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Abstract

The cyclic-AMP response element-binding protein (CREB) is a nuclear transcription factor 

activated by phosphorylation at Ser133 by multiple serine/threonine (Ser/Thr) kinases. Upon 

phosphorylation, CREB binds the transcriptional co-activator, CBP (CREB-binding protein), to 

initiate CREB-dependent gene transcription. CREB is a critical regulator of cell differentiation, 

proliferation and survival in the nervous system. Recent studies have shown that CREB is 

involved tumor initiation, progression and metastasis, supporting its role as a proto-oncogene. 

Overexpression and over-activation of CREB were observed in cancer tissues from patients with 

prostate cancer, breast cancer, non-small-cell lung cancer and acute leukemia while down-

regulation of CREB in several distinct cancer cell lines resulted in inhibition of cell proliferation 

and induction of apoptosis, suggesting that CREB may be a promising target for cancer therapy. 

Although CREB, as a transcription factor, is a challenging target for small molecules, various 

small molecules have been discovered to inhibit CREB phosphorylation, CREB-DNA, or CREB-

CBP interaction. These results suggest that CREB is a suitable transcription factor for drug 

targeting and therefore targeting CREB could represent a novel strategy for cancer therapy.
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INTRODUCTION

The cyclic AMP (cAMP) response element binding protein (CREB) was first identified in 

1987 during an investigation for nuclear proteins that bind to a stretch of DNA containing 

the cAMP response element (CRE) 5′-TGACGTCA-3′ [1, 2]. This 43 KDa protein belongs 

to a large family of basic leucine zipper (bZIP)-containing transcription factors including c-

Jun, c-Fos and c-Myc (Fig. 1) [3, 4]. A salient feature of this transcription factor is that its 

transcriptional activity is induced upon phosphorylation at Ser133 located in the KID 

(kinase-inducible domain) domain by many different serine/threonine (Ser/Thr) protein 

kinases to yield phosphorylated CREB (p-CREB) [4]. The kinases known to phosphorylate 

CREB include protein kinase A (PKA) [1], Akt/protein kinase B (PKB) [5], mitogen-

activated protein kinases (MAPK) [6, 7], and p90 ribosomal S6 kinase (p90RSK) (Fig. 2) [8]. 

Phosphorylation at Ser133 is required for its binding to the mammalian transcriptional co-

activator, CREB-binding protein (CBP), through the KID domain in CREB and KIX (KID-

interacting) domain in CBP [9]. This binding event enables recruitment of other 

transcriptional machinery to the gene promoter to initiate CREB-dependent gene 

transcription (Fig. 2) [4]. In addition to Ser133, many other sites in CREB are also known to 

be phosphorylated by a variety of kinases [10]. Although the biological relevance of these 

additional phosphorylation events is less well understood, they could potentially regulate 

CREB’s transcription activity in a more delicate fashion [10]#.

CREB serves a variety of biological functions including cellular proliferation, differentiation 

and adaptive responses in the neuronal system [4, 11]. Recently, accumulating evidence has 

revealed that CREB participates in the regulation of immortalization and transformation of 

cancer cells. Therefore it is hypothesized that CREB is directly involved in oncogenesis of a 

variety of cancers [12–14].

CREB IN HUMAN MALIGNANCIES

The first indication of CREB’s involvement in cancer stemmed from the identification of a 

chromosomal t(12;22)(q13;q12) translocation in clear cell sarcomas of soft tissue (CCSST) 

to give a fusion protein EWS-ATF1 [15]. In the resulting chimeric protein, the N-terminal 

region of EWS (Ewing’s Sarcoma) [16], an RNA-binding protein, is fused with the C-

terminal region (bZIP) of ATF-1 (activating transcription factor 1), a CREB related 

transcription factor which binds CRE and heterodimerizes with CREB [17]. This fusion 

protein loses a consensus PKA phosphorylation site mediating regulation by PKA and other 

kinases for transcription activation. Instead, the activation domain of the N-terminal region 

of EWS renders this fusion as a constitutively active transcription activator to upregulate the 

expression of some CREB target genes [18, 19]. This gene translocation is present in nearly 

all the CCSSTs [15, 18].

Immunohistochemical analysis of primary and bone metastatic prostate cancer tissues from 

patients demonstrated that normal, benign prostate glands showed no detectable p-CREB 

[20]. On the other hand, positive p-CREB staining was detected in all the examined poorly-

#The remaining discussion of phosphorylation of CREB in this article refers to Ser133.
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differentiated prostate cancers and bone metastatic tissue specimens [20]. This positive 

correlation between the level of p-CREB and the extent of tumor differentiation and 

metastasis suggests that CREB is critically involved in tumor progression and metastasis. In 

prostate cancer LNCaP cells, activation of CREB has been implicated in the promotion of 

neuroendocrine differentiation (NED) induced by ionizing radiation [21] and elevated 

intracellular cAMP level [22, 23]. The neuroendocrine transdifferentiation process appears 

to be associated with the development of cross-resistance to radiotherapy, chemotherapy and 

androgen-independence in prostate cancers [21, 24]. In addition to prostate cancer, increased 

mRNA levels of CREB were also consistently detected in breast cancer tissues compared to 

normal mammary tissues [25]. Notably, the level of CREB expression was correlated with 

disease progression and survival [25]. In non-small-cell lung cancer (NSCLC) never-

smoking patients, the expression levels of CREB and p-CREB were distinctively elevated in 

tumor tissues compared to the adjacent normal tissues [26]. In these examined patient 

samples, there exists an inverse correlation between CREB overexpression and disease-free 

survival [26]. In an animal model of lung adenocarcinoma induced by tobacco-specific 

nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), the expression level 

of p-CREB progressively increased along the development of lung adenocarcinoma [27]. 

Similar observations were made in human lung adenocarcinoma NCI-H322 cells, where 

NKK potently stimulated phosphorylation of CREB and DNA synthesis [28].

Besides its role in the development of solid tumors, mounting evidence has shown that 

CREB may also play a role in the development of bone marrow neoplasms. The oncogenic 

virus human T-cell leukemia virus type 1 (HTLV-1) is strongly associated with aggressive 

cases of adult T-cell leukemia (ATL) [29, 30]. The oncogenic transformation caused by the 

HTLV-1 Tax oncoprotein requires intact CREB signaling [31, 32]. Furthermore, the role of 

CREB itself as a proto-oncogene in leukemogenesis is supported by studies of leukemia 

patient samples and leukemia cell cultures [33–36]. Higher CREB and p-CREB expression 

levels were detected in the bone marrow from patients with ALL (acute lymphoid leukemia) 

and AML (acute myeloid leukemia) compared to that from patients without neoplastic 

hematologic disorders [35, 36]. The degree of increased p-CREB level does not correlate 

with the cAMP levels in the leukemia patient samples [36], suggesting CREB kinases other 

than PKA are contributing to the enhanced phosphorylation of CREB. In addition, CREB 

expression clearly correlates with disease stage in the leukemia patients where high 

expression was observed at diagnosis and relapse, but low expression was seen upon 

remission from the same patients [35, 36]. Kaplan-Meier analysis showed that CREB 

overexpression is also associated with a decrease in time to relapse and a decrease in event-

free survival [33]. On the flip side, the expression profiles of inhibitors of CREB, including 

ICER (inducible cyclic AMP early repressor) [36] and miR-34b (a microRNA targeting 

CREB) [37] are down-regulated in the bone marrow of AML patients compared to healthy 

individuals. These empirical expression data from human patient samples have been 

supported by animal models. The transgenic mice that overexpress CREB in the cells of the 

myeloid lineage developed increased monocytosis and myeloproliferative syndrome with 

splenomegaly [33]. The bone marrow cells from these transgenic mice also displayed 

transformed blast-cell phenotypes including increased proliferation, immortalization and 

growth factor-independence [33]. Overall, the data from both clinical samples and animal 
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models indicate that CREB not only serves as a diagnostic marker, due to its role in 

induction and maintenance of malignancy, but also an oncogene of its own accord when 

inappropriately activated.

TARGETING CREB FOR CANCER THERAPY: PROOF-OF-CONCEPT

The observation that CREB is overexpressed and/or over-activated in a variety of different 

clinical cancer tissues argues that CREB may represent a promising target for cancer 

therapy. Although the exact mechanisms by which CREB contributes to cancer development 

are not clear, CREB, as a transcription factor, directly regulates a number of critical genes 

involved in cellular proliferation, anti-apoptosis and metastasis. These targets include cyclin 

A1 [33], cyclin D1 [38], bcl-2 (b-cell leukemia 2) [33], VEGF (vascular endothelial growth 

factor) [20], type IV collagenase MMP-2 (matrix metalloproteinase 2) and cell adhesion 

molecule MUC18/MCAM (melanoma cell adhesion molecule) [39]. In hematopoietic cells, 

overexpression of CREB may also block cellular differentiation by up-regulating a member 

of the hox gene family, Meis1 (myeloid ecotropic viral integration site 1) [40, 41]. As 

mentioned earlier, CREB is also implicated in promoting prostate cancer cell NED.

The biological function of CREB, as a transcription factor, entails protein-DNA and protein-

protein interactions. Both of these binding interfaces are challenging targets for rational 

small molecule design even though the high-resolution structures of CREB-CRE and KIX-

KID complexes have been determined [9, 42]. Therefore, initial studies to test the 

hypothesis of targeting CREB as a strategy for cancer therapy are focused on biological 

approaches to inhibit CREB’s function.

Dominant-negative CREB mutants were employed to inhibit CREB’s transcription activity. 

A melanoma cell line (MeWo) was transfected with a dominant-negative CREB, KCREB, 

which is a full-length CREB with R287L mutation [43] and does not bind CRE but does 

heterodimerize with wild-type CREB [39, 44]. Expression of KCREB in the highly 

metastatic MeWo cell line resulted in 1) decreased potential for metastasis in vitro and in 
vivo [39]; 2) decreased tumor growth in the mouse xenograft model [39]; 3) decreased 

capability to grow in soft agar, indicating decreased transforming capacity [44]; and 4) 

reduced resistance to radiation [44]. These results are possibly due to the decreased 

expression of CREB target genes involved in metastasis, including type IV collagenase 

(MMP-2) and cell adhesion molecule MUC18/MCAM [39]. Similar tumor growth inhibition 

with dominant-negative CREB was also observed in hepatocellular carcinoma BNL1ME 

cells [45] and non-small-cell lung cancer A549 cells [46]. Inducible expression of a 

dominant-negative CREB mutant in the mouse basal epidermis significantly reduced the 

incidence of skin papillomas induced by sequential treatment with 7,12-dimethyl-

benz[a]anthracene (DMBA) and phorbol-12-myristate-13-acetate, suggesting potential 

cancer preventive value of CREB inhibitors [47].

A second biological approach to inhibit CREB’s function was the utilization of CRE 

“decoy” oligonucleotides. Once inside cells, these “decoy” oligonucleotides can bind CREB 

and sequester it away from the genomic CRE sequences and thus effectively inhibit CREB-

mediated gene transcription. Introduction of a 24-mer CRE “decoy” into a variety of solid 
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tumor cell lines was shown to suppress the growth of cancer cells both in culture and in the 

xenograft models [48, 49]. On the other hand, delivery of the same CRE “decoy” 

oligonucleotide into normal cells did not result in toxicity [49]. These results further suggest 

that pharmacological inhibition of the transcription activity of CREB could be a promising 

strategy to develop next-generation nontoxic, anticancer drugs.

Finally, a third approach that was investigated for inhibition of CREB was RNA interference 

(RNAi). Our laboratory has recently shown that knockdown of CREB in human myeloid 

leukemia cells (K562 and TF-1) resulted in decreased cellular proliferation and viability in 
vitro [33, 50]. In a murine myeloid leukemia model, NOD-SCID (non-obese diabetic, severe 

combined immuodeficicent) mice injected with Ba/F3 cells transduced with Bcr-Abl and 

shRNA (short hairpin RNA) against CREB exhibited decreased disease burden and 

increased median survival [50]. More importantly, this effect was also observed in imatinib-

resistant Bcr-AblT315I-expressing cells [50]. Knockdown of CREB by siRNA has also been 

shown to enhance oxidant- and asbestos-induced apoptosis [51, 52].

TARGETING CREB FOR CANCER THERAPY: SMALL MOLECULES

The aforementioned studies of inhibiting the transcriptional activity of CREB by various 

genetic methods provide proof-of-concept evidence that CREB is a promising target for 

anticancer drug development. However, direct translation of these methods for potential 

cancer therapies would require gene therapy techniques, whose clinical application is still 

rather limited and controversial [53]. An alternative approach to inhibit CREB-mediated 

gene transcription is to utilize small organic molecules, which, in general, have better 

pharmacokinetic properties as cancer therapeutics. Three potential intervention points for 

small molecules as chemical inhibitors of CREB-mediated gene transcription are depicted in 

Fig. (2).

The first approach of pharmacological inhibition of CREB-mediated gene transcription in 

cells involves the use of kinase inhibitors to inhibit phosphorylation and therefore activation 

of CREB. As presented in Fig. (2), multiple Ser/Thr protein kinases could phosphorylate 

CREB. Therefore, effective inhibition of CREB phosphorylation in cancer cells would 

require simultaneous inhibition of multiple CREB kinases either by combining different 

specific kinase inhibitors or employing non-specific kinase inhibitors. This 

polypharmacology approach may elicit many off-target effects [54]. However, promising 

results were obtained from Aggarwal et al who reported that Ro 31-8220 (Chart 1), an 

analog of staurosporine [55] with medium kinase selectivity,$ inhibited both CREB 

upstream and downstream signaling components in non-small-cell lung cancer cell lines 

(NSCLC) [56]. Specifically, phosphorylation of CREB kinase p90RSK and CREB in H1734 

cells was inhibited by Ro 31-8220. The expression of CREB target genes involved in anti-

apoptosis, Bcl-2 and Bcl-xL, was down-regulated in H1734 cells treated with Ro 31-8220. 

Furthermore, NSCLC cells treated with Ro 31-8220 exhibited caspase-dependent apoptosis 

while similar treatment in normal human tracheo-bronchial epithelial (NHTBE) cells did not 

result in apoptosis [56], suggesting that cancer cells are more sensitive to CREB inhibition. 

$see technical article of Ro 31-8220 at www.sigma-aldrich.com
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While these results are intriguing, it remains to be determined whether the observed cellular 

phenotype is a result of inhibition of CREB’s activity because of the moderate specificity 

profile of Ro 31-8220 against different kinases in cells.

The second approach to inhibit CREB’s activity is to inhibit CREB-CRE interaction. Unlike 

enzymes which have a well-defined and relatively small-sized binding pocket for small 

molecule binding, protein-DNA interactions are traditionally thought to be difficult to be 

targeted by small molecules. However, a fluorescent polarization–based high throughput 

screening assay was designed to identify potential inhibitors of CREB-CRE interaction from 

the NCI-diversity set of ~1900 compounds [57]. NSC 12155 and NSC 45576 (Chart 1) were 

identified as submicromolar and low micromolar inhibitors of CREB-CRE interaction. 

However, these compounds are not specific in inhibiting CREB-CRE interaction and their 

cellular activity remains to be determined [57]. Another potential approach to target CREB-

CRE interaction is to employ the programmable N-methylpyrrole-N-methylimidazole 

polyamides [60], which can be designed to target specific DNA sequences and have been 

engineered to inhibit HIF-1α (hypoxia inducible factor 1α) and androgen receptor [61, 62].

The third approach to the inhibition of CREB-mediated gene transcription is to target 

CREB-CBP interaction, which necessarily precedes CREB-dependent gene transcriptional 

activation [63]. The binding interface between CREB and CBP is KID-KIX interaction and 

it is structurally well-characterized by NMR spectroscopy [9], but targeting protein-protein 

interactions by small molecules is still challenging. However, the recent successful examples 

of small molecule inhibitors of various protein-protein interactions suggest this is feasible 

provided there are binding “hotspots” on the protein surfaces [64]. Two distinct binding sites 

on KIX are utilized by natural transcription factors [65, 66], suggesting its potential to be 

targeted by small molecules. Therefore, a medium-throughput NMR screening assay was 

designed to identify potential small molecule binders of KIX that could disrupt the CREB-

CBP interaction [58]. From a pre-selected drug-like library of 762 compounds, naphthol AS-

E phosphate (Chart 1) was identified as a candidate compound to inhibit the KID-KIX 

interaction with IC50 of ~90 μM. However, this same compound displayed significantly 

more potent activity in inhibiting CREB-mediated gene transcription in living cells [58]. 

Further studies in the authors’ laboratory showed that naphthol AS-E phosphate is not stable 

in serum or cell-permeable and the actual active species in the cellular experiments is the 

dephosphorylated product, naphthol AS-E (Chart 1), which is a much more potent inhibitor 

of the KID-KIX interaction [59]. The identification of this cell-permeable KID-KIX 

interaction inhibitor will enable us to further investigate the hypothesis that KID-KIX 

interaction inhibitors are potential anticancer agents.& Furthermore, the modular nature of 

naphthol AS-E is amenable to further structure-activity relationship studies to uncover the 

structural manipulations that would enhance their biological activities. Some other KIX-

binding small molecules were also reported in the literature [67–69], however, their 

capability to inhibit CREB-mediated gene transcription in cells is unknown.

&Li, B.X., Bryant, D., Yamanaka, K., Dorsa, D., Xiao, X. In 238th ACS National Meeting: Washington, DC, United States, 2009.
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TARGETING CREB: GOOD OR BAD

mRNA expression data showed that CREB was expressed in all the adult tissues examined 

[70] and CREB is a focal point of many different signaling pathways (see Fig. 2) [4, 11]. 

Thus, specific and efficacious inhibition of CREB might invoke non-specific adverse effects 

in the normal cells. In fact, CREB-null mice are lethal at birth due to post-natal lung defects 

[71]. However, the centrality of CREB might be advantageous for anticancer drug design 

because cancer cells often have multiple lesions in different signaling pathways [72, 73] and 

targeting CREB could potentially block a number of these aberrantly activated pathways 

(see Fig. 2). Although genetic knockout data are critical in inferring the biological function 

of a gene of interest, one has to realize that the key differences between genetic knockouts 

and chemical inhibitors are that chemical inhibition of CREB is reversible, transient and 

does not change the endogenous CREB protein level. The residual CREB activity after 

chemical inhibition may be sufficient to maintain the normal cell homeostasis, but below the 

threshold to maintain the cancer cell phenotype. As a matter of fact, the hypomorphic CREB 
mice are viable without developmental defects [74].

Studies with CRE-decoy oligonucleotides demonstrated that normal cells are not sensitive to 

CREB inhibition [49]. The exact mechanisms underlying this selectivity remain to be 

determined, but one can conceptualize the selective toxicity to cancer cells over normal cells 

by CREB inhibition as in Fig. (3). Cancer cells acquire an incredible amount of apoptotic 

stress during malignant transformation by aberrant activation of oncogenes [72]. To prevent 

cell death, cancer cells are able to block apoptosis by up-regulating anti-apoptotic signals 

[72]. Since cancer is believed to be a product of evolutionary selection [72], there must be a 

reason for over-activation of CREB consistently seen in different tumor specimens. This 

may be that activated CREB transcribes its target genes required for anti-apoptosis to 

maintain the cancer phenotype. Endogenous genes are often regulated by more than one 

transcription factor. The contribution to a given transcript from CREB might be bigger in 

cancer cells with over-activated CREB than that in normal cells. Therefore, inhibitors of 

CREB-mediated gene transcription will have a more profound effect in cancer cells than 

normal cells, which will be sufficient to induce apoptosis in cancer cells. But the effect in 

normal cells is too small to induce an adverse effect due to redundancy (Fig. 3). 

Alternatively, promoter usage for a given gene in cancer cells may be different from that in 

normal cells in that CREB is predominantly driving transcription of a particular target gene 

that is required to maintain the cancer phenotype. A good example of this latter point is 

illustrated in the transcription of aromatase in different tissues, where CREB is major 

contributor in breast cancer cells but not in other cells [75]. Therefore, chemical inhibitors of 

CREB-mediated gene transcription could display anticancer activity with no or acceptable 

minimal toxicity.

CONCLUSIONS AND OUTLOOK

In conclusion, there is a great deal of evidence to implicate CREB as an important regulator 

of tumor initiation, progression and metastasis. Proof-of-principle studies using various 

strategies have demonstrated therapeutic potential of inhibitors of CREB-mediated gene 

transcription. In the coming years, we anticipate that more chemical inhibitors will be 
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developed to allow investigators to further test the hypothesis of CREB inhibitors for cancer 

therapy in preclinical and clinical settings. However, the following challenges need to be 

addressed in order to fully appreciate the clinical utility of any chemical inhibitor of CREB-

mediated gene transcription: 1) What are the mechanisms responsible for the anti-cancer 

activity/selectivity of CREB inhibitors? 2) How specific are the small molecule inhibitors in 

inhibiting CREB-mediated gene transcription? 3) What patients are appropriate for the trials 

of CREB inhibitors? 4) How and whether these inhibitors should be used in combination 

with other existing cancer therapies? 5) What are the endpoint markers to evaluate the 

efficacy and on-target effects? The discovery of various inhibitors presented in Chart 1 

represents just the opening chapter of an entire book of a novel strategy for cancer therapy 

requiring more extensive investigations.
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ABBREVIATIONS

Abl Abelson murine leukemia viral oncogene homolog

ALL Acute lymphoid leukemia

AML Acute myeloid leukemia

ATF-1 Activating transcription factor 1

ATL Adult T-cell leukemia

Bcr Breakpoint cluster region

bcl-2 b-cell leukemia 2

bZIP Basic leucine zipper

CBP CREB binding protein

CCSST Clear cell sarcomas of soft tissue

CRE Cyclic-AMP response element

CREB CRE-binding protein

DMBA 7,12-dimethylbenz[a]anthracene

EWS Ewing’s Sarcoma

HIF-1α Hypoxia inducible factor 1α

HTLV-1 Human T-cell leukemia virus type 1

ICER Inducible cyclic AMP early repressor

KID Kinase-inducible domain
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KIX KID-interacting

MAPK Mitogen-activated protein kinase

MCAM/MUC18 Melanoma cell adhesion molecule

Meis1 Myeloid ecotropic viral integration site 1

MMP-2 Matrix metalloproteinase 2

NCI National Cancer Institute

NED Neuroendocrine differentiation

NMR Nuclear magnetic resonance

NNK 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone

NSCLC Non-small-cell lung cancer

p-CREB Phosphorylated CREB

PKA Protein kinase A

PKB/Akt Protein kinase B

p90RSK p90 ribosomal S6 kinase

VEGF Vascular endothelial growth factor
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Fig. 1. 
Domain structure of rat CREB. The basic leucine zipper (bZIP) is located at the C-terminus 

for DNA binding and homodimerization or heterodimerization with other bZIP family 

members. The kinase-inducible domain (KID) is the inducible activation domain activated 

by phosphorylation at Ser133. The glutamine rich regions [Q1 and Q2 or constitutive 

activation domain (CAD)] are the basal transcriptional activation domains. Human CREB 

lacks the α domain, which forms a presumed amphipathic α-helix to regulate the 

transcription activity of CREB.

Xiao et al. Page 14

Curr Cancer Drug Targets. Author manuscript; available in PMC 2014 October 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2. 
Multiple signaling pathways activate CREB by phosphorylation. Illustrated are potential 

points of intervention by chemical inhibitors: 1) inhibition of kinases; 2) inhibition of 

CREB-CRE interaction; and 3) inhibition of CREB-CBP interaction.
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Fig. 3. 
Cancer cells bear higher apoptotic stress than normal cells. Normal cells (left) maintain a 

homeostasis with low levels of pro-apoptotic factors and anti-apoptotic factors. Upon 

aberrant activation of oncogenes, the cells start to accumulate apoptotic stress (middle) and 

most of the cells will die. However, a small percentage of the cells will survive through 

activation or inactivation of other cell signaling components (e.g. activation of CREB) 

resulting in up-regulation of anti-apoptotic factors. These transformed cancer cells (right) 

will maintain this new cellular homeostasis with overall higher levels of both pro-apoptotic 

factors and anti-apoptotic factors than their normal counterparts.
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Chart 1. 
Chemical inhibitors of CREB-mediated gene transcription [56–59].
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