
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Tomoya Yokota,
Shizuoka Cancer Center, Japan

REVIEWED BY

Ichiro Ota,
Kindai University Nara Hospital, Japan
Masahiro Nakayama,
University of Tsukuba, Japan

*CORRESPONDENCE

Yingying Jiang
jiangyy@wfmc.edu.cn
Min Ruan
doctorruanmin@sjtu.edu.cn
Nannan Han
hannannan111@126.com

†These authors have contributed equally
to this work and share first authorship

SPECIALTY SECTION

This article was submitted to
Head and Neck Cancer,
a section of the journal
Frontiers in Oncology

RECEIVED 30 August 2022

ACCEPTED 05 October 2022
PUBLISHED 21 October 2022

CITATION

Lei H, He A, Jiang Y, Ruan M and
Han N (2022) Targeting DNA damage
response as a potential therapeutic
strategy for head and neck
squamous cell carcinoma.
Front. Oncol. 12:1031944.
doi: 10.3389/fonc.2022.1031944

COPYRIGHT

© 2022 Lei, He, Jiang, Ruan and Han.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Review
PUBLISHED 21 October 2022

DOI 10.3389/fonc.2022.1031944
Targeting DNA damage
response as a potential
therapeutic strategy for
head and neck squamous
cell carcinoma

Huimin Lei1†, Ading He1†, Yingying Jiang1*, Min Ruan1,2,3*

and Nannan Han2,3*

1School of Stomatology, Weifang Medical University, Weifang, China, 2Department of Oral
Maxillofacio-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology,
Shanghai Jiao Tong University School of Medicine, Shanghai, China, 3Shanghai Key Laboratory of
Stomatology, Shanghai Research Institute of Stomatology, National Center for Stomatology,
National Clinical Research Center for Oral Diseases, Shanghai, China
Cells experience both endogenous and exogenous DNA damage daily. To

maintain genome integrity and suppress tumorigenesis, individuals have

evolutionarily acquired a series of repair functions, termed DNA damage

response (DDR), to repair DNA damage and ensure the accurate transmission

of genetic information. Defects in DNA damage repair pathways may lead to

various diseases, including tumors. Accumulating evidence suggests that

alterations in DDR-related genes, such as somatic or germline mutations,

single nucleotide polymorphisms (SNPs), and promoter methylation, are

closely related to the occurrence, development, and treatment of head and

neck squamous cell carcinoma (HNSCC). Despite recent advances in surgery

combined with radiotherapy, chemotherapy, or immunotherapy, there has

been no substantial improvement in the survival rate of patients with HNSCC.

Therefore, targeting DNA repair pathways may be a promising treatment for

HNSCC. In this review, we summarized the sources of DNA damage and DNA

damage repair pathways. Further, the role of DNA damage repair pathways in

the development of HNSCC and the application of small molecule inhibitors

targeting these pathways in the treatment of HNSCC were focused.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is the

sixth most common cancer worldwide, with approximately

650,000 new cases and 350,000 deaths each year (1). Oral

squamous cell carcinoma (OSCC) is the most common

malignant type of HNSCC (2). Major risk factors for HNSCC

include tobacco use, excessive alcohol consumption, and human

papillomavirus (HPV) infection (3–5). For patients with HPV-

related HNSCC, the prognosis is favorable, with an overall

survival (OS) rate of 95%-80% at 2-5 years (6). However, the

prognosis of patients with non-HPV and smoking-related

HNSCC remains poor, with a five-year survival rate of only

approximately 50% (7). Current standard treatment options for

HNSCC include surgery, chemotherapy, and radiation therapy,

but recurrence rates are high, and about half of all HNSCC

patients experience recurrence (8). Thus, the exploration of

novel and effective therapies to improve the prognosis and

survival of patients with HNSCC is warranted.

It is known that DNA damage and abnormal DNA damage

response (DDR)may harm the integrity and stability of the whole

genome and contribute to various diseases such as cancer (9). To

maintain genome integrity and suppress tumorigenesis,

individuals have acquired a series of repair functions, termed

the DDR, during evolution to repair DNA damage and ensure the

accurate transmission of genetic information. DDR is a complex

kinase-based signaling pathway that senses, transduces, and

responds appropriately to DNA damage to maintain genomic

stability (10). Mutations in any component of DDR are

considered to be related to the initiation and progression of as

breast cancer (11), ovarian cancer (12), prostate cancer (13),

colorectal cancer (14) and HNSCC (15), which have been

previously reported. Therefore, targeting the DDR pathway may

be a novel therapeutic approach for HNSCC treatment. This

paper comprehensively reviewed the various reported sources of

DNA damage and associated repair pathways in HNSCC and

drugs targeting the abnormal DNA damage response pathway.
DNA damage repair pathway

It is estimated that cells experience thousands of DNA

damage events daily, which can be divided into two broad

categories based on their origin: endogenous and exogenous

(16, 17). Most endogenous DNA damage arises from the

hydrolysis and oxidation of chemically active DNA with water

and naturally occurring intracellular reactive oxygen species

(ROS) (18, 19). On the other hand, exogenous DNA damage is

caused by environmental, physical, and chemical agents such as

ultraviolet (UV) and ionizing radiation (IR), alkylating agents,
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and crosslinking agents (16). These agents can induce different

types of DNA damage, such as abasic sites, mismatches,

interstrand crosslinks, or single- and double-stranded breaks

(19). The most harmful lesions and the most serious threat to

cells are double-strand breaks (DSBs). If repaired ineffectively or

incorrectly, DSBs can lead to carcinogenesis or cell death (20).

Different types of DNA damage are identified and repaired by the

corresponding DDR pathways, and these repair processes are key

to maintaining the genetic stability of the cells.

DDR pathways include mismatch repair (MMR), base excision

repair (BER), nucleotide excision repair (NER), homologous

recombination (HR), and non-homologous terminal link (NHEJ)

repair (21). A few specific lesions can also be removed using direct

reversal repair (DR) pathways and interstrand crosslink (ICL)

repair (16). These repair processes are key to maintaining the

genetic stability of cells (22).We summarized theDNAdamage and

main DDR pathways and some associated proteins in Figure 1. The

BER pathway repairs base lesions caused by oxidation,

deamination, and alkylation (23). NER mainly removes bulky

DNA adducts induced by UV radiation or chemotherapeutic

drugs (24). The MMR system is responsible for correcting base-

base mismatches and insertion or deletion mismatches generated

during DNA replication (25). DSBs are the most severe type of

DNA damage and can be repaired by HR, NHEJ, or both repair

pathways (26). The HR pathway facilitates highly accurate DSB

repair by utilizing homologous DNA sequences on the sister

chromatid as a replication template during repair, while the

NHEJ pathway does not require a homologous template and is

highly efficient but intrinsically error-prone (18). ICL repair

involves a complex interplay between multiple DNA repair

pathways, including NER, HR, Fanconi anemia (FA), and

translesion DNA synthesis (TLS) (27).

DDR involves the detection of DNA damage, activation of cell

cycle checkpoints, induction and recruitment of repair factors to the

damage sites, and the subsequent repair of the damage. Effective

damage repair results in cell cycle resumption, whereas improper

repair or damage beyond repair results in permanent cell cycle

arrest (senescence) or programmed cell death (apoptosis). Failure

to efficiently repair DNA damage can causemutations and genome

instability that drive cancer (19). Defective DDR pathways are a

common characteristic of cancer. Alterations in DDR-related

genes, such as somatic or germline mutations, single nucleotide

polymorphisms(SNPs) and promoter methylation of key genes,

and other epigenetic alterations, are closely related to the

occurrence and development of cancer (17). Understanding the

internal mechanism and correlations between DDR pathway

alterations and cancer can improve the efficacy of anti-tumor

therapy and play a role in prediction and prognosis.

In this review, we discuss recent progress in the research area

of targeted DDR pathways for HNSCC.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1031944
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lei et al. 10.3389/fonc.2022.1031944
DNA damage repair in HNSCC

It has been shown that germline and somatic alterations in

DNA repair genes are associated with different susceptibility and

prognosis in patients with HNSCC. In a retrospective study of 170

patients with HNSCC, BRCA2 and ARID1A were found to be the

two DDR genes with the highest mutation rates, with 17.6% of

patients havingmutations in these two genes, followed byATMand

BRCA1 with 13.5% and 10% mutations, respectively (28). In

addition, a recent circulating tumor (ctDNA) sequencing study of

75 patients with HNSCC found that the five most commonly

altered geneswere TP53, CDKN2A,TERT, BRCA2, andNOTCH1,

and that 38.8% of patients had alterations in DNA repair genes

(APC, ATM, BRCA1, or BRCA2) (29). For the first time, ctDNA

alterations in TP53 and DNA repair genes were shown to be

significantly associated with poor prognosis in HNSCC (29).

Another whole-exome sequencing study of 45 patients with

oral and oropharyngeal cancer found that FANCG, CDKN2A,

and TPP germline variants were strongly associated withHNSCC

risk (30). At least one germline variation in DNA repair pathway

genes was detected in 67% of patients (30). This study found that

young adults with germline variants of the DNA repair gene had

an increased risk of HNSCC susceptibility, while patients with
Frontiers in Oncology 03
germline variants of the DNA repair gene also had a higher five-

year survival rate (30). Moreover, a high frequency of somatic

alterations in TP53, CDKN2A, FAT1, and PIK3CA was

confirmed in 521 patients with TCGA-HNSCC (30). TP53 has

a central node in the interaction network between somatic and

germline mutant genes (30). In addition, several significantly

altered genomic features were found in OSCC patients with

lymph node metastasis (LNM) compared with patients without

LNM, including hotspot somatic mutations in TP53 and CASP8,

rare nonsilent germline mutations in BRCA2 and FAT1,

mutations in mitotic G2/M and NHEJ pathways, recurrent

deletions of DNA repair genes by homologous recombination,

and chromosomal instability (31). Furthermore, these

characteristic changes were of high predictive value for LN

metastasis, and LN+ patients with mutations in the NHEJ

pathway had longer disease-free survival (31).

Abnormal expression of DDR-related genes is associated with

the development, progression and treatment response of HNSCC

(Table 1). In a study of 70 HNSCC patients and 46 healthy controls

(HC), DDR-related parameters were disrupted inHNSCC patients.

NER) (ERCC1, ERCC2/XPD, XPA, and XPC) and BER (APEX1,

XRCC1) genes were downregulated in patients with HNSCC

compared with the HC, whereas double-strand break repair
FIGURE 1

DNA damage and main DNA repair pathway and some associated protein.
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(MRE11A, RAD50, RAD51, XRCC2) and mismatch repair

(MLH1, MSH2, MSH3) genes were up-regulated (15). A study of

NER gene expression levels in the peripheral blood lymphocytes of

483 subjects (251 HNSCC patients and 232 HC) found that XPA

and XPB expression levels in HNSCC patients were significantly

lower than those in the controls, and lower XPB gene expression

levels were associated with an increased risk of HNSCC (35). In a

study of 349 newly diagnosedHNSCC patients and 295 cancer-free

controls, ERCC3 and XPA expression levels were significantly

reduced in HNSCC patients compared with controls (36).

Further analysis revealed a dose-dependent relationship between

the increased risk of HNSCC and low ERCC3 and XPA expression
Frontiers in Oncology 04
levels (36). Further studies have shown that a lower NER capacity is

associated with longer progression-free survival (15). A study of

NER core proteins (ERCC1, XPF, and XPA) in 453 HNSCC

patients found that high expression of ERCC1 and XPA was

associated with poor OS in patients with OSCC, which may be

related to chemotherapy resistance (32). However, in

oropharyngeal SCC, high XPA expression was associated with a

significantly better OS (32). Studies have showed that

oropharyngeal SCCa patients with high ERCC1 expression may

have better outcomes, independent of HPV status (49). However, it

has also been reported that ERCC1 expression is not associatedwith

the prognosis of oropharyngeal/oral SCCHN (50). In addition,
TABLE 1 DDR pathway alterations in HNSCC.

DNA damage
pathway

Genes/
proteins

Alternation in HNSCC
(expression)

Prognosis References

NER ERCC1 low related to longer progression-free survival in HNSCC (15)

high related to poor OS in patients with OSCC (32)

related to enhanced chemotherapy response induced by 5-FU/cisplatin in
HNSCC

(33)

related to cisplatin resistance and poor prognosis of HNSCC (34)

XPB low related to an increased risk of HNSCC (35, 36)

XPA low related to an increased risk of HNSCC (36)

related to longer progression-free survival in HNSCC (15)

high related to poor OS in patients with OSCC (32)

related to a significantly better OS in oropharyngeal SCC (32)

BER APEX1 high related to an increased risk of HNSCC and positive lymph metastasis in the
Pakistani population

(37)

XRCC1 high related to better clinical staging of OTSCC and negative lymph node
metastasis

(38)

MMR MLH1 high related to increased risk of OSCC, especially in patients with comorbidities (39)

low related to reduced DNA repair capacity and the development of malignant
lesions

(40)

related to smoking-induced methylation in smokers at risk for cancer (41)

MLH2 high related to increased risk of OSCC, especially in patients with comorbidities (39)

low related to reduced DNA repair capacity and the development of malignant
lesions

(40)

related to smoking-induced methylation in smokers at risk for cancer (41)

MSH3 low related to reduced DNA repair capacity and the development of malignant
lesions

(40)

related to smoking-induced methylation in smokers at risk for cancer (41)

HR MRE11A high related to tumor acquisition and progression and/or induce drug-resistant
phenotypes

(15)

related to reduced overall survival and progression-free survival (42)

RAD51 high related to tumor acquisition and progression and/or induce drug-resistant
phenotypes

(15)

related to the occurrence, development and recurrence of OSCC, indicating
a poor prognosis

(43)

BRCA1 low related to decreased OS and poor prognosis in HNSCC patients (44, 45)

NHEJ ku70/ku80 high related to reduced OS of OSCC patients (46)

related to higher local recurrence rates after radiotherapy in HNSCC
patients

(47)

DNA-
PKcs

low related to increased therapeutic sensitivity to cisplatin and radiotherapy in
oropharyngeal SCC

(48)
fr
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polymorphisms of NER core genes (XPC, XPD and XPG) have

been shown to be associated with the recurrence of SCCOP (51).

The relationship between the expression of NER related genes and

the prognosis of oropharyngeal carcinoma needs to be further

studied. The differential expression of NER core protein in the head

and neck subsites affects the OS of patients, which is of great

significance for overcoming chemotherapy resistance in the

HNSCC subtype (32). Moreover, studies have reported that high

ERCC1 expression is significantly associated with enhanced

chemotherapy response induced by 5-FU and cisplatin,

suggesting that ERCC1 expression can be used as a biomarker to

predict the efficacy of 5-FU and cisplatin chemotherapy for

HNSCC (33). Conversely, another study showed that high

ERCC1 expression was associated with cisplatin resistance and

poor prognosis, while low ERCC1 expression was more sensitive to

cisplatin in HNSCC (34). Meanwhile, previous studies have shown

that the expression of NER protein (ERCC1, ERCC2) may be

sensitive prognostic indicators of radiochemotherapy for locally

advancedHNSCC (52–54). In addition, polymorphisms of ERCC1,

ERCC2(XPD), XPA and XPC have been found to be associated

with radiotherapy efficacy in a variety of tumors, including

HNSCC, and may be important predictors of clinical outcomes

in patients treated with radiotherapy (55–60). Studies have found

that the expression of NER related genes and single nucleotide

polymorphisms (SNPs) may also influence the severity of

radiation-related side effects in patients (61–64). Thus, NER

proteins is not only closely related to the occurrence of tumors,

but it also is a predictor for the efficacy of radiotherapy and

prognosis of tumors. In oral tongue squamous cell carcinoma

(OTSCC), the expression of the proteins APE-1 and XRCC-1

(involved in BER) was found to have increased, and XRCC-1

expression was correlated with better clinical staging of OTSCC

and negative lymph node metastasis (38). This suggests that this

proteinmay play a protective role (38). In addition, previous studies

have shown thatAPEX1 expression levels inHNC tumor tissues are

significantly higher than those in normal tissues, and that high

APEX1 expression is associated with an increased risk of HNC in

the Pakistani population (37). The proteins MLH1 and MSH2

(involved in MMR) are overexpressed in oral leukoplakia with

dysplasia and OSCC, especially in patients with comorbidities (39).

In contrast, other studies have shown that the expression of MMR

repair-associated genes MLH1, MSH2, MLH3, and PMS2 is

decreased in OSCC (40). Low expression of these genes is

associated with reduced DNA repair capacity and development

of malignant lesions (40). Additionally, previous studies have

reported that reduced expression of these genes is correlated with

smoking-induced methylation in smokers at risk of cancer (41).

DSBs are mainly repaired by the HR and NHEJ pathways. High

expression of DSB repair-related genes (MRE11A, Rad50, RAD51,

and XRCC2) in HNSCC patients may contribute to tumor

acquisition and progression or induce drug-resistant phenotypes

(15). A recent study also showed that high RAD51 expression was

associated with the occurrence, development, and recurrence of
Frontiers in Oncology 05
OSCC, indicating a poor prognosis (43). Moreover, studies have

shown that ATM and BRCA1 (both involved in HR) are lowly

expressed in HNSCC and that low expression of both is associated

with decreasedOS and poor prognosis in HNSCC patients (44, 45).

Mre11 (part of the MRN complex) is essential for DSB repair in

normal cells. Studies have shown that the expression of Mre11 in

oral cancer tissues is significantly higher than that in adjacent non-

cancerous oral tissues and that oral cancers with high MRE11

expression have reduced OS and progression-free survival (42). In

addition, the mediator of DNA damage checkpoint protein 1

(MDC1) is associated with the recruitment of DNA damage

repair proteins to the site of DSBs (65). Clinical studies have

shown that in OSCC (100 patients), nuclear and cytoplasmic

MDC1 protein expression levels were 85% and 92%, respectively.

Strong nuclear expression of MDC1 was significantly associated

with lymph node metastasis and reduced relapse-free survival

(RFS) in patients with OSCC. By contrast, patients with weak

nuclear MDC1 expression benefited significantly from radiation

therapy after surgery (66). Therefore, high expression of MDC1

correlates with the aggressiveness of OSCC and can serve as an

important prognostic indicator for OSCC patients (66). The

expression level of KU70/80, a protein involved in the NHEJ

repair pathway, was higher in OSCC tissues than in normal

tissues, and its high expression was associated with shorter OS of

patients (46). In addition, Ku80 expression levels were associated

with higher local recurrence rates after radiotherapy in patients,

suggesting that Ku80 may be a potential prognostic biomarker for

HNSCC patients (47). The expression of DNA-PKcs in HPV-

positive oropharyngeal squamous cell carcinoma tissues was

significantly lower than that in HPV-negative oropharyngeal

squamous cell carcinoma tissues, and the expression of DNA-

PKcs negatively correlated with the expression of HPV E6 and E7

(48). DNA-PKcs knockdown leads to an increased sensitivity of

tumor cells to cisplatin and radiotherapy, and reduces cell

migration and invasion (48).

SNPs in several DDR and DNA repair-related genes have

been reported to be associated with an increased risk of HNSCC

(Table 2), including ERCC1 (67), ERCC2/XPD (67–70), XPC

(71, 72) and XPG (69) (involved in NER), APEX1 (73) and

XRCC1 (74–76)(involved in BER), MLH1 (77), MSH2 (77, 78),

MSH3 (77, 79) and EXO1 (77, 80) (involved in MMR), XRCC3

(70, 76, 81, 83, 84) and RAD51 (81–84, 90) (involved in HR),

Ku70 (85)/80 (86, 87), XRCC4 (88, 89) and Lig4 (83)(involved in

HR). Studies on these gene polymorphisms have potential

benefits in identifying predictive biomarkers for the risk of

HNSCC and provide useful evidence for the early detection of

HNSCC. However, comprehensive functional investigations of

DDR-related gene SNPs are still lacking. Therefore, further

research on SNPs and risk alleles is required.

Additionally, epigenetic alterations have been reported to be

closely related to the development and progression of cancer. A

meta-analysis has suggested that hypermethylation of the MLH1

promoter is associated with HNSCC. Thus, methylated MLH1
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could be a potential diagnostic biomarker for HNSCC (91). One

study showed that epigenetic silencing of O6-methylguanine-

DNA methyltransferase (MGMT, involved in the DR pathway)

DNA repair enzyme through promoter hypermethylation

(HmMGMT) may increase TP53 oncosuppressor gene

mutations, thereby promoting HNSCC (92). In addition,

patients with both hmMGMT and destructive TP53-mutations

may have a poor prognosis (92). Hypermethylation of the DNA

glycosylase NEi endonuclease VIII-like 1 (NEIL1) promoter has

been demonstrated in HNSCC, with increased methylation

levels in tumors compared to matched non-tumor cells. DNA

methylation contributes to the downregulation of NEIL1, which

is involved in the BER repair pathway, thereby increasing the

sensitivity of HNSCC to chemotherapy or radiotherapy (93).

Another study reported that methylation loss at the three-prime

repair exonuclease 2 (TREX2) locus was observed in laryngeal

cancer, and that low TREX2 DNA methylation was associated

with elevated TREX2 expression and prolonged OS in laryngeal

cancer (94).
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In summary, these data show that DNA damage and aberrant

DDR play an important role in the occurrence, development,

treatment response, and prognosis of HNSCC (95).
New therapeutic approaches
targeting the DDR pathway in
HNSCC

PARP inhibitors

PARPs are a group of enzymes that utilize beta nicotinamide

adenine dinucleotide (b-NAD+) to covalently add Poly

(ADPribose) (PAR) chains onto target proteins, a process

known as PARylation (96). The most studied and best

understood is PARP1, which is the first member of the poly

ADP-ribosyl polymerase (PARP) superfamily (97). PARP1 plays

an important role in DNA damage repair and the maintenance
TABLE 2 SNPs and DDR related genes mutations in HNSCC.

Pathway Gene Polymorphism Significance Reference

NER ERCC1 rs11615 reduced risk (67)

XPD/ERCC2 rs1799793 increased risk (68)

rs13181 increased risk (68)

reduced risk (67, 69, 70)

XPG rs17655 increased risk (69)

XPC rs2228001 increased risk (71)

PAT increased risk (72)

Ala499Val increased risk (72)

BER APEX1 Asp148Glu increased risk (73)

XRCC1 Arg399Gln increased risk (74–76)

Arg194Trp increased risk (74)

MMR MLH1 rs1800734 increased risk (77)

MSH2 rs2303426 increased risk (77)

gIVS12-6C reduced risk (78)

MSH3 rs26279 increased risk (77)

rs12515548 increased risk (79)

EXO1 rs1047840 increased risk (77, 80)

HR RAD51 G135C increased risk (81, 82)

rs1801320 reduced risk (83)

rs5030789 reduced risk (84)

rs1801321 reduced risk (84)

XRCC3 rs3212057 increased risk (84)

rs861539/Thr241 Met increased risk (70, 81, 83)

NHEJ Ku70 rs5751129 increased risk (85)

Ku80 A2790G increased risk (86)

rs828907 increased risk (87)

XRCC4 rs28360071 increased risk (88)

rs3734091 increased risk (89)

Lig4 rs1805388 reduced risk (83)
fro
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of genome integrity (98). It binds to nuclear DNA single-strand

break (SSB) and recruits a number of different DNA repair

proteins, such as x-ray repair cross complimenting protein 1

(XRCC1), to repair the SSB (99). PARP1 is also involved in

several other forms of DNA repair, including BER, NER, HR,

NHEJ, and mismatch repair (99). Hence, inhibition of PARP1

and the related enzyme PARP2 could be a better therapeutic

approach to target specific DNA repair pathways in cancer

(100). Actually, PARP inhibitors have proven significant

clinical benefits in a variety of solid tumors, including HNSCC

(95, 101). Several PARP inhibitors, including olaparib, have been

approved by the FDA for the treatment of cancers, including

breast, ovarian, prostate and pancreatic cancers. Thus, we

summarizes the application of DDR inhibitors in pre-clinical

or reported clinical therapies combination with other anticancer

therapies for HNSCC (Table 3). Moreover, the relevant

registered clinical trials of DDR inhibitors, alone or combined

with other therapies in HNSCC, are summarized in Table 4.

Olaparib
One study showed that the PARP inhibitor olaparib

enhanced the apoptotic potential of curcumin by increasing

DNA damage in oral cancer cells through inhibition of the BER

cascade (100). The combination of the PARP inhibitor olaparib

and radiotherapy enhances the radiosensitivity of OPSCC cells,

particularly HPV-negative OPSCC cells (102). Similarly, studies

have shown that the combination of the PARP inhibitor olaparib

and DNA-PK inhibitor NU7441 with IR enhances HPV-

negative HNSCC inhibition in both cell cultures and mice

(103). In addition, the combination of the PARP inhibitor

olaparib and Wee1/Chk1 inhibitor is a highly effective

approach for radiosensitization of HPV-positive HNSCC cells

(104). Olaparib alone or in combination with radiotherapy

caused more DNA damage-associated cell death and reduced

proliferation of SMAD4 deficient HNSCC cells (106). In

addition, further phase I clinical trials have shown that

olaparib in combination with radiotherapy enhances the

therapeutic response of HNSCCs (106). A phase I trial

demonstrated that olaparib combined with cetuximab and

radiotherapy was well tolerated with reduced dermatitis within

the radiation field in patients with locally advanced HNSCC with

high-risk smoking-related tumors (107). Furthermore, phase 1

trials assessing the safety and tolerability of olaparib in

combination with cisplatin and radiotherapy treatment

regimens showed that the addition of olaparib improved the

therapeutic effect and minimized treatment-associated toxicity

to normal tissues (108). Inhibition of PARP, using olaparib

or veliparib, partially reversed the resistance caused by cisplatin

and 5-FU treatment, and the combination of PARP inhibitors

and cisplatin and 5-FU significantly sensitized the tumor

response (105).
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Veliparib
Additional studies have shown that the PARP inhibitor

veliparib (ABT-888) enhances the anti-angiogenic potential of

curcumin through deregulation of NECTIN-4 in oral cancer

(130). A recent phase I clinical trial demonstrated that veliparib

combined with carboplatin and paclitaxel induction

chemotherapy was well tolerated and improved the survival

rate in patients with locoregionally advanced HNSCC (109).

This indicates that combined induction therapy is safe

and feasible.

Niraparib
A recent study reported that niraparib enhances the

sensitivity of HNSCC cells to both photons and protons and

increases the relative biological effectiveness of protons (110).

This suggests that niraparib can improve the efficacy of photon

and proton radiotherapy in patients with HNSCC patients (110).

Niraparib effectively enhanced the radiosensitivity of HNSCCs,

particularly HPV-negative HNSCC (111). The combination of

niraparib and the Chk1 inhibitor MK-8776 further enhanced the

radiosensitivity of HPV-positive HNSCC cells, whereas the

combination of niraparib and the Wee1 inhibitor MK-1775

significantly increased the radiosensitivity of HPV-negative

HNSCC cells (111).

Meanwhile, the combined application of PARP1 inhibitors

and immunotherapy especially PD-1/PD-L1 inhibitors has also

attracted much attention in recent years. It has been reported

that defects in the DDR pathway may serve as predictive

biomarkers of responsiveness to ICIs (131, 132). It has been

found that patients with enrich DDR-related genes mutations

exhibited higher response to ICIs therapy and was associated

with prolonged progression-free survival (133, 134). Besides, a

large number of clinical trials have demonstrated that the

combination of DDR inhibitors and immune checkpoint

inhibitors (ICIs) had synergistic benefit and was well tolerated,

which had been observed in different types of solid tumors,

including head and neck cancer (95), breast cancer (135),

ovarian cancer (136), prostate cancer (137), small cell lung

cancer (SCLC) (138), non-small cell lung cancer (NSCLC)

(139) and colorectal cancer (140). Thus, we summarize the

current clinical studies of PARP1 inhibitors in combination

with PD-1/PD-L1 inhibitors as Supplementary Table 1.
ATR and ATM inhibitors

Ataxia telangiectasia and RAD3-related protein (ATR) and

ataxia telangiectasia mutated protein (ATM), both members of

the phosphatidylinositol 3-kinase-related kinase (PIKK) family,

are key sensors of the DDR signaling pathway (141). ATM is

activated in response to DSBs, whereas ATR is primarily
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TABLE 3 DDR inhibitors in pre-clinical or reported clinical therapies combination with other anticancer therapies for HNSCC.

Target Inhibitor Intervention Phase Efficacy Reference

PARP Olaparib Olaparib+RT Pre-clinical
trials

Enhances the radiosensitivity of OPSCC, particularly for HPV-negative OPSCC (102)

Olaparib+NU7441+RT Pre-clinical
trials

Enhances HPV-negative HNSCC inhibition in vitro and vivo (103)

Olaparib+adavosertib/
prexasertib+RT

Pre-clinical
trials

Results in highly effective radiosensitization of HPV-positive HNSCC (104)

Olaparib/veliparib+cisplatin/5-
fluorouracil

Pre-clinical
trials

reverses the treatment resistance and sensitizes the tumor response (105)

Olaparib ± RT Phase I Enhances therapeutic response in SMAD4-deficient HNSCC (106)

Olaparib+cetuximab+RT Phase I Improves outcomes and reduces dermatitis in locally advanced HNSCC with
heaving smoking histories

(107)

Olaparib+cisplatin+RT Phase I Improves the therapeutic effect and minimizes treatment associated toxicity (108)

Veliparib Veliparib+carboplatin+paclitaxel Phase I Improves the survival rate in advanced HNSCC patients and has a good safety (109)

Niraparib Niraparib+RT Pre-clinical
trials

Enhances the sensitivity of HNSCC cells to photon and proton (110)

Niraparib+RT Pre-clinical
trials

Enhances the radiosensitivity of HNSCC cells, especially in HPV-negative
HNSCC cells

(111)

Niraparib+MK-8776+RT Pre-clinical
trials

Enhances the radiosensitivity of HPV-positive HNSCC cells (111)

Niraparib+MK-1775 Pre-clinical
trials

Enhances the radiosensitivity of HPV-negative HNSCC cells (111)

ATR AZD6738 AZD6738+cisplatin Pre-clinical
trials

Enhances the sensitivity of HPV-negative and HPV-positive HNSCC cells to
cisplatin

(112)

AZD6738+RT Pre-clinical
trials

Enhances the sensitivity of HNSCC cells to radiotherapy, independent of HPV
status

(113)

VE-822 VE-822+RT Pre-clinical
trials

Shows a synergistic effect in inhibiting tumor growth of HNSCC (114)

ATM AZD0156 AZD0156+RT Pre-clinical
trials

Shows a synergistic effect in inhibiting tumor growth of HNSCC (114)

KU55933 KU55933+cisplatin Pre-clinical
trials

Potentiates cisplatin-induced cytotoxicity in HNSCC cells (45)

GSK63541A GSK63541A+RT Pre-clinical
trials

Shows highly selective radiosensitization activity in HNSCC cells (115)

DNA-
PK

AZD7648 AZD7648+RT Pre-clinical
trials

Enhances the radiosensitivity of HNSCC cells (116)

KU-57788 KU-57788+RT Pre-clinical
trials

Enhances the radiosensitivity of HNSCC cells, especially in HPV-negative
HNSCC cells

(117)

KU-
0060648

KU-0060648+AZD6738+RT Pre-clinical
trials

Enhances the radiosensitivity of HNSCC cells, independent of the P53 status (118)

CC-115 CC-115 Phase I Shows good safety and preliminary efficacy in HNSCC (119)

WEE1 AZD1775 AZD1775+ricolinostat Pre-clinical
trials

Shows synergistic cytotoxicity in HNSCC cells with TP53 mutations or
impaired P53 function

(120)

AZD1775+LY2606268 Pre-clinical
trials

Shows high cytotoxicity against HPV-negative HNSCC cells with TP53
mutations

(121)

AZD1775+LY2603618/MK8776
+RT

Pre-clinical
trials

Exhibits radiosensitization effect in HPV-positive HNSCC cells (122)

AZD1775+RT Pre-clinical
trials

Enhances radiotherapy effects in HNSCC xenografts (123)

AZD1775+BO2 Pre-clinical
trials

Significantly inhibits tumor growth in HPV-positive HNSCC xenografts (124)

AZD1775+MLN8237 Pre-clinical
trials

Shows synergistic anticancer effects in HNSCC cells (125)

AZD1775+cisplatin Pre-clinical
trials

Improves the efficacy of cisplatin resistant HNSCC (126)

(Continued)
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triggered by replication stress and SSBs. Activation of ATM or

ATR phosphorylates its downstream targets, Chk2 or Chk1

kinase, to induce cell cycle arrest and facilitate DNA repair

(141). One study showed that the ATR inhibitor AZD6738

enhanced the sensitivity of HPV-negative and HPV-positive

HNSCC cells and tumors to cisplatin (112). Recent studies

have found that the ATR inhibitor AZD6738 enhances the

sensitivity of HNSCC to radiotherapy independent of HPV

status (113). The radiosensitizing effect of AZD6738 correlated

with checkpoint kinase1 (CHK1)-mediated abrogation of G2/M-

arrest (113). Another key mechanism by which ATM and ATR

inhibitors selectively enhance tumor cell inactivation when

combined with IR) may be through the inducing of senescence

(142). A recent study showed that the ATM inhibitor KU55933

induces apoptotic signaling and potentiates cisplatin-induced

cytotoxicity (45). GSK63541A, a novel ATM inhibitor, has been

shown to have a highly selective radiosensitization activity that is

superior to cisplatin and cetuximab (115). Notably, it exhibited

virtually no cytotoxicity in normal cells (115). Consistent with

this, a recent study reported that ATM and ATR inhibitors in

combination with IR increased the death of HNSCC cells, while

the combination therapy did not increase side effects (114).
DNA-PK inhibitors

While ATRi and ATMi have been shown to disturb cell cycle

arrest and repair DSBs, cancer cells may resort to alternative

repair mechanisms, such as DNA-PK-mediated NHEJ (D-

NHEJ) (118). Therefore, inhibition of DNA-PK, another

member of the PIKK family, may be a promising treatment

method to block the DDR pathway in cancer cells after

radiotherapy. A recent study suggested that DNA-PKcs

inhibition in combination with radiation enhanced the

radiosensitization of HNSCC cells to photons and protons

and, in particular, inhibited the growth of relatively

radioresistant HPV-negative HNSCC cells (117). In addition,

studies have shown that the DNA-PK inhibitors KU57788 and

IC87361 are more potent radiosensitizing agents than the PARP-

1 inhibitors veliparib and olaparib at non-cytotoxic

concentrations in HNSCC cell cultures, and that their

activities can be enhanced by SLFN11 and hypoxia (143).

Similarly, another study found that the DNA-PKi AZD7648 is
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a potent radiosensitizer in both human (UT-SCC-54C) and

murine (SCCVII) HNSCC cells (116). Interestingly, the

combination of ATR and DNA-PK inhibitors was more

effective in increasing radiotherapy sensitivity, independent of

the P53 status of HNSCC cells (118). A phase I trial

demonstrated that CC-115, a dual inhibitor of mTOR kinase

and DNA-PK, showed good safety and preliminary efficacy and

could be a promising novel anticancer treatment agent (119).
WEE1 inhibitors

HPV-negative HNSCC has a poor prognosis. The most

common mutational events in HPV-negative HNSCC are

inactivation of the tumor suppressor genes TP53 (>85%) and

CDKN2A (>57%), which significantly impair G1/S checkpoints,

leading to dependence on other cell cycle checkpoints to repair

ongoing replication damage (121). Wee1 is a serine/threonine

kinase that regulates DNA damage-induced G2/M phase arrest

by phosphorylation of cyclin-dependent protein kinase 1

(CDK1, also known as CDC2) at Tyr15 residues (144).

Inhibition of Wee1 kinase activity abrogates the G2/M

checkpoint and induces replication stress and DNA damage,

leading to unrestrained or premature mitosis and subsequent cell

death through a mitotic disaster (145).

Thus, WEE1 inhibitors may be a promising approach for

treating HPV-negative HNSCC and other TP53 mutated cancers

(121). One study showed that Wee1 inhibition (AZD1775) was

also highly sensitive to head and neck precancerous cell lines,

whereas normal keratinocytes were tolerant to the inhibitor.

Therefore, Wee1 inhibition therapy could be used as an effective

treatment for precancerous lesions to prevent cancer (146). In

one study, a combination of the Wee1 inhibitor adavosertib

(AZD1775) and ricolinostat, a selective inhibitor of histone

deacetylase 6 (HDAC6), showed synergistic cytotoxicity in

HNSCC with TP53 mutations or impaired p53 function

caused by HPV infection, possibly by enhancing adavosertib-

induced mitotic disaster (120). A recent study showed that

adavosertib (AZD1775), in combination with the Chk1

inhibitor prexasertib (LY2606268), showed high cytotoxicity

against HPV-negative HNSCC with a compromised G1/S

checkpoint caused by TP53 mutations (121). In addition, the

combined inhibition of Wee1 and Chk1 efficiently abrogated the
TABLE 3 Continued

Target Inhibitor Intervention Phase Efficacy Reference

AZD1775+cisplatin+docetaxel Phase I Shows synergistic anti-tumor effect in advanced HNSCC patients (127)

AZD1775+cisplatin+RT Phase I Enhances the radiosensitivity and shows good safety in TP53 mutant HNSCC
patients

(128, 129)
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G2-arrest induced by radiation and had a radiosensitizing effect

on HPV-positive HNSCC cells (122). Moreover, Wee1 inhibitors

(Wee1i), in combination with radiotherapy, enhanced the effects

in HNSCC xenografts (123). Studies have shown that HPV-

positive HNSCCs exhibit high FOXM1 activity, and Wee1i

enhances sensitivity to HPV-positive HNSCC through the

CDK1-FOXM1 pathway, which drives premature mitosis and

DNA damage (147). Another study reported that the

combination of adavosertib (AZD1775) and a Rad51 inhibitor

(B02) significantly inhibited tumor growth in a xenograft mouse

model carrying HPV-positive HNSCC, compared to HPV-

negative HNSCC (124). The synergies between the two drugs

are associated with excessive DNA damage and replication stress
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induced by the forced activation of CDK1 and reduction of Chk1

phosphorylation, ultimately leading to abnormal mitosis and

apoptosis (124). In addition, studies have demonstrated that

adavosertib (AZD1775) enhanced the anticancer effects of the

AURKA inhibitor alisertib (MLN8237) in HNSCC, both in vitro

and in vivo (125). The Wee1i AZD1775 combined with cisplatin

can synergistically inhibit the proliferation and survival of

cisplatin-resistant HNSCC cells by inducing DNA damage and

apoptosis, suggesting that Wee1 inhibition can improve the

efficacy of cisplatin-resistant HNSCC (126). The results of a

phase I clinical trial showed that the triplet combination of

adavosertib (AZD1775), cisplatin, and docetaxel was safe and

well tolerated, showing promising anti-tumor efficacy in patients
TABLE 4 Clinical trials of DDR inhibitors alone or combined with other treatments in HNSCC.

Target Inhibitor NCT Number Additional Treatments Phase N Status

PARP Olaparib NCT02308072 Cisplatin, IMRT I 70 Active, not recruiting

NCT02229656 Radiotherapy I 12 Active, not recruiting

NCT01758731 Cetuximab, Radiation Therapy I 17 Completed

NCT02882308 Cisplatin, Durvalumab II 41 Completed

NCT05366166 Pembrolizumab, Cisplatin, IMRT II 45 Not yet recruiting

NCT03022409 Ceralasertib I 21 Completed

NCT04643379 Pembrolizumab, Carboplatin II 30 Recruiting

NCT04825990 Pembrolizumab II 30 Recruiting

NCT03085147 – I/II 39 Recruiting

Niraparib NCT04313504 Dostarlimab II 23 Recruiting

NCT05169437 – II 110 Recruiting

NCT04779151 Dostarlimab II 112 Not yet recruiting

NCT04681469 – II 49 Recruiting

NCT05162872 Sintilimab II 99 Recruiting

NCT03088059 Carboplatin, Durvalumab,
Afatinib, Palbociclib, IPH2201
BAY1163877 MTX, Paclitaxel,
Docetaxel, 5-FU, Bleomycin,
Gemcitabine, Mitomycin

II 340 Recruiting

Veliparib NCT01711541 Carboplatin, Cisplatin
Fluorouracil, Hydroxyurea
Paclitaxel, Radiation Therapy

I/II 24 Active, not recruiting

NCT01366144 Carboplatin, Paclitaxel I 94 Active, not recruiting

Talazoparib NCT04052204 avelumab, Bempegaldesleukin,
talazoparib, enzalutamide

I/II 3 Terminated

ATR BAY 1895344 NCT04576091 Elimusertib, Pembrolizumab,
Radiation Therapy

I 37 Recruiting

NCT04491942 Cisplatin, Elimusertib,
Gemcitabine Hydrochloride

I 74 Recruiting

M6620 NCT02567422 Cisplatin, Radiation Therapy I 45 Active, not recruiting

DNA-PK M3814 NCT04533750 IMRT I 42 Recruiting

CC-115 NCT01353625 – I 118 Completed

WEE1 MK-1775 NCT02196168 Cisplatin II 6 Terminated

NCT03028766 Cisplatin, Radiotherapy I 9 Completed

NCT02508246 Cisplatin, Docetaxel
Therapeutic Surgery

I 12 Completed

NCT02585973 Cisplatin, IMRT I 12 Completed
IMRT, intensity modulated radiation therapy.
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with advanced HNSCC (127). In addition, phase I studies

showed that adavosertib and cisplatin combined with

radiotherapy enhanced the efficacy and safety of patients with

TP53-mutated HNSCC (128, 129).
Conclusions and perspectives

Several studies have demonstrated that the DDR system

plays a crucial role in the occurrence, development, prognosis,

and treatment of HNSCC. This review focuses on the possible

DDR and repair pathway changes in HNSCC as well as the role

of targeted DNA repair pathways in HNSCC therapy. Preclinical

and clinical data suggest that the use of DDR inhibitors (PARP/

ATM/ATR/DNA-PK/WEE1 inhibitors) alone or in combination

with other therapies, such as radiotherapy or chemotherapy, is

promising, which may provide a new direction for the treatment

of HNSCC. However, the clinical application of targeted DNA

repair therapy in HNSCC remains limited because of the lack of

specific biomarkers. Thus, further investigations of the DDR

mechanism in HNSCC are needed to identify possible early

diagnostic biomarkers and therapeutic targets and to provide a

theoretical basis for early diagnosis and targeted therapy

of HNSCC.
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