagates apoptotic signals by
activating caspase-3 fragment activity which further catabolizes
cellular components (Fuentes-Prior and Salvesen, 2004).

FIGURE 3 | The relationship between apoptosis and osteoarthritis (OA). Apoptosis: Apoptosis is can be divided into extrinsic and intrinsic pathways. In the extrinsic
pathway, death receptors (including Fas, TRAIL) are activated and bind to corresponding ligands (including FasL) in response to stimulation by risk factors for OA
(including trauma, age, obesity, etc.) to form a multi-protein complex, also known as the DISC. Activation of Caspase-8 is mediated by FADD, and Caspase-8 further
activates Caspase-3 to propagate apoptotic signals. In the intrinsic pathway, intracellular damage, DNA damage and endoplasmic reticulum stress lead to
activation mainly in the mitochondria and endoplasmic reticulum BCL2 protein family members (including Bid, Bax, and Bak). Bcl2 protein family members can activate
cytochrome cwhich can further activate apoptosis protease activating factor-1 (APAF-1) and caspase-9. Activated caspase-9 further activates caspases-3 and -7which
in turn activate caspases-2,-6,-8,-10 to create a positive feedback loop that amplifies the apoptotic signal and induces apoptosis.
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Fas is involved in regulating the DISC-mediated production of
active caspase-8 and activates caspase-9 prior to activation of
caspase-3 (Scaffidi et al., 1998). Intrinsic apoptosis triggers
include intracellular damage, cytokine withdrawal, DNA
damage, oxidative or endoplasmic reticulum (ER) stress, and
cytosolic Ca2+ overload (Vanden Berghe et al., 2015). These
stimuli ultimately activate members of the BCL2 family of
proteins located primarily in the mitochondria and
endoplasmic reticulum and have contrasting effects on cell
fate. For example, Bcl-xs (Boise et al., 1993), Bcl-GL (Guo
et al., 2001), Bok (Hsu and Hsueh, 1998), Bax (Oltvai et al.,
1993), and Bak can promote apoptosis (Chittenden et al., 1995),
whilst A1 (Lin et al., 1996), Mcl-1 (Kozopas et al., 1993), Bcl-B
(Ke et al., 2001), Bcl-2 (Tsujimoto et al., 1985), Bcl-x (Boise et al.,
1993), and Bcl-w can prevent apoptosis (Gibson et al., 1996;
Kroemer and Reed, 2000).

The proteins that lead to apoptosis can be functionally
classified based on whether they can function independently of
caspases (i.e., Omi/HtrA2, apoptosis-inducing factor AIF) or
activate caspases either directly or indirectly (e.g., Smac/
DIABLO, cytochrome c) (van Loo et al., 2002a; van Loo et al.,
2002b; Charlier et al., 2016). Apoptosis protease-activating factor-
1 (APAF-1) is a key component of the apoptosome (Green, 2003).
Cytochrome c can activate APAF-1 whilst forming an activation
platform for the caspase-9 promoter in the mitochondrial
pathway by oligomerization with APAF-1 (Bao and Shi, 2007).
Activated caspase-9 further activates caspases-3 and -7, which in
turn activate caspases-2,-6,-8,-10 forming a positive feedback
loop that amplifies apoptosis signals and induces apoptosis
(Slee et al., 1999; Van de Craen et al., 1999).

Signaling Pathways Involved in
Osteoarthritis and Apoptosis
Recent studies focused on apoptosis of articular chondrocytes in
OA involve the inflammatory response, signaling pathways and
target modulation. Interleukin-1β (IL-1β) is an important
inflammatory factor that belongs to the interleukin-1 (IL-1)
family and plays a key role in the pathogenesis of OA (López-
Armada et al., 2006; Chevalier et al., 2011). IL-1β increases
apoptosis in articular chondrocytes by stimulating the
expression of TNF, Fas-associated death region protein, and
Caspases-3, and -8 (Qin et al., 2013).

Current research has focused on the role of non-coding RNAs
regulating IL-1β-mediated apoptosis in chondrocytes. Recent
studies demonstrate that the LINC00623/miR-101/HRAS axis
modulates chondrocyte apoptosis, senescence and extracellular
matrix (ECM) degradation in OA through MAPK signaling (Lü
et al., 2020). Also, it has been shown that miR-27a is a regulator of
the PI3K-Akt-mTOR axis in human chondrocytes that could be
involved in OA (Cai et al., 2019). Junkui Xu et al. reported that
LncRNA SNHG7 alleviates IL-1β-induced OA by inhibiting miR-
214-5p-mediated PPARGC1B signaling pathways (Xu et al.,
2021).

The tumor necrosis factor (TNF) superfamily is a group of
cytokines produced by a variety of cell types including
macrophages (Baud and Karin, 2001; Wajant et al., 2003).

TNF plays a key role in immunity, inflammation, and the
control of cell differentiation, proliferation, and apoptosis
(Wajant et al., 2003). TNF-α is one of the most important
signaling molecules in this family. TNF-R1 mediates most of
the biological functions of TNF-α and contains a death structural
domain. TNF-R1 can induce apoptosis by activating the NF-κB,
JNK and MAPKs signaling pathways (Chen and Goeddel, 2002).

The combination of long-stranded non-coding RNA
(LncRNA) and microRNA (MiRNA) has gradually replaced
single, localized research approaches as the main approach to
study the roles of these molecules in OA today. Xu Kai et al.
reported that LncRNA PVT1 induces chondrocyte apoptosis
through upregulation of TNF-α in synoviocytes by sponging
miR-211-3p (Xu K. et al., 2020). Wang Yingjie et al. reported
that MiR-140-5p inhibits the PI3K/AKT signaling pathway and
suppresses the progression of OA by targeting HMGB1 (Wang
et al., 2020).

Mitogen-activated protein kinases (MAPKs) are a class of
serine/threonine protein kinases that are widely present in
eukaryotic cells. MAPKs are activated by extracellular signals,
physical stimuli, and inflammatory cytokines. They also regulate
the activity of transcription factors to control the expression of
related genes and elicit cellular responses (Wang et al., 2016). The
MAPK subfamily includes p38mapk, extracellular regulated
protein kinases (ERK) and c-Jun N-terminal kinase (JNK)
(Davis, 2000; Tang et al., 2012). JNK can promote the
expression of apoptotic genes by phosphorylating c-jun and by
increasing the expression of proteins related to the Fas/FasL
signaling pathway. Conversely, JNK induces phosphorylation
and inactivation of related anti-apoptotic proteins to promote
apoptosis in OA (Shajahan et al., 2012; Zhou et al., 2019). Fas
signaling can initiate apoptosis by activating caspase-8 which in
turn can activate the downstream effector caspase-3 (Xue et al.,
2017).

Notch signaling is an evolutionarily conserved pathway that
plays an important regulatory role in cell fate determination,
proliferation, differentiation, and dynamic homeostasis. The
Notch signaling pathway also plays an important role in
proliferation and differentiation during chondrogenesis and in
the development of cartilage (Kohn et al., 2012; Mirando et al.,
2013). The Notch pathway consists primarily of Notch receptors,
Notch ligands, and downstream target genes. In post-traumatic
OA, the Notch pathway is highly activated in human and mouse
joint tissues (Karlsson et al., 2008). Notch1, JAG1 and other
downstream target genes are overexpressed in OA tissue biopsies
(Karlsson et al., 2008). However, in a mouse model, loss of Notch
signaling in OA indicated an important role in maintaining
osteoarticular cartilage growth (Liu et al., 2015). Also, intra-
articular injection of the Notch complex inhibits cartilage
degeneration in a mouse OA model (Hosaka et al., 2013).
Overall, a dual role for Notch signaling in maintaining the
normal physiological function of articular cartilage and
promoting the progression of OA has been observed. In short,
Notch signaling plays a complex role in cartilage homeostasis and
transient or physiological Notch signaling in chondrocytes favors
a balanced anabolic and catabolic response. In contrast, sustained
or enhanced Notch activity elicits a pathological response
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through the simultaneous suppression of chondrogenic genes and
the induction of genes encoding catabolic factors (Zieba et al.,
2020).

Melatonin (N-acetyl-5-methoxytryptamine) is a molecule that
is produced primarily by the pineal gland and other organs that
acts to reduce peroxidative damage in the body (Acuña-
Castroviejo et al., 2014; Reiter et al., 2016). Melatonin plays an
important role in inflammation, apoptosis, proliferation, and
metastasis. It has also been shown to have a protective role in
chronic diseases including OA, osteoporosis, COVID-19,
Parkinson’s, Alzheimer’s, cancer, and sepsis (Zhang R. et al.,
2020; Luo et al., 2020; Xu et al., 2018; Hosseinzadeh et al., 2016).

Melatonin prevents apoptosis and promotes cell survival by
inhibiting p38, phosphorylation of JNK MAPKs, and p53
activation by limiting cytochrome c release and activating
procaspases proteases (Tomás-Zapico and Coto-Montes, 2005).
LIM et al. investigated the effects of melatonin on human
chondrocytes and rabbit OA models (Lim et al., 2012). The
study showed that melatonin inhibits H2O2-induced
cytotoxicity, suppresses the production of NO and PEG2
production, and blocks the H2O2-induced release of TNF- α,
IL- 1β, and IL- 8. Animal experiments have shown that intra-
articular injection of melatonin protects articular cartilage by
targeting miR-140. This acts to prevent the disruption of cartilage
matrix homeostasis and slows the progression of surgically
induced OA in mice (Zhang Y. et al., 2019).

Currently, apoptosis is an important focus of OA research as
an increasing number of signaling pathways have been shown to
be involved. The interaction between non-coding RNA and OA is
subject to ongoing investigations. Further elucidation of the
respective roles of apoptosis and non-coding RNAs may
facilitate the development of novel gene therapy and targeted
approaches for the treatment of OA.

Necroptosis
It was more than 2 centuries ago that pathologists determined
that necrosis was a cause and consequence of disease
(Linkermann, 2014). 100 years later, apoptosis was first
discovered. Previous studies identified the pathophysiological
importance of necroptosis in myocardial infarction and stroke
(Smith et al., 2007), atherosclerosis (Lin et al., 2013), ischemia-
reperfusion injury (Linkermann et al., 2012), pancreatitis (Wu
et al., 2013), inflammatory bowel disease (Welz et al., 2011), and
several other common clinical disorders (Linkermann, 2014).

Necrosis has long been described as the exposure of cells to
extreme physicochemical stresses resulting in rapid cell death.
However, necrosis can be induced under different stimulatory
conditions (e.g., inflammatory factors, interferon-g (IFN-g), ATP
depletion, ischemia-reperfusion injury, and pathogens) with steps
and signaling events similar to the cell death program
(Vanlangenakker et al., 2012; Kaczmarek et al., 2013). This
process of regulated necrosis is referred to as necroptosis.
Morphological changes during necroptosis include a
translucent cytoplasm, swelling of the organelles,
permeabilization of the lysosomal and plasma membranes,
increased cell volume (oncosis), and mild chromatin
condensation (Pasparakis and Vandenabeele, 2015) (Table 2).

In contrast to apoptosis and pyroptosis, necroptosis is a caspase-
independent death program. Necroptosis is programmed necrotic
cell death caused by RIP1/RIP3 and MLKL under various
pathological conditions (Han et al., 2011; Chan et al., 2015; Yoon
et al., 2017). Apoptosis and necroptosis are closely related, and TNF
can determine the final fate of cells (Van Herreweghe et al., 2010).
Once TNF binds to TNF receptor 1, TNF induces receptor
trimerization and recruits the death domain (DD)-containing
adaptor proteins TRADD, TRAF2, and RIP1 to form the so-called
complex I (Zhang et al., 2018). Several components of complex I
recombine to form a cytosolic complex (complex II) that recruits
FADD (Fas-associated via DD) via DD-mediated interactions. In
complex II, FADD recruits procaspase-8, whilst RIP1 recruits RIP3.
When RIP3 is absent or present at low levels, caspase-8 can activate
automatically and the cell undergoes apoptosis (Zhang et al., 2018).

In contrast, in the presence of high concentrations of RIP3,
complex II tends to recruit large amounts of this protein and
turns itself into a so-called necrosome (Silke et al., 2015).
Procaspase-8 in the necrosome cleaves RIP1 and RIP3
preventing the initiation of the necroptosis (Zhang et al.,
2018). Therefore, the development of necroptosis requires
inhibition of caspase-8 activity (Zhang et al., 2009). RIP3 can
be auto-phosphorylated in response to homo-interactions (Chen
et al., 2013). Auto-phosphorylated RIP3 recruits and
phosphorylates the mixed-lineage kinase domain-like protein
(MLKL) (Sun et al., 2012). Phosphorylated RIP3 recruits and
phosphorylates MLKL leading to MLKL oligomerization and
translocation to the plasma membrane. MLKL oligomers
execute necroptosis by generating cation channels causing
plasma membrane rupture (Zhang et al., 2018). Recent studies
have identified MLKL as the most important working protein for
plasma membrane rupture (Chen et al., 2014).

In summary, RIP1 deubiquitination is critical for necrosome
assembly and activation (Hitomi et al., 2008), whilst RIP3
determines the susceptibility of cells to move towards
necroptosis (Linkermann, 2014) which is ultimately executed
by phosphorylated MLKL (Cai et al., 2014).

Necroptosis and Orthopaedic-Related
Diseases
Emerging studies have focused on the link between necrosis and
orthopaedic-related diseases. Osteoporosis is a systemic bone
disease characterized by low bone mass and degenerative
damage to the ultrastructure of bone trabeculae resulting in
increased bone fragility and susceptibility to fractures (Ensrud
and Crandall, 2017). In 2016, Cui et al. constructed an
ovariectomy-induced osteoporosis rat model and found that
the levels of RIP1, RIP3, and MLKL proteins were significantly
elevated in rat femurs and a large number of necrotic osteocytes
with positive TUNEL staining but negative caspase-3 staining
were seen. The study also showed that administration of
necrostatin-1 (Nec-1) significantly reduced the expression of
RIP1, RIP3 levels and inhibited programmed necrosis of
osteoblasts to reverse bone loss (Cui et al., 2016a; Cui et al.,
2016b). Studies have found that excessive alcohol consumption
leads to activation of RIPK1/RIPK3/MLKL signaling which
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increases necrotrophic apoptosis of osteoblasts and reduces
osteogenic differentiation and bone formation in vivo and
in vitro, leading to the development of osteoporosis (Guo
et al., 2021).

Lumbar disc herniation (LDH) is a syndrome in which the
lumbar disc degenerates and the nucleus pulposus protrudes
outwards either alone or together with the fibrous ring and
cartilage endplates. This causes irritation or compression of
the sinus nerve and nerve roots with lumbar and leg pain as
the main symptom (Deyo and Mirza, 2016). The pathogenesis of

lumbar disc herniation includes disc degeneration, mechanical
stress injury, immune inflammation, and imbalance of
extracellular matrix metabolism (Deyo and Mirza, 2016).
Necroptosis and lumbar disc herniation are closely associated
processes. Recent studies have shown that necrosulfonamide
(NSA) protects intervertebral disc degeneration via necroptosis
and apoptosis inhibition (Zhang QX. et al., 2020). Chen et al.
demonstrated in an in vivo model that RIPK1-mediated
mitochondrial dysfunction and oxidative stress play a crucial
role in NP cell necroptosis and apoptosis during compression

FIGURE 4 | The relationship between necroptosis and osteoarthritis (OA). Necroptosis: Joint trauma leads to the release of death-related triggers including tumor
necrosis factor alpha (TNF-α), reactive oxygen/nitrogen species (ROS/RNS), and damage associated molecular patterns (DAMPs). These factors subsequently lead to
TNF receptor 1 (TNFR1) activation, forming the TNFR1 complex I and the receptor interacting protein kinase 1 (RIPK1). RIPK1 and RIPK3 interact to activate caspase-8.
When caspase8 is inactivated it leads to the appearance of necrosomes which cause the recruitment and phosphorylation of mixed-lineage kinase domain-like
protein (MLKL), ultimately leading to disruption of membrane integrity. This leads to the formation of necroptosis.

TABLE 3 | Summary of the pathogenesis of osteoarthritis (OA) and the relationship with different types of cell death (Hunter and Bierma-Zeinstra, 2019; An et al., 2020;
Riegger and Brenner, 2019; Shi et al., 2019; Royce et al., 2019; Zhou et al., 2021; Yao et al., 2021; Li et al., 2020; Tang et al., 2018; Xu et al., 2019; Sun et al., 2021; Xu L.
et al., 2020; Tian et al., 2020; Aluganti Narasimhulu and Singla, 2021; Zu et al., 2019; Zhao Y. et al., 2018).

Osteoarthritis
pathogenesis

Cell Death Types

Pyroptosis Apoptosis Necroptosis Ferroptosis

Increased
inflammatory
component

IL-1β↑, IL-18↑, Caspase-1↑,
NLRP3↑, MMP-1↑, MMP-13↑,
NLRP3↑, NLRP1↑

IL-1β↑, IL-6↑, IL-8↑, TNF-α↑, Bax↑,
Bcl-2↑, ROS↑, MMP2↑, MMP9↑

MLKL↑, Cleaved caspase8↑,
p-MLKL↑

Expression of catabolic genes
Mmp3↑, Mmp13↑, Adamts5↑,
Ptsg2↑, Col10a1↑

Mechanical overload IL-1β↑, IL-18↑, Caspase-1↑,
NLRP3↑, MMP-1↑, MMP-13↑

Cleaved caspase-3, -6, -7, and -8↑,
actin polymerization↑

RIP1↑, RIP3↑, Caspase-8↑,
ROS↑, Mitochondrial membrane
potential↓

MMP13↑, collagen II↓

Metabolic alterations Caspase-1↑, IL-1β↑, IL-18↑,
Gasdermin-D↑

Phospho-fructose kinase 1 (Pfk1) l↓,
hexokinase II (Hk2) l↓, ATP l↓,
mitochondrial fusion

Inhibits necroptosis through the
hypermethylation of the promoter

Reactive oxygen species (ROS) ↑,
lipid ROS↑, MMP13↑, collagen II↓

Cell senescence IL-1β↑, IL-18↑, activation
caspase-1 or caspase-11

COL10A1↑, IL-1↑, TNF-α↑, MMP-
13↑, ADAMTS5↑, COL2A1↓

Oxidative stress↑, mTOR
signaling↑, DAMPs↑

Mmp3↑, Mmp13↑, Adamts5↑,
Ptsg2↑, Col10a1↑
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injury. The synergistic regulation of necroptosis and apoptosis
may exert more beneficial effects on NP cell survival to ultimately
delay or prevent intervertebral disc degeneration (Chen et al.,
2018).

Research on the role and mechanisms of necroptosis in OA is
becoming an area of increasing interest. Recent evidence suggests
that oxidative and mechanical stresses can contribute to the
development of necroptosis in OA (Riegger and Brenner,
2019) (Figure 4). Mechanical stress also mediates apoptosis
and necroptosis in mandibular cartilage via RIP1 (Zhang et al.,
2017). Cheng et al. demonstrate that upregulation of RIP1
contributions to OA pathogenesis by mediating chondrocyte
necroptosis and ECM destruction via BMP7, a newly
identified downstream target of RIP1, in addition to MLKL
(Cheng et al., 2021). Chen et al. reported that PLCγ1
inhibition combined with inhibition of apoptosis and
necroptosis increases cartilage matrix synthesis in IL-1β
treated rat chondrocytes (Chen et al., 2021). Also, recent
evidence has shown that perturbation of the TRIM24-RIP3
axis regulates mouse osteoarticular pathogenesis by activating
RIP3 kinase and regulating the expression of catabolic factors
(Jeon et al., 2020).

In summary, the development and progression of OA is
closely related to RIP1 and RIP3. Recent studies have
suggested that necroptosis has an important position in
inflammation-related diseases. Necroptosis and apoptosis are
closely related highlighting the complexity and diversity of
mechanisms of disease.

DISCUSSION AND PERSPECTIVES

OA is a complex chronic disease that is affected by age, gender,
weight, mechanical injury and joint deformity. The number of
people affected and the cost of medical treatment are increasing
every year, hence there is a need for improved OA treatment
options. The current pharmacological approach to treating OA is
mostly palliative and surgery remains the ultimate option for
patients. As the understanding of the etiology and pathogenesis of
OA improves, more and more potential targets are being used to
prevent the development and progression of the disease. The
relationship between the pathogenesis of OA and different cell
death types is likely to remain a future research focus.

During the development of OA, inflammatory mediators such
as ROS, interleukins, NO, and MMP are closely related to
chondrocyte apoptosis that involves the mitochondrial, death
receptor and JNK signaling pathways. These signaling pathways
are directly related to apoptosis in chondrocytes and regulate
gene targets, proteins and miRNAs (Table 3).

The relationship between pyroptosis and OA has recently
attracted attention. Pyroptosis produced during cell scorch
death promotes the development of OA which contributes to
pain associated with OA. The current focus of research remains
on NLRP3 inflammatory vesicles. Undeniably, current

experimental evidence in vivo and in vitro strongly suggests a
close relationship between pyroptosis and OA. However, the
molecular regulatory mechanisms of the relevant signaling
pathways and the interconnections between these factors have
not been fully elucidated. Few studies have reported on the link
between pyroptosis, non-coding RNAs and OA.

Ferroptosis is an iron-dependent, non-apoptotic form of cell
death that is distinct from apoptosis, pyroptosis, or necrosis. The
main features of ferroptosis are lipid peroxidation and iron
overload. New mechanisms and novel targets have been
identified in studies of tumors (including hepatocellular
carcinoma, pancreatic cancer, breast cancer, renal clear cell
carcinoma), neurological diseases (including Alzheimer’s
disease, Parkinson’s disease), cardiovascular diseases (including
myocardial injury, ischemia-reperfusion, hemorrhagic stroke),
and chronic diseases (including OA, rheumatoid arthritis).
This provides novel perspectives and strategies for the
treatment of related diseases. The occurrence of ferroptosis
involves the expression and regulation of multiple genes, with
complex signaling pathways and mechanisms that have not been
fully elucidated. Currently available studies cannot fully reveal the
relationship between ferroptosis and disease, andmore research is
needed in this area.

In conclusion, apoptosis, ferroptosis and pyroptosis have
important roles in the development of OA, but deeper
studies are needed. Exploring the relationship between OA
and cell death can provide a theoretical basis and enable the
development of translational strategies towards curing OA
Kayagaki et al., 2011.
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GLOSSARY

OA Osteoarthritis

KOA Knee osteoarthritis

DAMPs Damage associated molecular pattern molecules

TLRs Toll-like receptors

PRRs Particular pattern recognition receptors

ASC Apoptosis-associated speck-like protein containing a CARD

FADD Fas-associated protein with death domain

DISC Death-inducing signaling complex

NF-κB Nuclear factor-κB

MAPK Mitogen-activated protein kinase

FLS Fibroblast-like synoviocytes

NLRP Nod-like receptor protein

ASC Apoptosis-associated speck-like protein with a caspase-recruitment domain

GSDMD Gasdermin D

LPS Lipopolysaccharide

Lico A Licochalcone A

SDF-1 Stromal cell-derived factor-1

ATP Adenosine triphosphate

MMP-1 Matrix metalloproteinases 1

MMP-13 Matrix metalloproteinases 13

MMP-3 Matrix metalloproteinases 3

TGF-β Transforming growth factor-β

PLOD2 Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2

COL1A1 Collagen type Iα1 chain

TIMP1 Tissue inhibitor of metalloproteinase 1.

DMM Destabilization of the medial meniscus

HMGB1 High mobility group box 1

SD rats Sprague-dawley rats

Human FLSs Human fibroblast-like synoviocytes

HIF-1α Hypoxia-inducible factor-1α

USP7 Ubiquitin-specific protease 7

ROS Reactive oxygen species

Lipid-ROS Lipid reactive oxygen species

NOXs NAD(P)H oxidases

NOX4 One of the members of the NOX family

Gpx4 Glutathione peroxidase 4

H2O2 Hydrogen peroxide

MIA Monosodium iodoacetate

BzATP An ATP analog with greater potency than ATP

Col II Collagen II

Col X Collagen X

CNS trauma Central nervous system trauma.

RIP1 Receptor interacting protein kinase-1

RIP3 Receptor interacting protein kinase-3

MLKL Mixed-lineage kinase domain-like protein

TRADD TNF-receptor associated via DD

TRAF2 TNF receptor-associated factor 2
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