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Targeting EZH2 Enhances Antigen Presentation,

Antitumor Immunity, and Circumvents Anti–PD-1

Resistance in Head and Neck Cancer
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ABSTRACT
◥

Purpose: Anti–programmed death-1 (PD-1) receptor–based

therapeutics improve survival in patients with recurrent head and

neck squamous cell carcinoma (HNSCC), but many do not

benefit due to a low response rate. Herein, we identified EZH2

as a therapeutic target that enhanced tumor cell antigen presen-

tation and subsequently sensitized resistant tumors to anti–PD-1

therapy.

Experimental Design: EZH2 regulation of antigen presen-

tation was defined using EZH2 inhibitors (GSK126 and

EPZ6438) in human and mouse HNSCC cell lines. Mechanistic

dissection of EZH2 in regulation of antigen presentation

was investigated using flow cytometry, qRT-PCR, ELISA,

and chromatin-immunoprecipitation assays. EZH2-deficient

cell lines were generated using CRISPR-CAS9. GSK126 and

anti–PD-1–blocking antibody were used in testing combinatorial

therapy in vivo.

Results: EZH2 expression was negatively correlated with anti-

gen-processing machinery pathway components in HNSCC data

sets in The Cancer Genome Atlas. EZH2 inhibition resulted in

significant upregulation of MHC class I expression in human and

mouse humanpapillomavirus–negativeHNSCC lines in vitro and in

mousemodels in vivo. Enhanced antigen presentation on the tumor

cells by EZH2 inhibitors or CRISPR–mediated EZH2 deficiency

increased antigen-specific CD8þ T-cell proliferation, IFNg produc-

tion, and tumor cell cytotoxicity. Mechanistically, EZH2 inhibition

reduced the histone H3K27me3 modification on the b-2-micro-

globulin promoter. Finally, in an anti–PD-1–resistant model of

HNSCC, tumor growth was suppressed with combination therapy.

Conclusions: Our results demonstrated that targeting EZH2

enhanced antigen presentation and was able to circumvent anti–

PD-1 resistance. Thus, combining EZH2 targeting with anti–PD-1

may increase therapeutic susceptibility in HNSCC.

Introduction
Head and neck squamous cell carcinoma (HNSCC) is the sixthmost

common cancer worldwide (1). Patients with advanced human pap-

illomavirus (HPV)-negative HNSCC have poor outcomes. Pro-

grammed cell death protein-1 (PD-1) checkpoint blockade with

nivolumab or pembrolizumab has shown promising clinical outcomes

in patients with poor prognosis recurrent/metastatic HNSCC (2–6).

However, the majority do not benefit with responses limited to 15% to

20%of patients. This resistance to immunotherapy is unexpected given

the high mutational burden of cisplatin-resistant tumors and the

presence of immune infiltrates that together should predict better

response rates (2–6). These findings lead to the question: can com-

bination therapies directed at nonoverlapping pathways improve

outcomes of anti–PD-1 therapy in HNSCC?

Clinical responses to mAbs blocking PD-1/PD-L1 signaling are

based on the reversal of the dysfunctional exhausted state of tumor-

infiltrating T cells. Mechanistically, IFNg production by tumor-

infiltrating T cells induces PD-L1 expression, among other down-

stream biologic changes, in the tumor microenvironment (7, 8). Defi-

ciency of genes in the IFNg signaling pathway orHLA class I have been

shown to impair the efficacy of immunotherapy (9–11). Chan and

colleagues reported that specific patient HLA class I genotypes are

associated with response to immune checkpoint blockade (12). In

HNSCC, dysfunctional HLA class I antigen processing and presenta-

tion has been identified as a key factor contributing to tumor pro-

gression and immunotherapy resistance (13–15). Deficiency in the

expression of HLA class I components, including B2M and specific

HLA alleles, and antigen-processing machinery have been correlated

with poor prognosis of HNSCC (16, 17). Together, these observations

suggest that approaches which enhance target tumor cell antigen

presentation may improve the efficacy of anti–PD-1 therapy in

HNSCC.

Enhancer of zeste homolog 2 (EZH2) is the methyltransferase

subunit of the polycomb repressive complex 2 (PRC2) that catalyzes

histone H3 methylation on lysine 27 (H3K27). This H3K27me3

histone modification can suppress chromatin accessibility and silence

downstream gene expression (18, 19). The role of EZH2 in different

components of antitumor immunity has been investigated by several

groups. Zou and colleagues reported the contribution of EZH2 in

regulating T-cell recruiting, Th1 chemokines, CXCL9 and CXCL10 in

ovarian cancer cells. Consequently, combination therapy with EZH2

inhibition and adoptive T-cell transfer resulted in better tumor growth

suppression than either approach alone in ovarian tumor–bearing

mice (20, 21). In regulatory T cells (Tregs), disruption of EZH2 can

enhance antitumor immunity by diminishing the suppressive activity

of Tregs and enhancing T-cell infiltration in the tumor (22, 23).

Combining EZH2 inhibitionwith anti-CTLA4 resulted in a synergistic

impact in mouse bladder carcinoma and melanoma models (23).
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Sommer and colleagues reported the role of EZH2 in regulating a

broad range of pathways impacting immunogenicity in melano-

ma (24). In addition, EZH2 is also involved in natural killer (NK)

cell–mediated tumor eradication in hepatocellular carcinoma by

silencing the expression of NK group 2D ligands (25). Very recently,

diffuse large B-cell lymphoma showed a strong correlation between

EZH2 mutation enrichment and MHC class I and class II expression

deficiency. EZH2 inhibition relieved suppression ofNLRC5 andCIITA

expression leading to increased expression but only in an EZH2-

mutated background (26). However, in HNSCC, the specific role of

EZH2 in modulating MHC class I antigen presentation and T-cell–

mediated antitumor immunity has not been investigated.

In this study, we hypothesized that inhibiting EZH2 function may

improve the outcome of anti–PD-1 therapy by enhancing antigen

presentation in HPV-negative HNSCC. Using both pharmacologic

inhibition and CRISPR-Cas9–mediated genome editing, we investi-

gated the role of EZH2 in human HNSCC HLA class I expression and

also its role in antigen presentation and T-cell–mediated killing in

preclinical models. Extending these data to a novel anti–PD-1 therapy-

resistant preclinical model, we found that combinatorial therapy of

GSK126, an EZH2 inhibitor, and anti–PD-1 showed significant tumor

growth suppression compared with single-agent therapy. Together,

these data identify EZH2 as a potential therapeutic target in promoting

antigen presentation and antitumor immunity in HNSCC.

Materials and Methods
Cell lines and mice

Human HNSCC lines CAL-33, CAL-27, SCC-9, and SCC-25 were

obtained fromATCC andmaintained in theDMEM/NutrientMixture

F-12 (DMEM/F-12) þ GlutaMAX media supplemented with 10%

heat-inactivated FBS and 100 U/ml penicillin–streptomycin. Mouse

oral squamous cell carcinoma models, MOC1-esc1 and MOC2,

were maintained in IMDM/Hams-F12 (2:1) supplemented with 5%

heat-inactivated FBS, 100 U/mL penicillin–streptomycin, 5 ng/mL

EGF (Millipore), 400 ng/mL hydrocortisone (Sigma Aldrich), and 5

mg/mL insulin (Sigma Aldrich). Cell lines were routinely tested for

Mycoplasma and underwent short tandem repeat cell line authenti-

cation at theDFCI within 6months of use.MOC1-esc1, an anti-PD-1–

resistant line, is isogenic to the previously describedMOC1model (27).

Derivation and further characterization will be described elsewhere

(L. Zhou and colleagues; in preparation). C57BL/6 mice (6-week-old,

females) were from Taconic and OT-1 mice were purchased from

Jackson Laboratory [C57BL/6-Tg (TcraTcrb)1100Mjb].

Reagents and antibodies

EPZ6438 and GSK126 were purchased from Selleckchem (S7128)

and Chemietek (CT-GSK126), respectively. Recombinant human and

mouse IFNg were purchased fromPeprotech (AF-300-02 andAF-315-

05). OVA (257-264) SIINFEKL peptide (AS-6-193-1) was purchased

from AnaSpec. Primary antibodies against mouse EZH2 (4905; Cell

Signaling Technology), b-actin (4967; Cell Signaling Technology),

H3K27me3 (9733; Cell Signaling Technology), and Histone H3

(ab1791; Abcam) were used for Western blot analysis. Secondary

antibody [IRDye 800CW Goat anti-Rabbit IgG (H þ L)] was pur-

chased from LI-COR. EZH2 antibody (39901; Active Motif),

H3K27me3 antibody (39055; Active Motif), and Rabbit IgG (15006;

Sigma Aldrich) were used in the chromatin immunoprecipitation

(ChIP) assay. For in vivo mouse studies, we used a rat antimouse

monoclonal anti-PD-1 (RMP1-14, BE0146) and a rat IgG2a isotype

control (2A3, BE0089) from BioXCell.

Flow cytometry

Fluorophore conjugated antibodies specific for humanHLA-A, B, C

(W6/32, 311403), mouse CD45.2 (104, 109814), mouse H-2Kb (AF6-

88.5, 116518), mouse PD-L1 (10F,9G2, 124312), mouse OVA-Kb (25-

D1.16, 141603), and 7-AADViability Staining Solution (420403) from

BioLegend were used in flow cytometry. Rat antimouse CD16/CD32

(2.4G2, 553142) was purchased from BD Biosciences. Mouse tumors

were dissociated to single-cell suspensionwith TumorDissociationKit

(130-096-730) and gentleMACS Dissociator (130-093-235) fromMil-

tenyi Biotec. All flow cytometry analyses were performed on a

MACSQuant Analyzer 10 (Miltenyi) and interpreted using FlowJo10

(TreeStar).

OT-1 T-cell isolation, expansion, and coculture killing assay

CD8þ T cells were isolated from OT-1 mouse splenocytes using

CD8aþ T-cell Isolation Kit (130-104-075; Miltenyi Biotec). Isolated T

cells were cultured in RPMI1640, supplemented with 10% heat-

inactivated FBS, 20 mmol/L HEPES (15630080; Gibco), 1 mmol/L

sodiumpyruvate (11360070; Gibco), 0.05mmol/L 2-mercaptoethanol,

2 mmol/L L-glutamine (G7513; Sigma), and 100 U/mL penicillin–

streptomycin. For activation, Dynabeads Mouse T-Activator CD3/

CD28 (11456D; Thermo Fisher Scientific) were added to isolated T

cells at a bead-to-cell ratio of 1:2. Recombinant mouse IL2 (402-ML-

020/CF; R&D Systems) was added to a final concentration of 20 ng/mL

on day 1 after isolation.Medium supplemented with 20 ng/mL IL2was

changed every 2 days. T cells were split every 2 days to keep an

approximate cell density of 106 cells/mL. Activated OT-1 T cells

were used for coculture killing assay on day 6 to 8 after isolation. For

coculture killing assays, mouse IFNg (20 ng/mL) prestimulated

tumor cells were pulsed with 0.02 nmol/L of SIINFEKL peptide

for 2 hours at 37�C. Activated OT-1 cells were counted and plated

with washed tumor cells at indicated E:T ratios. After 24 hours of

coculture, T cells were gently washed off using PBS. Surviving cells

were harvested and stained with mouse CD45.2 antibodies to gate

out residual T cells. Surviving tumor cells were counted using a

MACSQuant Analyzer 10 (Miltenyi).

Immunoblotting

For the assessment of protein expression levels, RIPA buffer sup-

plemented with protease inhibitor cocktail (11836153001; Sigma

Aldrich) was used to homogenize cells. Fifty micrograms of total

Translational Relevance

Anti–PD-1 checkpoint inhibitor–based immunotherapies have

shown clinical benefit in patients with recurrent/metastatic head

and neck squamous cell carcinoma (HNSCC). However, new

therapeutic strategies are needed to improve the low response rate.

Herein, we identified EZH2 as a druggable target to enhance

antigen presentation in human papillomavirus–negative HNSCC.

Targeting EZH2 sensitized tumor cells to T-cell–mediated killing,

increased antigen-specific CD8þ T-cell proliferation, and IFNg

production in vitro. Mechanistic studies revealed that EZH2

modulated the histone H3K27me3 on the B2M promoter region.

In an anti–PD-1–resistant model of HNSCC, combination

EZH2 inhibition and anti–PD-1 suppressed tumor progression.

Our results highlight a combinatorial therapeutic strategy of

EZH2 inhibition and anti–PD-1 to enhance immunotherapeutic

approaches in patients with HNSCC.
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protein was separated on 4% to 12% SDS-PAGE gels (WG1403A;

Invitrogen). Antibodies specific for mouse EZH2 (1:1,000), b-actin

(1:1,000), H3K27me3 (1:1,000), and total H3 (1:2,000) were used for

probing specific proteins. Secondary antibodies were then used to

visualize specific proteins in a Li-Cor Odyssey imaging system.

Cell viability assay

Human or mouse cells (1,500/well) were plated in 96-well plates

(3903; Corning) 1 day before starting drug treatment. Cells were

treatedwith increasing concentrations ofGSK126, EPZ6438, or vehicle

(DMSO) for 72 hours. Cell viability was analyzed using CellTiter Glo-

Luminescent Cell Viability Assay (G7572; Promega). Luminescent

signal was measured with an InfiniteM200 ProMultimodemicroplate

reader (Tecan Life Science).

qRT-PCR

Total RNA was extracted from the cultured cells using RNeasy

Mini Kit (74106; Qiagen). One microgram of extracted RNA was

used for cDNA synthesis using High-Capacity cDNA Reverse Tran-

scription Kit (4368814; Thermo Fisher Scientific) according to

themanufacturer's instructions. TaqMan real-time PCR assays specific

for mouse B2m (Mm00437762_m1), H2-K1 (Mm01612247_mH),

Cxcl10 (Mm00445235_m1), Gapdh (Mm99999915_g1), human

B2M (Hs00187842_m1), HLA-A (Hs01058806_g1), HLA-B

(Hs00818803_g1), HLA-C (Hs00740298_g1), CXCL10 (Hs00171042_

m1), and GAPDH (Hs02786624_g1) were purchased from Thermo

Fisher Scientific and assays were performed on an ABI Step One Plus

for quantifying gene expression levels. Data were analyzed using DDCt

method and normalized to GAPDH.

ChIP assay

ChIP assay was performed according to an Abcam protocol

(https://www.abcam.com/protocols/cross-linking-chromatin-immu

noprecipitation-x-chip-protocol). Briefly, tumor cells (107) were

cross-linked with 1% formaldehyde and lysed with SDS lysis buffer.

The chromatin extract was sonicated on a Covaris Ultrasonicator. For

each precipitation, 5 mg of antibody was incubated with Dynabead

Protein A/G (10001D and 10003D; Invitrogen) for 6 hours, and

sequentially incubated with sonicated chromatin overnight. ChIP

DNA was isolated and quantified. qPCR was performed using SYBR

Green with the following primers. Primer sequences for B2M pro-

moter region: primer 1 forward: 50-GTCCGGATTGGCTGTGAGTT-

30 and reverse: 50-GAGCCATGCTGACGACTGAA-30; primer 2 for-

ward: 50-AGCTAGGAGACTGGTGACGA-30 and reverse: 50-AGC-

CATGCTGACGACTGAAG-30.

In vivo studies

Female C57BL/6 mice (6-week-old; Taconic) were housed in a

pathogen-free animal facility and all experiments performed were

approved by the Institutional Animal Care and Use Committee of

Dana-Farber Cancer Institute. For tumor inoculation, MOC cells were

harvested and washed extensively with cold endotoxin-free PBS. Cells

(106 MOC1-esc1 and 105 MOC2) were injected subcutaneously into

the right flank of each mouse in a volume of 150 mL. Anti–PD-1

therapywas performed by intraperitoneal injections of anti–PD-1 (250

mg/mouse) or isotype control (250 mg/mouse) on day 3, 6, and 9 post-

inoculation. GSK126 was dissolved in 20% Captisol (H107; Sigma

Aldrich) and administered by intraperitoneal injections 3 times a week

from day 6 post-inoculation. Tumor growth was monitored using a

digital caliper twice weekly. Tumor volume was calculated using the

formula V ¼ (W2
� L)/2.

CRISPR/CAS9-mediated knockout of EZH2

LentiCas9-Blast (Addgene, #52962) was cotransfected with pCMV-

VSV-G and psPAX2 into HEK293T cells for lentivirus production

using TransIT-293 (MIR2700, Mirus Bio). Virus in the media was

collected 48 hours after transfection and MOC1-esc1 cells were

transduced for 48 hours and then subjected to Blasticidin (4 mg/mL)

selection for 4 days. Pooled MOC1-esc1-cas9 cells were single-cell

sorted in 96-well cell culture plate to generate single clones. Cas9

editing efficiency of each clone was tested by assessing the knockout

efficiency of B2M single-guide RNA (sgRNA)-expressing lentivirus-

transduced cells. H2-Kb class I cell surface expression levels were

determined by flow cytometry as a readout of Cas9 efficiency (not

shown). Clones #2 and #3 with high editing efficiency were transduced

with lentivirus-expressing specific gRNAs targeting EZH2 or ROSA26,

respectively. The sequences of specific sgRNAs are listed below.

EZH2-g1-oligo1: CACCGTATCGTAGTAAGTACCAATG

EZH2-g1-oligo2: AAACCATTGGTACTTACTACGATAC

EZH2-g2-oligo1: CACCGAGAGTACATTATAGGCACCG

EZH2-g2-oligo2: AAACCGGTGCCTATAATGTACTCTC

ROSA26-oligo1: CACCGCAATCAGCGGAGGCTGCCG

ROSA26-oligo2: AAACCGGCAGCCTCCGCTGATTGC

T-cell proliferation assay

Na€�ve CD8þ T cells isolated from OT-1 mouse splenocytes were

stained with CFSE Cell Division Tracker Kit (423801; BioLegend) at a

final concentration of 5 mmol/L in PBS supplemented with 5% heat-

inactivated FBS for 3 minutes in the dark at room temperature. After

staining, cells were washed 3 times in PBS with 5% FBS. IFNg

prestimulated tumor cells were plated with carboxyfluorescein diace-

tate succinimidyl ester (CFSE)-labeled T cells at an E:T ratio of 10:1.

After 72 hours coculture,media were harvested for IFNg ELISA. CD8þ

T cells proliferationmeasured by CFSE-dilution was determined using

flow cytometry.

TCGA dataset analysis

Data for HNSCC and lung SCC patients from The Cancer Genome

Analysis (TCGA) were obtained from cBioPortal. HPV status of

patients was obtained from a PanCancer Atlas study (28). Gene

expression correlations between EZH2 and molecules involved in

antigen presentation machinery were assessed by Spearman

coefficient.

Mouse IFNg ELISA

IFNg levels in the media from T-cell proliferation coculture experi-

ments were measured with the Mouse IFNg DuoSet ELISA (DY485;

R&D Systems) according to the manufacturer's instructions.

Statistical analysis

Data are plotted as the mean � SD or mean� SEM as indicated in

specific experiments. The statistical significance was determined by

Student t test, one-way ANOVA, and two-way ANOVA using Graph-

Pad Prism. Significance differences P < 0.05, 0.01, and 0.001 are

symbolized as �, ��, and ���, respectively.

Results
EZH2 expression is negatively correlatedwithmajor MHC class I

antigen presentation molecules

As antigen presentation defects have been identified as a common

feature in HNSCCs, we sought to identify the relationship between

EZH2 expression and antigen presentation pathway components.

Zhou et al.
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Analysis of 522 HNSCC HPV-negative tumors from TCGA (28)

showed a significant inverse correlation between the EZH2 expression

levels and major MHC class I antigen presentation molecules, includ-

ing b2M, HLA-A, HLA-B, HLA-C, and HLA-E (Fig. 1), highlighting a

potential regulatory function of EZH2 on antigen presentation in

HNSCC. Interestingly, this negative correlation was also seen in 483

HPV-negative lung squamous cell carcinomas (Supplementary

Fig. S1).

EZH2 inhibition promotes antigen presentation and Th1-type

chemokine expression in cell line models of human HNSCC

To test the hypothesis that targeting EZH2 could promote antigen

presentation inHNSCC, we used two highly selective EZH2 inhibitors,

GSK126 and EPZ6438 (22, 29, 30). Human HNSCC cell lines (CAL27,

CAL33, SCC25, and SCC9) were treated with increasing concentra-

tions of GSK126 or EPZ6438 to test the impact of EZH2 inhibition on

cell viability. On the basis of the various sensitivities of these cell

lines to EZH2 inhibitors, we selected the 10 mmol/L concentration

for both GSK126 and EPZ6438, at which neither inhibitor showed

significant cell growth inhibition (Fig. 2A). Although GSK126

increased IFNg-induced HLA expression in three of four lines tested,

EPZ6438 increased both basal and IFNg-induced HLA cell surface

expression levels compared with DMSO control in all cell lines

(Fig. 2B). Given the known function of EZH2 as a methyltransferase

that silences target genes, we quantified themRNA expression changes

of MHC class I antigen presentation genes, including B2M, HLA-A,

HLA-B, and HLA-C after treatment with EZH2 inhibitors. Despite

different sensitivities to EZH2 inhibition, major class I antigen pre-

sentation genes were upregulated by at least one EZH2 inhibitor under

either basal or exogenous IFNg-stimulated conditions or both in all

tested cell lines (Fig. 2C; Supplementary Fig. S2). Therefore, EZH2

regulated mRNA levels of antigen presentation genes. Consistent with

findings in ovarian cancer (20), we also observed a significant induc-

tion of CXCL10 expression in EZH2 inhibitor–treated cells compared

with DMSO control that was dramatically enhanced in combination

with IFNg (Fig. 2C). Therefore, EZH2 inhibition influenced MHC

class I expression and CXCL10 expression in human HNSCC lines.

EZH2 inhibition upregulatedMHC class I antigen presentation in

anti–PD-1–resistant mouse HNSCC cells

Aiming at reversing immunotherapy resistance in HNSCC, we

tested the effect EZH2 inhibition in MOC1-esc1, a syngeneic anti–

PD-1–resistant mouse model. When assayed for impact on cell

viability assay, significant cytotoxicity in MOC1-esc1 was not seen

with either EZH2 inhibitors at the 10 mmol/L dose (Fig. 3A). We then

used GSK126 or EPZ6438 to determine the effect of EZH2 inhibition
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Figure 1.

Expression of EZH2 is negatively correlated with major antigen presentation molecules in TCGA head and neck squamous carcinoma datasets. Correlation between

EZH2 and B2M (A), HLA-A (B), HLA-B (C), HLA-C (D), HLA-E (E) transcripts from 522 HPV-negative HNSCC samples in TCGA.
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on antigen presentation in MOC1-esc1. Consistent with the data in

humanHNSCC, either treatment significantly upregulatedMHC class

I cell surface protein levels in combination with IFNg (Fig. 3B and C).

To confirm that the role of EZH2 in antigen presentation modulation

was not model specific, we performed similar experiments using

MOC2, another immunotherapy-resistant mouse HNSCC model.

Consistent with the results in MOC1-esc1, EZH2 inhibitor–treated

MOC2 cells showed enhanced MHC class I expression (Fig. 3C). To

assess whether this increased expression also resulted in increased

antigen presentation, we assessed levels of MHC class I bound

SIINFEKL. EZH2 inhibition also increased the presentation of SIIN-

FEKL peptide by H2-Kb on the MOC1-esc1 and MOC2 cell surface

confirming the functional upregulation of antigen presentation

(Fig. 3D). Together, these data showed that EZH2 inhibition increased

antigen presentation in anti–PD-1–resistant HNSCC cells.

Pharmacologic inhibition and genetic ablation of EZH2 in tumor

cells enhance T-cell–mediated killing

Next, we asked whether the EZH2 inhibition based enhancedMHC

class I antigen presentation sensitized tumor cells to T-cell–mediated

killing.Note that, in addition to pharmacologic targeting and to further

study the role of EZH2 in T-cell/tumor cell interactions, we generated

CRISPR-CAS9 genetically deleted EZH2 MOC1-esc1. We used two

independent clones of CAS9-expressing MOC1-esc1 to knockout

EZH2 with two different sgRNA to rule out clone-specific or off-

target effects. Immunoblotting for EZH2 was performed and showed

attenuated EZH2 expression relative to ROSA26 control targeted lines

(Fig. 4A). We performed a 2D coculture assay using OT-1 CD8þ T

cells that were in vitro activated and expanded with SIINFEKL peptide

antigen pulsed tumor cells as targets. GSK126 or EPZ6438 treatment

sensitized MOC1-esc1 cells to T-cell–mediated killing (Fig. 4B).

Genetic ablation of EZH2 dramatically sensitized tumor cells to

T-cell–mediated killing in both clones in comparison with their

parental lines and ROSA26 targeting controls (Fig. 4B; Supplementary

Fig. S6). Consistent with the inhibitor treatment experiment results,

loss of EZH2 significantly increased MHC class I cell surface expres-

sion levels, which again were enhanced in combination with IFNg

without impacting PD-L1 (Fig. 4C andD), indicating the specificity of

this regulation on antigen presentation. Therefore, targeting of EZH2

sensitized tumor cells to T-cell–mediated killing.

Impact of EZH2 inhibition on HNSCC 

cell line survival  

EZH2 inhibition influences surface HLA 

expression in HNSCC cell lines

EZH2 inhibition influences B2M and CXCL10 mRNA expression
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Figure 2.

EZH2 inhibition enhances antigen presentation and Th1-type chemokine expression levels in human HNSCC lines. A, SCC9, SCC25, CAL27, and CAL33 were treated

with increasing concentrations of GSK126 or EPZ6348 (1 nmol/L–100 mmol/L) for 72 hours to assess the impact on cell viability. B, Human HNSCC cells were treated

with GSK126 (10mmol/L), EPZ6438 (10 mmol/L), or DMSO as control for 72 hours. IFNg was added in the last 24 hours of drug incubation for all assays shown. HLA cell

surface protein levels were measured by flow cytometry. The data are representative of two independent experiments. C, B2M and CXCL10mRNA expression levels

werequantifiedbyqRT-PCR. RelativemRNA levelswere normalized toGAPDH. � ,P<0.05; �� ,P<0.01; ��� ,P<0.001. Significancewas calculated byone-wayANOVA.

Data are shown as mean � SD.
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EZH2 represses antigen presentation by regulating the

enrichment of H3K27me3 on the B2M promoter

To start to define the mechanism of EZH2 regulation of antigen

presentation, we tested H3K27me3 levels in GSK126- or EPZ6438-

treated cells. As expected, inhibition of EZH2 resulted in dramatic

decrease of global H3K27me3 levels, without affecting the protein

expression levels of EZH2 (Fig. 5A). In addition, the mRNA levels of

both B2M and H2-K1 were significantly upregulated by EZH2 inhi-

bition (Fig. 5B), suggesting that the regulation of EZH2 on antigen

presentation is conserved between human and mouse (Fig. 2B and C;

Supplementary Fig. S2). Interestingly, CXCL10 expression was not

induced by EZH2 inhibition in this mouse model (Fig. 5B).

To test the hypothesis that EZH2 regulates H3K27me3 occupancy

on the promoter region of B2M, MOC1-esc1 cells were treated with

EPZ6438 or DMSO and subjected to ChIP with antibodies against

EZH2, H3K27me3, or IgG control. To test the occupancy of EZH2 and
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Figure 3.

EZH2 inhibition upregulatesMHCclass I antigenpresentation in anti–PD-1–resistantmouseHNSCCcells.A,MOC1-esc1 andMOC2cellswere incubatedwith increasing

concentrations of GSK126 or EPZ6348 (1 nmol/L–100 mmol/L) for 72 hours to assess the impact on cell viability. B, Representative histogram plots of H2-Kb cell

surface expression levels after treatment of GSK126 (10 mmol/L), EPZ6348 (10mmol/L), or DMSO inMOC1-esc1 cells.C,Quantification of H2-Kb cell surface expression

levels in MOC1-esc1 and MOC2. The data are representative of two independent experiments. D, MOC1-esc1 cells were treated by GSK126, EPZ6348, or DMSO for

72 hours in the presence of IFNg . Subsequently, cells were incubated with 1 mmol/L of OVA peptide at 37�C for 2 hours. Cells were stained for OVA-Kb to assess the

antigen presentation capacity using flow cytometry. The data are representative of two independent experiments. � , P <0.05; �� , P <0.01; ��� , P <0.001. Significance

was calculated by one-way ANOVA. Data are shown as mean � SD.
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H3K27me3 modification on B2M promoter, DNA samples from

ChIP were quantified using two independent primers specific for

B2M promoter region. The results of ChIP assay followed by qPCR

showed that EPZ6438 treatment did not affect the binding of EZH2

on B2M promoter region (Fig. 5C), which is in agreement with the

mode of action of EPZ6438 as an S-adenosyl-I-methionine (SAM)-

competitive inhibitor. Importantly, EPZ6438 treatment significant-

ly reduced H3K27me3 enrichment on the B2M promoter region

(Fig. 5D).

Combinatorial therapy of GSK126 and anti–PD-1 suppresses

MOC1-esc1 tumor progression in vivo

Next, we asked whether the enhanced antigen presentation in

EZH2-deficient tumor cells can promote the function of antigen-

specific T cells. To answer this question, we analyzed CD8þ T-cell

proliferation and IFNg production after coculture of SIINFEKL

peptide pulsed tumor cells with na€�ve OT-1 T cells. These data show

that both T-cell proliferation and IFNg production were signifi-

cantly higher in EZH2-deficient tumor cells compared with

ROSA26 control (Fig. 6A–C). To investigate whether EZH2 inhib-

itor can improve the outcome of anti-PD-1 therapy, we used

resistant MOC1-esc1 to assess the effect of combination therapy.

MOC1-esc1 tumor growth in immunocompetent wild-type mice

was significantly attenuated by the combination of GSK126 (50 mg/-

kg) and anti-PD-1 but not by either agent alone (Fig. 6E). To test

the role of EZH2 inhibition in modulating antigen presentation of

tumor cells in vivo, we analyzed the tumor samples with these

treatment conditions (Fig. 6F and G). Tumor cell MHC class I cell

surface expression levels were increased by GSK126 monotherapy

compared with the control group (Fig. 6F). Similarly, anti–PD-1

monotherapy also increased the MHC class I level compared with

control (Fig. 6F). Interestingly, the combination of GSK126 and

anti–PD-1 resulted in an additive increase of MHC class I (Fig. 6F).

Total CD45þ immune infiltration in the tumors was not affected by

either monotherapy or combinatorial therapy (Fig. 6G; Supple-

mentary Fig. S8). In summary, enhanced antigen presentation

induced by targeting of EZH2 promoted proliferation and IFNg

production of antigen-specific T cells and combination therapy of

GSK126 and anti–PD-1 resulted in attenuation of tumor progres-

sion in an anti–PD-1–resistant mouse model of HNSCC.

In addition, as significant numbers of patients are resistant to

immunotherapy due to poor immune infiltration, we asked whether

the efficacy of GSK126 and anti-PD-1 combinatorial therapy requires

preexisting immune infiltration in tumors. We next assessed for

combination therapy impact in the MOC2 model that displays an

immune “desert” phenotype with negligible T-cell infiltration and

aggressive in vivo growth (31). Consistent with previous data (31),

MOC2 tumors are resistant to anti–PD-1 treatment (Fig. 6H). Neither
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Figure 4.

Pharmacologic inhibition and genetic ablation of EZH2 in tumor cells enhance T-cell–mediated killing in vitro.A, Two CAS9-expressing MOC1-esc1 cell clones, clones

#2 and#3,were transducedwith two independent GFP-tagged gRNAs specific for EZH2genomic editingorROSA26 control. GFP-positive cellswere sorted as edited

cells. Cell lysates were probed for EZH2 expression with b-actin loading control. The data are representative of two independent experiments. B, Tumor: T-cell

coculture assay in left panel with GSK126 or EZP6438 inhibition and right panel with EZH2 CRISPR lines. For pharmacologic inhibition, MOC1-esc1 cells were treated

with 10mmol/L of GSK126, EPZ6438, or DMSO for 72 hours in the presence of IFNg . Cellswere pulsedwith SIINFEKLpeptide (0.02 nmol/L, for 2 hours at 37�C). In vitro

activated and expandedOT-1 T cellswere platedwith antigen-pulsed tumor cells at an E:T ratio of 0.5. After 24 hours of coculture, surviving tumor cellswere counted

by flow cytometry. Right panel shows coculture assay with EZH2-deficient cell lines. The data are representative of two independent experiments. C and D, Cell

surface H2-Kb and PD-L1 expression levels were measured in EZH2 edited and the control lines. The data are representative of two independent experiments. � , P <

0.05; ��, P < 0.01; ���, P < 0.001. Significance was calculated by Student t test and one-way ANOVA. Data are shown as mean � SD.
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GSK126monotherapy nor the combination of GSK126 and anti–PD-1

suppressed tumor growth (Fig. 6H). Although the growth phenotype

was not altered, we assayed for in vivo MOC2 tumor cell class I

expression with different treatments. Neither the control nor the

monotherapy groups displayed alteration in surface class I expression.

However, consistent with our observation in MOC1esc1 tumors, the

combination group induced a significant higherMHC class I on tumor

cells in vivo. As for MOC1-esc1, there was minimal impact on CD45þ

T-cell infiltration. Therefore, EZH2 inhibition and anti–PD-1 com-

binatorial therapy upregulates tumor cell MHC Class I expression

in vivo, whereas the therapeutic efficacy may require preexisting

immune infiltration.

Discussion
To define approaches to improve outcomes of anti-PD-1 therapy in

HNSCCs, we identified that targeting the histone methyltransferase

EZH2 enhanced antigen presentation in both human and mouse

HNSCC lines. Mechanistic studies revealed that EZH2 inhibition

decreased the enrichment of H3K27me3 on the promoter region

H3K27me3 with EZH2 inhibition

Enhanced B2M, H2-K1 but not CXCL10 mRNA with EZH2 inhibition 
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Figure 5.

EZH2 is a repressor of antigen presentation by regulating the enrichment of H3K27me3 on the promoter regions ofB2M.A,MOC1-esc1 cellswere treatedwith GSK126

(10mmol/L), EPZ6438 (10mmol/L), or DMSOas control for 72 hours. H3K27me3andEZH2protein levelswere determinedbyWestern blot analysis. Total H3was used

as loading control. B, The mRNA expression levels of B2M, H2-K1, and CXCL10were measured by qRT-PCR in MOC1-esc1 cells treated with EZH2 inhibitors and IFNg .

RelativemRNA levelswere normalized toGAPDH.C andD,ChIP for EZH2, H3K27me3, and IgG, and subsequent qPCR inB2Mpromoter using two independent primer

sets. � , P < 0.05; �� , P < 0.01; ��� , P < 0.001. Significance was calculated by one-way ANOVA and Student t test. Data are shown as mean � SD.
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of B2M. The enhanced antigen presentation induced by targeting

EZH2-sensitized tumor cells to T-cell–mediated killing, resulted in

higher T-cell proliferation and IFNg production in vitro. These

findings translated to a synergistic impact of combination GSK126

and anti-PD-1 in attenuating the tumor progression of an anti-PD-1–

resistant model of HNSCC and showed that EZH2 inhibition can

enhance tumor cell Class I expression in vivo including in highly

resistant models. Our data define EZH2 as a therapeutic target to

improve the outcome of anti-PD-1 therapy in HNSCC.

EZH2 inhibition has been proposed as a therapeutic strategy in

cancers with frequent gain-of-function mutation or over expression of

EZH2, including melanoma, ovarian cancer, and lymphoma to induce

apoptotic cell death (32–34). In HNSCC, overexpression of EZH2 has

been correlated with poor prognosis, recurrence, and lymph node

metastasis in HNSCC (35–37). Saunders and colleagues reported that

targeting EZH2 in HNSCC attenuated tumor growth by inducing

differentiation gene expression via modulating H3K27me3 occupancy

on the promoter regions of genes involved in squamous differentia-

tion (38). To test the effect of EZH2 inhibition on human HNSCC

tumor progression, Cal27 was implanted in immunocompromised

NOD/SCIDmice, in which setting the interaction between tumor cells

and host immunity was eliminated to support the human tumor

growth in mice (38). These previous studies highlighted EZH2 inhi-

bition as a potential therapeutic target in HNSCC by modulating

epigenetic silencing of genes involved in tumor progression. In our

study, we first demonstrated the effect of EZH2 inhibition on
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Figure 6.

Combinatorial therapy of GSK126 and anti–PD-1 suppresses MOC1-esc1 tumor progression. A, Representative histogram plots showing T-cell proliferation in

experimental and control conditions. IFNg-pretreated EZH2-edited and control cells were pulsed with 1 mmol/L SIINFEKL peptide at 37�C for 2 hours and cocultured

with CFSE-labeled na€�ve OT-1 cells at an E:T ratio of 10:1 for 72 hours. T-cell proliferation was analyzed by flow cytometry. No antigen condition represents CFSE-

labeled T cells without tumor cells. The data are representative of two independent experiments and shown asmean� SD. B,Quantitative analysis of proliferating T

cells between indicated conditions.C, IFNg concentrationwasmeasured in the coculturemedia byELISA.D,Schematic of experimental design for in vivo combination

therapy. E, C57BL/6 mice (n¼ 4) inoculated subcutaneously with MOC1-esc1 (106) cells. Anti-PD-1 antibody was intraperitoneally injected on days 3, 6, and 9 after

inoculation. GSK126was intraperitoneally injected 3 times aweek starting fromday6 after inoculation, and tumor growthwasmonitored. The data are representative

of two independent experiments and shown as mean� SEM. F and G, Tumors were harvested on day 12 after inoculation. H2-Kb on tumor cell surface (CD45�) and

percentage of CD45þ cells in each indicated condition were analyzed by flow cytometry. H, The effect of indicated treatment on MOC2 tumor progression (n¼ 10).

I and J, MOC2 tumors were harvested on day 22 after inoculation (n ¼ 5). H2-Kb on tumor cell surface (CD45�) and percentage of CD45þ cells in each indicated

condition were analyzed by flow cytometry. � , P < 0.05; �� , P < 0.01; ��� , P < 0.001. Significance was calculated by one-way ANOVA and two-way ANOVA.
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increasing antigen presentation is conserved in human and mouse

HNSCC lines. Subsequently, a syngeneic mouse model was used to

investigate the in vivo therapeutic potential of EZH2 inhibition

independent from direct cytotoxicity of EZH2 on tumor cells. Thus,

this study provides a new line of evidence in support of EZH2

inhibition as a new combination immunotherapy target in promoting

HNSCC antitumor immunity to overcome checkpoint blockade

resistance.

Consistent with other studies, inhibition of EZH2 significantly

induced the expression of CXCL10 in human HNSCC lines

(Fig. 2C; ref. 20). CXCL10 is a Th1-chemokine CXCL10 that is

a key ligand regulating T-cell trafficking into the tumor microen-

vironment through CXCR3 (39, 40). However, CXCL10 expression

was not increased by EZH2 inhibition in the HNSCC mouse model

(Fig. 5B), suggesting the regulation of CXCL10 by EZH2 is not

conserved in human and mouse models used in this study.

Although speculative, this suggests that in human HNSCC, the

effect of EZH2 inhibition on antitumor immunity might include

enhanced antigen presentation and additionally, higher immune

infiltration in tumors.

One limitation of this study is the lack of well-defined endogenous

antigen and antigen-specific T cells in theMOC1-esc1 HNSCCmodel.

Therefore, we employed a commonly used model antigen SIINFEKL

peptide from ovalbumin and OT-1 mouse-derived antigen-specific

T cells for in vitro studies (41). Supporting the use of this approach,

CRISPR-CAS9 knockout of B2M or PD-L1 in MOC1-esc1 resulted in

resistance or sensitivity to T-cell–mediated killing, respectively (data

not shown). Therefore, this 2D coculture system retained the relevant

function of EZH2 in T-cell recognition to tumor cells. In addition, as

EZH2 impacts a broad range of pathways in vivo, dissecting the specific

immune contribution will require further studies. Our work supports

that EZH2 has the capacity to directly regulate tumor cell Class I

in vitro and that inhibition in vivo results in a similar end result of

enhanced Class I expression. Further mechanistic dissection of in vivo

antigen presentation is required.

Others have studied the contribution of EZH2 in augmenting

tumor immunogenicity including antigen presentation regulation

in melanoma and lymphoma, respectively (24, 26). Our study

focused on HNSCCs and defined further details of antigen presen-

tation regulation. Differences in HNSCC include that the frequency

of EZH2 overexpression in HNSCC is relatively low compared with

that in cutaneous melanoma, lymphoma, and ovarian cancers. In

addition, there are no EZH2 gain-of-function mutations identified

in HNSCC (19). Therefore, the sensitivity of HNSCC to EZH2

inhibition induced apoptosis may be relatively low. The function of

EZH2 inhibition in promoting antigen presentation thus identifies a

disease-specific contextual opportunity in which to consider EZH2

inhibitor as an immunotherapy agent in HNSCC.

Interestingly, the inverse correlation of EZH2 and MHC class I

antigen presentation molecule expression levels in HNSCC TGCA

dataset is also found in lung squamous cell carcinoma, suggesting the

function of EZH2 in regulating antigen presentationmay be conserved

in squamous cell carcinomas from other tissues. On the basis of our

results, we propose that combination EZH2 inhibition with anti-PD-1

therapy may be beneficial for patients with HNSCC. Studies using

different EZH2 inhibitors and additional HNSCC preclinical models

are needed to further confirm our findings. In addition, the effect of

EZH2 in regulating antigen presentation in professional antigen-

presenting cells, such as macrophages and dendritic cells, also requires

further investigation.
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