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Targeting dendritic cells to treat multiple sclerosis

Abstract

Multiple sclerosis (MS) is considered to be a predominantly T-cell-mediated disease, and emerging
evidence indicates that dendritic cells have a critical role in the initiation and progression of this
debilitating condition. Dendritic cells are specialized antigen-presenting cells that can prime naive T
cells and modulate adaptive immune responses. Their powerful biological functions indicate that these
cells can be exploited by immunotherapeutic approaches. Therapies that inhibit the immunogenic
actions of dendritic cells through the blockade of proinflammatory cytokine production and T cell
co-stimulatory pathways are currently being pursued. Furthermore, novel strategies that can regulate
dendritic cell development and differentiation and harness the tolerogenic capacity of these cells are also
being developed. Here, we evaluate the prospects of these future therapeutic strategies, which focus on
dendritic cells and dendritic cell-related targets to treat MS.
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Abstract 

Although multiple sclerosis (MS) is considered to be T cell-mediated, emerging evidence 

points towards a critical role of dendritic cells (DCs) in the initiation and progression of 

this disease. DCs are professional antigen presenting cells that can prime naive T cells 

and control adaptive immune responses with respect to magnitude and self-tolerance. 

Their powerful biological functions can be exploited for the treatment of T cell-mediated 

autoimmune diseases. Emerging therapies aim at inhibiting immunogenic DC functions 

through blockade of pro-inflammatory cytokine production and T cell costimulatory 

pathways. Novel approaches aim at regulating DC development and differentiation and 

harness the tolerogenic capacity of DCs. Here, we evaluate the prospects of future 

strategies that focus on DCs and DC-related targets to treat MS.  
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Introduction 

Multiple sclerosis (MS) is considered a classical antigen-driven and T cell–mediated 

autoimmune disease. This view is based on the cellular composition of brain and 

cerebrospinal fluid (CSF)-infiltrating cells, data from the most popular animal model of 

MS, experimental autoimmune encephalomyelitis (EAE), which can be induced by 

adoptive transfer of myelin-specific CD4
+
 T cells from sick to naïve animals,

1
 and by the 

fact that certain major histocompatibility complex (MHC) class II alleles, in particular the 

HLA-DR2 haplotype carrying the DRB1*1501 allele, represents by far the strongest 

genetic risk factor for MS development.
2,3

 Repertoire analyses of T and B cells in CSF 

and brain tissue from patients with MS show clonal expansions in both populations, 

indicating that there is clonal reactivity to a restricted number of yet unknown disease-

relevant target antigens.
 4-7

 Moreover, longitudinal studies over several years provide 

evidence for the long-term persistence of individual T-cell clones in the blood of patients 

with MS
8-10

 indicating a strong, persisting memory response and/or ongoing antigen 

exposure.   

Dendritic cells (DCs) are professional antigen presenting cells that can prime 

naïve T cells and control adaptive immune responses with respect to magnitude, memory 

and self-tolerance. DCs capture and process antigens, converting proteins to peptides that 

are presented on MHC molecules and recognized by T cells. DCs also secrete cytokines, 

directing naïve T cells towards different types of T helper (Th) subsets, such as Th1, Th2, 

Th17 cells
11

 (Figure 1). In addition to their function in initiating and enhancing 

immunogenicity, DCs have a role in maintaining central and peripheral T cell tolerance.
12

 

Tolerogenic DC functions are considered to be of particular importance during the steady 
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state, i.e. in the absence of infection and inflammation, in order to avoid a non-

appropriate response to harmless antigens that may be presented subsequently when 

infection strikes. The discovery of these cells and their increasingly appreciated role in 

regulating adaptive immune responses allowed for the development of a new generation 

of immunotherapies that are currently investigated in infectious, malignant, and 

autoimmune diseases.
13,14

 

 

DCs: connecting innate and adaptive immunity  

DCs were originally discovered and named for their stellate, tree-like shapes by Ralph M. 

Steinman and Zanvil Cohn in 1972.
15,16

 DCs are abundant at body surfaces where they 

sense and migrate with environmental, self and microbial antigens to lymphoid organs in 

order to present processed antigen to naïve T cells and to induce antigen-specific 

immunity or tolerance. To increase the efficacy of antigen-uptake, DCs employ a system 

of endocytic receptors, often lectins, that deliver antigens to processing compartments, 

leading to the presentation of antigen fragments on MHC molecules. Among them are the 

type 1 transmembrane protein DEC-205 (CD205), the mannose receptor MRC1 (CD206) 

and type 2 proteins such as DC-SIGN (CD209), langerin (CD207), and CLEC4A/DCIR. 

By using monoclonal antibodies that bind to these receptors as surrogate ligands, one can 

efficiently target vaccine antigens to DCs.
14

 For example, retroviral vectors gain 

improved immunogenicity if the envelope is engineered to target the DC-SIGN
17

 and the 

efficacy of HIV DNA vaccines can be improved by coupling antigen to a DEC-205-

specific antibody.
18
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Most DCs circulate in the body in a so-called immature state and lack many 

features that lead to a strong T-cell response. Immature DCs are, nonetheless, capable of 

capturing antigen. DC activation by different types of stimuli such as microbial ligands 

for pattern-recognition receptors or inflammatory cytokines leads to maturation during 

which DCs transport antigen-MHC complexes to the cell surface, upregulate 

costimulatory molecules necessary for T cell activation and survival such as CD80 and 

CD86, and initiate cytokine production. The latter directs T cell differentiation and assists 

in the activation of antibody-producing B lineage cells.  

DCs can be classified into different categories based on cell surface markers, 

many of which are involved in pattern recognition and antigen presentation. A widely 

accepted classification distinguishes human DCs into two main categories: CD11c
+
 

myeloid DCs and CD11c
dim

CD123
+
 plasmacytoid DCs, so named because of cytologic 

similarities to antibody-producing plasma cells.
19,20

 These subsets, which can be further 

subdivided based on their phenotype and functional properties, are likely to be selected to 

recognize distinct pathogens or forms of antigen and to initiate and regulate distinct 

innate and adaptive responses (Box 1).
21,22

 In the steady state, most DCs in lymphoid 

organs arise from a blood precursor,
23,24

 a process driven by the cytokine FLT3 ligand 

(FLT3LG).
25-27

  During inflammation and infection, other cytokines, such as GM-CSF 

and M-CSF, additionally mobilize increased numbers of DCs that emanate from 

monocyte precursors.
28,29

 Thus, the term DCs comprises a group of heterogeneous 

professional antigen-presenting immune cells. Nonetheless, all DC populations share 

characteristic features of the DC lineage such as the capacity to process and to present 

antigen, high levels of MHC class II expression, and the ability to prime naïve T cells. 
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DCs in autoimmune CNS inflammation 

Although DCs are scant in the CNS parenchyma, their presence in vascular-rich regions 

of the healthy CNS such as perivascular spaces, the choroid plexus, and the meninges 

suggests they may have a role in immune surveillance of the CNS.
30,31

 DCs accumulate in 

the CNS parenchyma during a wide range of inflammatory responses
31

 and they are also 

present in inflammatory MS lesions.
32,33

 Controversy remains whether DCs in the 

inflamed CNS differentiate from resident CD11b
+
CD11c

- 
microglia or infiltrate from a 

blood-borne population. Recent studies in CD11c reporter mice identified a unique 

population of CNS-resident CD11b
+
 CD11c

+
 MHC-II

- 
ramified cells in various regions of 

the developing and adult non-diseased brain parenchyma.
34

 These cells upregulated MHC 

class II molecules and showed T cell stimulatory efficacy upon IFN- treatment.
35

 Similar 

findings were made when CNS-resident microglia were treated with DC differentiation 

factors such as GM-CSF
36,37

 which suggests that some micoglial cells have the 

developmental plasticity to acquire DC-like function.  

During EAE development, CD11c
+
 DCs alone are sufficient to present antigen to 

primed myelin-reactive T cells, thereby mediating CNS inflammation and clinical disease 

development.
38-40

 Peripherally derived myeloid DCs appear to be superior to 

plasmacytoid DCs and other subsets of myeloid cells that reside or accumulate in the 

CNS during EAE development in inducing the activation and differentiation of CNS-

infiltrating myelin-specific T cells, presumably due to enhanced expression of T cell 

differentiating cytokines.
41

 Other studies suggested that DCs, depending on their location 

or differentiation state, can prevent EAE development.
42

 For example, thymus-derived 
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DCs loaded with myelin antigen and injected intravenously into EAE susceptible hosts, 

were shown to inhibit disease development. This protection was lost in thymectomized 

recipients indicating that DCs that home to the thymus are able to confer tolerance to 

antigen-selected and activated encephalitogenic T cells.
43

 There is also evidence that 

plasmacytoid DCs negatively regulate encephalotogenic CD4
+
 T cell responses in mice.

41
  

In humans, several studies report that patients with MS show altered DC 

phenotypes or functions. Patients with MS appear to have higher frequencies of blood 

myeloid DCs that express maturation markers such as CD80 and produce IL-12 and 

TNF- as compared to healthy controls.
44

 Similarly, DCs differentiated in vitro from 

blood monocytes from MS patients secrete higher levels of proinflammatory cytokines 

such IL-6,
45

 TNF-45
 or IL-23.

46
 Altered plasmacytoid DC phenotypes, primarily 

associated with decreased expression of maturation markers, have also been reported in 

patients with MS.
47-49

 

Thus, peripherally derived DCs that infiltrate the CNS appear to be crucial for 

EAE development and it is increasingly appreciated that overproduction of particular 

cytokines by certain DC subsets drives autoimmune CNS inflammation. In contrast, some 

DCs in lymphoid organs have the capacity to confer antigen-specific tolerance which 

protects from disease development.  Due to their central role in T cell immunity and 

tolerance, DCs could be targeted for immunotherapy either by obviating their 

immunogenic potential or by enhancing their tolerogenic functions. Indeed, several 

emerging immunotherapies in various autoimmune diseases specifically target DC 

cytokine production or antigen presentation. Before we evaluate these new strategies, we 
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will discuss evidence that approved MS therapeutics utilize the DC system and innate 

immune mechanisms to exert their beneficial effects in MS.  

 

Approved MS therapeutics modulate DC function 

Regulatory-approved MS therapeutics such as interferon beta-1a and -1b (IFN, 

glatiramer acetate (GA), mitoxantrone, and natalizumab are reasonably effective in MS 

and appear to delay the time of progression to disability. These compounds, as well as the 

three monoclonal antibodies that are currently under active investigation for MS 

(rituximab, alemtuzumab, and daclizumab) and oral treatments (FTY720/fingolimod, 

cladribine), that have already proven to be effective in large phase III clinical trials, were 

originally designed to target autoreactive adaptive immune responses. However, 

immunological studies soon indicated that the mechanisms of action of both approved 

and currently tested, potential MS therapies is complex and involve, at least in part, 

innate immune functions such as DC-mediated polarization of effector T cells or DC-

mediated expansion of regulatory immune cell compartments.    

IFNa pleiotropic cytokine with antiviral activity, mainly secreted by 

plasmacytoid DCs, became the first drug approved for the treatment of relapsing-

remitting MS. Recent studies indicated that its complex mechanisms of action in MS 

includes an inhibitory effect on DC-mediated Th17 cell differentiation.
50

 Thus, in 

addition to reported direct effects on T effector cells such as Th17 lymphocytes,
52

 IFN 

appears to downregulate expression of Th17 cell polarizing cytokines.
53

 Furthermore, the 

clinical response to IFNtreatment in MS has been associated with DC function. 

Genome-wide expression profiling and functional studies in interferon-beta responders 
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vs. non-responders revealed that the latter showed higher expression levels of DC 

costimulatory molecules such as CD86 on myeloid DCs before treatment initiation, 

suggesting that patients with more pre-activated DCs are less susceptible to IFN 

therapy.
54

  

GA was the first non-interferon approved for treatment of MS. GA is a synthetic 

polypeptide mixture containing four amino acids glutamic acid, lysine, alanine and 

tyrosine in a molar ratio of 1.5 : 3.6 : 4.6 : 1.0 which matches the molar ratios of the most 

frequent amino acids in myelin basic protein (MBP), a presumed target antigen in MS. 

The immunomodulatory effects of GA were believed to involve the expansion of a 

population of GA-reactive anti-inflammatory Th2 cells through interference with 

peptide/MHC binding on APCs. Hypothesizing GA also influences DC-mediated T cell 

polarization, Vieira et al.
55

 and Kim et al.
56

 showed that GA treatment led to 

enhancement of IL-10
 
and inhibition of IL-12 production in monocyte-derived DCs and 

blood monocytes which appeared to favor Th2 differentiation of naïve T cells.
56

 The term 

type 1 and type 2 APCs has been introduced to characterize the ability to polarize either 

Th1 or Th2 cells via IL-12 or IL-10 production, respectively. In line with the 

aforementioned studies in humans, Weber et al. showed in experimental animal models 

that GA-treatment promoted the development of type 2 APCs which directed 

differentiation of Th2 cells and regulatory T cells.
57

 Notably, adoptive transfer of GA-

induced type 2 APCs reversed EAE and suppressed pathogenic T cell development.
57

 

Burger et al. also reported that GA inhibits pro-inflammatory monocyte function by 

triggering the production of the secreted IL-1 receptor antagonist (sIL-1Ra).
58

 Although 
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not all of the abovementioned studies addressed DCs as such, they clearly extended the 

concept of GA’s mechanisms of action to include anti-inflammatory APC functions.  

The humanized monoclonal antibody natalizumab which prevents the interaction 

of the adhesion molecule very late activation antigen (VLA)–4 with its natural ligands, 

vascular cell adhesion molecule
 
1 (VCAM-1) and fibronectin, was designed to block 

trafficking of immune cells into the CNS. Indeed, the efficacy of natalizumab in MS is 

associated with a prolonged decrease of CSF leukocyte counts.
59

 A new study indicated 

that natalizumab treatment, in addition to its effect adaptive immune cells, markedly 

reduces the number of DCs in cerebral perivascular spaces suggesting that its mechanism 

of action involves inhibition of DC or DC-precursor recruitment into the CNS.
60
  

None of the approved MS therapeutics is as of yet a specific DC-directed therapy. 

However, a number of DC-based therapies have been tested in EAE and other animal 

models and a few of them are currently being investigated or are already approved in 

other human autoimmune diseases, such as rheumatoid arthritis.  

 

Emerging DC-targeting therapies 

DC-targeting therapies for autoimmune diseases aim at (i) inhibiting immunogenic DC 

functions or at (ii) supporting their tolerogenic potential (Figure 2). Most strategies 

involve the use of monoclonal antibodies (mAb) which target selective molecules 

expressed by DCs.  

 

Targeting cytokines produced by DCs 

DC cytokines stimulate and instruct T cells where to go and what to do. Upon maturation, 
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DCs produce an array of potent pro-inflammatory molecules, among them IL-1, IL-6, IL-

12, and TNF- (Figure 1). The so-called IL-1 family of cytokines, which is closely linked 

to innate immunity, include pro-inflammatory members such as IL-1, IL-1, IL-18, IL-

33 as well as molecules that that suppress inflammation such as IL-1 receptor antagonist 

(IL-1Ra) which competes with IL-1 for receptor binding.
61

 IL-1β is the most studied 

member of the IL-1 family because of its role in mediating autoinflammatory diseases. 

Mice deficient in IL-1 and IL-1 expression are resistant to EAE induction.
62

 IL-1 is 

abundantly expressed by infiltrating myeloid cells and local microglia in inflammatory 

MS lesions.
63

 Based on positive clinical trials, a recombinant version of IL-1Ra, anakinra, 

has recently been approved for treatment of patients with RA who do not responds to 

standard therapy. Similar to other biologics that block inflammatory key cytokines and 

pathways, the most important safety issues with anakinra are increased risks of serious 

infections and the occurrence of malignancies due to impaired immune function. So far, 

the safety and efficacy of anakinra or other compounds that target IL-1
61

 has not been 

evaluated in patients with MS. 

IL-6 belongs to a distinct family of proteins that are produced by innate immune 

cells and affect lymphocyte function. Mice deficient in IL-6 are resistant to EAE 

induction
64

 and susceptibility is regained by exogenous administration of IL-6.
65

 During 

EAE, IL-6 appears to shift the balance from regulatory to pathogenic effector T cells, 

thereby promoting disease pathology.
66

 Blocking IL-6 function is, therefore, a reasonable 

therapeutic strategy to limit T cell-mediated autoimmunity. Tocilizumab, a humanized 

monoclonal antibody that competes with IL-6 for receptor binding, was recently FDA-

approved for the treatment of RA. Similar to what has been noted in IL-1 targeting 
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studies, participants who took tocilizumab had a higher risk of serious infections 

compared to study participants who received placebo.
67

 To our knowledge, tocilizumab 

or any other molecule that specifically blocks IL-6 function has not been tested in MS 

yet. 

IL-12 and IL-23 are related heterodimeric cytokines that share a common subunit 

(p40) and have either p35 (IL-12) or p19 (IL-23) as a second subunit. As discussed 

above, IL-12 signaling directs Th1 differentiation, whereas IL-23 appears to be support 

the differentiation and maintenance of Th17 cells. Both IL-12/-23p40 and IL-23p19 have 

been detected in brain demyelinating MS lesions.
68,69

 Mice that are genetically deficient 

in IL12p40 and IL23p19 are resistant to EAE.
70,71

 Surprisingly, neutralization of the IL-

12/23p40 subunit by the monoclonal antibody ustekinumab – which is effective in 

patients with psoriasis, psoriatic arthritis, and in patients with Crohn's disease – failed to 

show any efficacy in patients with relapsing-remitting MS.
72

  An interpretation for this 

lack of efficacy is that the cytokine-mediated immunopathology observed in EAE models 

cannot be simply extrapolated to MS. Experience with two important T cell effector 

cytokines support of this hypothesis: IFN-γ is partially protective in EAE but its 

therapeutic use led to disease exacerbations in MS.
73

 TNF-α is thought to be pathogenic 

in EAE whereas TNF-α neutralization led to disease exacerbations in patients with MS.74
  

However, it can not be excluded that other factors such as poor CNS availability of the 

systemically administered antibody or the short study period (24 weeks) contributed to 

the negative results of the aforementioned clinical trial.
72

  

The discovery of cytokines that promote DC development and differentiation such 

as FLT3L, GM-CSF, and M-CSF accelerated DC research.
75

 GM-CSF
  
is produced by 
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tissue stromal cells, and by activated T cells
 
and NK cells and is, therefore, enriched at 

sites of inflammation.
76

 Although GM-CSF
 
is dispensable for steady-state DC 

development,
77

 it supports DC differentiation from monocyte progenitors during 

inflammation and infection.
28,29,76

 Recruitment of blood monocytes appear to sustain 

autoimmune tissue damage during EAE.
78

 Therefore, inhibition of inflammation-induced 

DC differentiation from monocytes through GM-CSF blockade might have a therapeutic 

merit in autoimmune diseases. This approach is currently under investigation in two 

phase II studies in patients with RA who receive antibodies to GM-CSF (MOR103 and 

KB003). Therapies that specifically target DC homeostasis and inflammation-induced 

DC generation have, so far, not been initiated in MS.  

 

Targeting costimulation provided by DCs 

During T cell recognition of peptide/MHC complexes presented by DCs, costimulatory 

molecules can provide positive signals that promote T cell activation or negative signals 

that inhibit T cell responses. The B7:CD28 superfamily, a TNF:TNFR subfamily that 

lack death domains, includes a number of well characterized T cell costimulatory 

molecules that regulate T cell activation and tolerance. Among them are the proteins B7-

1 (CD80) and B7-2 (CD86) that bind to CD28 on T cells and support T cell activation. 

Blockade of the B7:CD28 interaction by a fusion protein, called CTLA4-Ig, which binds 

to CD80 and CD86 is not only effective in limiting tissue inflammation in many 

preclinical models of autoimmune diseases but has also already been approved for the 

treatment of patients with rheumatoid arthritis (abatacept).
79,80

 A recent open-label phase 

I clinical trial found that intravenous infusions of CTLA4-Ig were well tolerated in 



Harnessing DCs To Treat MS  14 Comabella et al.  

patients with MS. Future studies will show whether B7:CD28 blockade as well as other 

and new costimulatory inhibitors, such as anti-CD40 and CD154 antagonists, will prove 

to be safe and effective in MS. 

 

Targeting tolerogenic DC functions 

DCs need to undergo terminal differentiation or maturation in order to coordinate 

protective immunity. Maturation is induced by a spectrum of environmental and 

endogenous stimuli, among them ligands for toll-like receptors and TNF-receptors such 

as CD40. In the steady state, i.e. in the absence of maturation stimuli, DCs can induce 

antigen unresponsiveness or T cell tolerance. In the first human study to test tolerogenic 

DC functions, application of immature DCs pulsed with an influenza matrix protein (MP) 

derived peptide led to a transient inhibition of preexisting MP-specific effector T cell 

functions and the appearance of MP-specific IL-10 producing cells which showed 

reduced IFN- production and lacked killer activity.
81

  

Experimental models of autoimmune CNS inflammation provided evidence that 

antigen-specific T cell tolerance can be induced by mucosal (oral) administration of 

myelin antigen,
82,83

 by altered peptide ligands (APLs) that interfere with the interaction of 

MHC/peptide complexes with encephalitogenic T cells
84,85

 or by administration of high 

doses of either myelin peptides or soluble MHC-myelin peptide complexes which 

primarily aim at eliminating or inactivating myelin-specific T cells.
86-88

 Based on these 

preclinical studies, ongoing trials are evaluating the safety, tolerability and efficacy of 

antigen-specific therapies in MS.
89,90

  In a small 24-month randomized controlled clinical 

trial in patients with primary and secondary progressive MS, the intravenous injection of 
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soluble myelin basic protein (MBP) peptide (MBP8298, dirucotide), administered 

without adjuvants, was well  tolerated and showed moderate effects on disease 

progression (as determined by changes in EDSS) in patients carrying MS-associated 

MHC haplotypes DR2 and/or DR4.
 91

 DNA vaccination is a different approach to achieve 

antigen-specific tolerance.
92,93

 In a randomized controlled phase I/II trial, intramuscular 

administration of a DNA vaccine encoding full-length human MBP (BHT-3009) in 

patients with relapsing-remitting and secondary-progressive MS was well tolerated, led to 

a decrease in proliferation and IFN- production of myelin-reactive CD4
+
 T cells and 

provided favorable trends on brain MRI metrics.
94

 Larger phase II and phase III clinical 

trials have now been initiated to test the effect of soluble MBP peptide administration and 

MBP DNA vaccination in patients with relapsing-remitting and secondary progressive 

MS. A third strategy that is currently pursued is to re-infuse peripheral blood 

lymphocytes that have been chemically coupled with multiple peptides from supposedly 

immunodominant myelin antigens.
95

 Preclinical experiments in EAE models have shown 

that the latter approach can prevent disease onset and ameliorate disease progression
96-99

 

and an open label phase I trial that tests the safety and efficacy of this strategy in patients 

with relapsing-remitting MS has recently been initiated.
90

 

We hypothesize that the mechanisms of the aforementioned approaches involve 

DCs that are specialized to take up the externally administered myelin peptides or protein 

for antigen specific tolerance induction. In preclinical models, the administration of 

incompletely matured DCs loaded with myelin peptide can suppress EAE 

development.
100

 Notably, targeting of antigens to DCs via antigen coupling to antibodies 

against specific uptake receptors such as the decalectin DEC-205 increases the efficacy 
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by which antigens are delivered to the immune system by more than 100-fold.
101-104

 DC-

targeting leads to either antigen-specific tolerance induction or immunity depending on 

the maturation state of the antigen-presenting DCs.
105-107

 Hawiger et al. showed that mice 

pre-injected with a monoclonal antibody to DEC-205, coupled with the encephalitogenic 

MOG35-55 peptide were completely resistant to EAE development induced by subsequent 

MOG35-55 immunization.
108

 Similar targeting strategies were also developed for the 

macrophage mannose receptor,
109

 DC-SIGN,
110

 DCIRs,
21,111

 DNGR-1,
112

 DCAR1,
113

 

BDCA-2
114

 among others. The mechanisms that confer T cell tolerance in these animal 

models are diverse and involve deletion of T cells,
115

 antigen-unresponsiveness
105,108

 

and/or the generation of regulatory T cells.
107,116

   

One potential obstacle in translating these tolerization paradigms into the clinic is 

that patients with MS show increased frequencies of myeloid DCs expressing co-

stimulatory, T cell activating, molecules, presumably due to DC maturation by chronic 

autoimmune inflammation,
44-46

 where antigen targeted to DCs, even in the absence of 

adjuvants, could elicit unwanted and potentially deleterious T cell effector responses. In 

proof-of-concept studies for antigen-specific tolerization therapies in MS, during which 

patients received an altered peptide ligand (APL) based on the amino acid sequence of 

MBP83-99,
117,118

 some patients experienced unexpected disease exacerbations which could 

be linked with unforeseen immunogenic in vivo effects of this APL.
118

 Limiting the 

immunogenic potential of DCs by blocking the production or signaling of pro-

inflammatory cytokines such as IL-6 might reduce the risk of triggering pathogenic T cell 

responses by antigen-specific therapies.
64

 An alternative approach is to support 

tolerogenic DC functions in an antigen-unspecific way, e.g. through inhibition of DC 
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maturation.
119-121

 Small molecule inhibitors of signaling molecules involved in DC 

maturation such as the Janus kinase 3 (Jak3) and the spleen tyrosine kinase (Syk)
122,123

 

are currently under investigation in patients with RA and psoriasis.
124,125

  

 

Concluding remarks 

DCs are central in inducing immunity and in regulating immune tolerance. In 

experimental models of autoimmune diseases including EAE, DCs induce and maintain  

pathogenic effector T cell functions. Whether DCs initiate adaptive autoimmunity in MS 

or whether these cells contribute to disease progression at later stages is unknown. 

Nonetheless, their powerful biological function makes them key targets for 

immunotherapeutic approaches. Emerging therapies aim at inhibiting immunogenic DC 

functions through blockade of pro-inflammatory cytokine production and T cell 

costimulatory pathways. Novel approaches aim at regulating DC development and 

differentiation and harness the tolerogenic capacity of DCs. Much has yet to be learned 

about the function of DC subsets and their T cell mobilizing potential in intact human 

lymphoid tissue and during chronic inflammation, as seen in MS. Nonetheless, the tools 

to harness DC functions in order to prevent or to limit autoimmune CNS inflammation 

are available and will likely become more specific and effective in the near future. These 

tools will allow us to address whether DC-targeting strategies either alone or in 

combination with established therapies will improve our ability to efficiently limit 

disease activity and progression in patients with MS.   
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Box 1: Dendritic Cell Subsets  

Dendritic cells (DCs) initiate cell-extrinsic immune responses in higher eukaryotes.
126 

They sense pathogen invasion and excessive cell death via pathogen associated molecular 

pattern (PAMP) receptors, process antigens for presentation on major histocompatibility 

complex (MHC) molecules to T cells and communicate information about the conditions, 

under which they have encountered the antigen, to innate and adaptive lymphocytes in 

secondary lymphoid tissues.
127,128

 The DC lineage of both mouse and man is, however, 

composed of at least four distinct subsets. These are plasmacytoid, migratory myeloid, 

secondary lymphoid tissue resident myeloid and inflammatory DCs.
126

  Plasmacytoid DC 

are the main type I interferon producing cells during immune responses.
129

 Inflammatory 

DCs develop from monocytes at sites of inflammation.
130

 Migratory DCs transfer antigen 

from the periphery to secondary lymphoid tissues and communicate to lymphocytes the 

conditions, under which they have encountered the antigen via cytokines and co-

stimulatory molecules, whose up-regulation, together with enhanced antigen processing 

and MHC presentation, is collectively called maturation.
126

 Prototypic migratory DCs are 

Langerhans cells of the epidermis. Resident DCs in secondary lymphoid organs are 

similar to migratory DCs, but might differ in MHC class I versus MHC class II antigen 

presentation from them.
131

 It has been proposed that migratory DCs present antigens 

preferentially via MHC class II molecules for CD4
+
 T cell stimulation, whereas resident 

DCs more efficiently cross-present antigens in secondary lymphoid tissues on MHC class 

I molecules to CD8
+
 T cells after CD40/CD40L mediated maturation by activated CD4

+
 

T cells. In mice these efficiently cross-presenting DCs can be identified by their CD8 

expression, whereas in humans the BDCA3
+
 DC subset has been proposed for this 
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function.
132

 Therefore, it is important to keep in mind that autoantigens could be 

presented with different efficacy by distinct DC subsets for autoreactive CD4
+
 and CD8

+
 

T cell stimulation during MS, and that any tolerizing strategies might have to target the 

respective subsets to modulate CD4
+
 or CD8

+
 T cell mediated autoimmunity.  
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Figure legends. 

 

Figure 1: Dendritic cells stimulate and instruct T cells where to go and what to do. 

Following thymic selection, naïve T cells recognize their antigen in the context of MHC 

molecules presented by DCs. In the steady state, i.e. in the absence of inflammation, DCs 

can induce tolerance when they captures elf and environmental antigens. Mechanisms 

that confer T cell tolerance are diverse and include T cell deletion as well as well as the 

generation of regulatory T cells. Upon infection or other causes of DC maturation, DCs 

enhance their antigen processing and presenting capacities and upregulate cytokines and 

co-stimulatory molecules. Mature DCs can induce different types of CD4
+
 T cells, such 

as Th1, Th2, and Th17. In addition to these interactions with T cells in lymphoid organs, 

DCs activate innate immune cells, which can further assist in the differentiation of T 

helper cell subsets. 

 

Figure 2: DC-targeting therapies. DC-targeting therapies for autoimmune diseases 

including MS aim at (i) supporting the tolerogenic potential of DCs, e.g. through 

targeting of disease relevant antigens to antigen-uptake receptors such as DEC-205, by 

(ii) inhibiting DC development through blockade of DC-differentiating cytokines. 

Alternative strategies aim at (iii) limiting immunogenic DC functions such as production 

of inflammatory and T cell instructing cytokines or at (iv) reducing costimulatory signals 

required for effector T cell generation and activation. Most strategies involve the use of 

monoclonal antibodies (mAb) which target selective molecules expressed by DCs.  
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Key points 

• Dendritic cells (DCs) are central in inducing immunity and in regulating immune 

tolerance.  

• DC-targeting therapies for autoimmune diseases aim at inhibiting immunogenic 

DC functions or at supporting their tolerogenic potential. Most strategies involve the use 

of monoclonal antibodies which target selective molecules expressed by DCs.  

 The DC lineage of both mouse and man is composed of at least four distinct 

subsets. The function of these subsets and their T cell mobilizing potential in intact 

human lymphoid tissue and during chronic inflammation, as seen in MS, is still 

incompletely understood.  

• A number of DC-based therapies have been tested in EAE and other animal 

models and a few of them are currently being investigated or are already approved in 

other human autoimmune diseases, such as rheumatoid arthritis.  
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Review criteria 

The PubMed database was searched for papers published up to May 2010 using the terms 

"multiple sclerosis dendritic cells", "multiple sclerosis treatment", "autoimmune dendritic 

cells". Articles were also identified through searches of the authors' files.  
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Box 1: Dendritic cell subsets in MHC class I versus class II antigen presentation 

Dendritic cells (DCs) initiate cell-extrinsic immune responses in higher eukaryotes 1. They 

sense pathogen invasion and excessive cell death via pathogen associated molecular 

pattern (PAMP) receptors, process antigens for presentation on major histocompatibility 

complex (MHC) molecules to T cells and communicate information about the conditions, 

under which they have encountered the antigen, to innate and adaptive lymphocytes in 

secondary lymphoid tissues 2-3. The dendritic cell lineage of both mouse and man is, 

however, composed of at least four distinct subsets. These are plasmacytoid, migratory 

myeloid, secondary lymphoid tissue resident myeloid and inflammatory DCs 1.  Plasmacytoid 

DC are the main type I interferon producing cells during immune responses 4. Inflammatory 

DCs develop from monocytes at sites of inflammation 5. Migratory DCs transfer antigen from 

the periphery to secondary lymphoid tissues and communicate to lymphocytes the 

conditions, under which they have encountered the antigen via cytokines and co-stimulatory 

molecules, whose up-regulation, together with enhanced antigen processing and MHC 

presentation, is collectively called maturation 1. Prototypic migratory DCs are Langerhans 

cells of the epidermis. Resident DCs in secondary lymphoid organs are similar to migratory 

DCs, but might differ in MHC class I versus MHC class II antigen presentation from them 6. It 

has been proposed that migratory DCs present antigens preferentially via MHC class II 

molecules for CD4+ T cell stimulation, whereas resident DCs more efficiently cross-present 

antigens in secondary lymphoid tissues on MHC class I molecules to CD8+ T cells after 

CD40/CD40L mediated maturation by activated CD4+ T cells. In mice these efficiently cross-

presenting DCs can be identified by their CD8 expression, whereas in humans the BDCA3+ 

DC subset has been proposed for this function 7. Therefore, it is important to keep in mind 

that autoantigens could be presented with different efficacy by distinct DC subsets for 

autoreactive CD4+ and CD8+ T cell stimulation during MS, and that any tolerizing strategies 

might have to target the respective subsets to modulate CD4+ or CD8+ T cell mediated 

autoimmunity.  
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