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M
any G protein-coupled receptors (GPCRs) undergo
agonist-mediated endocytosis1. Surprisingly, this pro-
cess does not always result in the termination of

intracellular signaling, with several receptors known to generate
responses from the endosomal compartment2–6. Control of
receptor trafficking might therefore be a useful strategy to enable
sustained signaling, with significant implications for drug
development7.

In this study, we have investigated the role of receptor traf-
ficking in glucagon-like peptide-1 receptor (GLP-1R) agonism, an
important treatment modality for type 2 diabetes (T2D) which
improves pancreatic beta cell function and insulin sensitivity8.
The GLP-1R is rapidly internalized when activated by its cognate
agonist9, but the effect of internalization and subsequent post-
endocytic trafficking on overall GLP-1 responses is not clear.
Sustained signaling by internalized GLP-1Rs has been reported,
but without increasing insulin release10. The latter study also
identified lysosomes as a major post-endocytic GLP-1R destina-
tion, raising the possibility that prolonged agonist exposure might
result in GLP-1R degradation. In contrast, a proportion of GLP-
1Rs is recycled back to the plasma membrane (PM)9, an
important resensitization mechanism11.

Here we develop a series of peptides closely related to the GLP-
1 homolog exendin-4, used clinically as exenatide12, but with
widely varying trafficking properties. We use these to establish a
robust relationship between GLP-1R trafficking and insulin
release in a manner not predicted by the standard pharmacolo-
gical potency testing for cyclic adenosine monophosphate
(cAMP), a primary second messenger coupling GLP-1R activa-
tion to insulin secretion13. We examine the role of receptor
binding kinetics and β-arrestin-biased signaling in the observed
trafficking profiles, identifying a linked set of agonist character-
istics optimally suited for insulin secretion, not shared by GLP-1R
agonists in the current clinical use. We find that β-arrestin
recruitment to GLP-1Rs during sustained agonist exposure has
the opposite effect on insulin release to the known positive role of
β-arrestin-1 during acute GLP-1R stimulation in beta cells14. We
also uncover how the rate of receptor agonist dissociation within
the endosomal compartment predicts the rate of receptor recy-
cling, itself a key determinant of sustained insulin secretion.

Finally, we explore the therapeutic potential of these peptides
in a mouse model of T2D, uncovering a divergence between
agonist-specific insulin release and appetite reduction. Nausea is a
side effect which affects 30–50% of patients taking GLP-1R
agonists at clinically licensed doses15, with higher doses glyce-
mically more effective but consistently associated with unac-
ceptable tolerability16–19. By selectively augmenting insulin
release, modulation of GLP-1R trafficking may be a viable strat-
egy to achieve greater metabolic control in T2D without
increasing the rate of unwanted side effects, such as nausea.

Results
GLP-1R trafficking controls pharmacological insulin release.
Interaction between the surface regions of receptor transmem-
brane helices and the agonist N-terminus is critical for the acti-
vation of class B GPCRs, including the GLP-1R20. Based on this,
we synthesized a panel of exendin-4 analogs with single amino
acid substitutions close to the N-terminus, which we hypothe-
sized could modulate receptor trafficking and/or signaling (Sup-
plementary Fig. 1a). Using the SNAP-tag system, in which the
GLP-1R N-terminus contains a small genetically encoded tag to
allow specific labeling of surface receptors, we measured the dose
responses for the agonist-induced cell surface loss of human GLP-
1R in CHO-K1 cells, identifying the analogs with different net
internalization efficacy than the reference compound exendin-4

(Supplementary Fig. 1b). When these compounds were tested in
INS-1 832/3 beta cells21 with a prolonged incubation to mimic
in vivo drug exposure, we found that compounds exhibiting
higher internalization also had reduced maximal insulin release
(Fig. 1a, Supplementary Fig. 1c). Several compounds with reduced
internalization exhibited improved insulinotropic efficacy vs.
exendin-4. To avoid identifying a species-specific effect, we also
used MIN6B1 beta cells22 and found a similar relationship
between internalization and insulin release, albeit less marked
(Fig. 1b, Supplementary Fig. 1c). Notably, this effect was not
apparent with shorter incubations (Fig. 1c, d). Furthermore, the
potential for this therapeutically desirable property was not sug-
gested from the measurement of acute cAMP responses in CHO-
GLP-1R cells, a standard in vitro metric for GLP-1R agonist
performance in drug development23, where the more insulino-
tropic compounds displayed reduced potency vs. exendin-4
(Supplementary Fig. 1b, c).

One peptide with reduced internalization and improved
insulinotropism, exendin-phe1, and one with opposing charac-
teristics, exendin-asp3, were selected for further studies (Fig. 1e,
f). The increased internalization of exendin-asp3 vs. exendin-4
was relatively small but reproducible. Additional dose response
and kinetic analyses indicated that the differences in insulin
release emerged only after several hours of incubation (Fig. 1g–i).
Greater insulin release with exendin-phe1 was unlikely to result
from cross-reactivity with other incretin receptors, as it was
blocked with the GLP-1R orthosteric antagonist exendin(9-39)
(Supplementary Fig. 2a). In accordance with its reduced capacity
for stimulating insulin release, exendin-asp3 failed to reduce
apoptosis following glucolipotoxicity24 or endoplasmic reticulum
stress25, both involved in T2D pathogenesis. However, anti-
apoptotic responses to exendin-phe1 were no greater than for
unmodified exendin-4 (Supplementary Fig. 2b, c).

Overall, these findings suggests that under pharmacologically
relevant conditions, GLP-1R agonists that induce less internaliza-
tion achieve greater maximal insulin release.

Endocytosis and post-endocytic sorting of GLP-1R. To better
characterize the agonist-related differences in GLP-1R trafficking,
we performed further experiments with SNAP-GLP-1R stably
expressed in CHO-K1 and MIN6B1 cells. Using diffusion
enhanced resonance energy transfer (DERET26), we observed
rapid loss of cell surface SNAP-GLP-1Rs when exposed to
exendin-4 and exendin-asp3, but much slower internalization
with exendin-phe1 (Supplementary Fig. 3a, b). Similar results
were seen by the flow cytometric measurement of internalized
receptor reversibly labeled with fluorescent SNAP-tag probes
prior to stimulation, with residual surface receptor probe
removed before detection27, in MIN6B1 (Fig. 2a, b) and CHO-K1
cells (Supplementary Fig. 3c). The findings were corroborated by
confocal microscopy (Fig. 2d and Supplementary Fig. 3e).

In the latter assays, performed to measure internalization at
earlier time-points, the modestly greater internalization originally
seen with exendin-asp3 (Supplementary Fig. 1b, performed with a
longer incubation of 90min), was not replicated. An explanation
for this discrepancy was suggested by the differences in SNAP-
GLP-1R recycling, reduced with exendin-asp3 vs. exendin-4
(Fig. 2c, Supplementary Fig. 3d and 3f, g), which might result in
progressively greater loss of cell surface receptors over time, despite
similar acute endocytosis rates. Recycling was in contrast rapid
with exendin-phe1. In order to monitor the intracellular
translocation of agonists, as well as GLP-1Rs, we used fluorescently
labeled exendin-4, exendin-phe1, and exendin-asp3 conjugates,
with fluorescein isothiocyanate (FITC) at position K12, which we
previously found useful for labeling GLP-1R28. Potencies for all
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FITC-conjugates were within 1 log unit of the unmodified ligand
(Supplementary Fig. 4a, b); exendin-phe1 was most affected by the
introduction of the FITC group. In keeping with the fast recycling
rate with exendin-phe1, immunofluorescence analysis showed
increased exendin-phe1-FITC accumulation in Rab11-positive
recycling endosomes29, compared to exendin-4-FITC and
exendin-asp3-FITC (Fig. 2e). As FITC fluorescence is pH-
dependent, we analyzed the pH differences in the internalized
FITC-agonist environment by measuring their fluorescence in cells
treated with or without bafilomycin, a vacuolar-type H+ ATPase
which restores neutral endosomal pH30. The relative signal change
induced by bafilomycin for each ligand was used to determine its
local pH, using a pH calibration for each compound. We found
that internalized exendin-phe1-FITC was situated in the least, and
exendin-asp3-FITC in the most, acidic endosomes (Supplementary
Fig. 4c-e), suggesting that each ligand may induce differential
endosomal GLP-1R sorting. This was further corroborated by
ultrastructural analysis of SNAP-GLP-1R subcellular distribution
by electron microscopy, which revealed greater receptor localiza-
tion to tubular recycling endosomes and PM following exendin-
phe1 vs. exendin-4 treatment, while the latter resulted in increased
localization to late endosomes and lysosomes (Fig. 2f, g and
Supplementary Fig. 5a).

With these differences in mind, we measured SNAP-GLP-1R
degradation in CHO-SNAP-GLP-1R and MIN6B1-SNAP-GLP-
1R cells by immunoblotting. After 4 and 16 h exposure to
exendin-4, significant degradation was noted in both cell types, as
indicated by disappearance of the band corresponding to full-
length SNAP-GLP-1R. Whilst no additional degradation was

observed with exendin-asp3, this was noticeably reduced with
exendin-phe1 (Fig. 2h, Supplementary Fig. 5c).

Finally, we determined the net surface GLP-1R downregulation
with prolonged agonist incubations by confocal microscopy and
flow cytometry. In MIN6B1-SNAP-GLP-1R (Fig. 2i–k), wild-type
MIN6B1, and INS-1 832/3 cells (Supplementary Fig. 5d-h),
overnight treatment with exendin-phe1 resulted in the relative
preservation of surface GLP-1R vs. exendin-4, in keeping with their
acute trafficking differences. Loss of surface receptors was more
pronounced for exendin-asp3 than for exendin-4 in some, but not
all assays. In CHO-SNAP-GLP-1R cells, a small but reproducible
increase in surface downregulation potency was seen with exendin-
asp3, as measured by cell surface ELISA (Supplementary Fig. 5b).

These studies indicate how agonist-specific endocytosis and
recycling influences the surface and total cellular GLP-1R over
prolonged exposure times. However, the relatively small differ-
ences with exendin-asp3 suggest that additional mechanisms
beyond receptor trafficking may be involved in the blunted
insulin secretory response with this compound.

Prolonged cAMP signaling and homologous desensitization.
Intuitively, reduced loss of surface GLP-1R with exendin-phe1
should permit greater access to extracellular ligand during con-
tinuous exposure, with fast recycling ensuring that the receptors are
maintained in a sensitized state. These conditions might facilitate
continual re-stimulation of GLP-1R to maintain the ongoing insulin
release, as suggested by the trajectory of insulin accumulation in
Fig. 1h. Accordingly, in INS-1 832/3 and MIN6B1 cells,
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accumulation of cAMP (with a low concentration of 3-isobutyl-1-
methylxanthine (IBMX) to prevent cAMP degradation) was greater
with exendin-phe1 than with exendin-4 and exendin-asp3 (Fig. 3a,
b). In a further set of experiments, IBMX (at a higher dose) was
added only for the final 10min out of the 16 h incubation for a
point estimate of cAMP synthesis rate; again, cAMP generation was
greatest with exendin-phe1, and least with exendin-asp3 (Fig. 3c). In
MIN6B1 cells, cAMP production after extended treatment with
exendin-4 and exendin-asp3 was marginally reduced compared to
the vehicle (Fig. 3d). This might reflect the extensive GLP-1R
degradation noted in Fig. 2h, leading to a loss of GLP-1R

constitutive activity or capacity to respond to locally produced
GLP-131. Interestingly, when these experiments were widened to
include other test agonists, a similar pattern was observed to that of
chronic insulin secretion in Fig. 1a; namely, maximal (1 µM agonist)
cAMP production increased as maximal internalization fell, but
reached a plateau beyond which further decrease in internalization
did not yield additional increase in cAMP efficacy. As weak agonists
tend to become partial agonists when receptor density is limited32,
this may indicate failure of the slowly internalizing compounds to
maximally exploit the residual surface receptors; accordingly, when
a supramaximal dose (1 µM) of exendin-4 (to fully activate
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remaining surface receptors) was added in addition to IBMX after
prior incubation with each test agonist, a linear relationship between
internalization and cAMP response was restored (Fig. 3e). We found
no evidence of downregulation in the overall cellular capacity to
generate cAMP, as responses to the direct adenylate cyclase activator
forskolin were unchanged after prolonged agonist stimulation
(Fig. 3f, g). We also measured the response to rechallenge with GLP-
1 after agonist exposure, washout, and resensitization. Pretreatment
with all agonists resulted in a blunted cAMP response to GLP-1 in
INS-1 832/3 cells, this being least marked with exendin-phe1
(Fig. 3h). Homologous desensitization was also reduced with
exendin-phe1 in CHO-GLP-1R cells, as measured by intracellular
Ca2+ release (Fig. 3i).

Thus, we found that agonists that preserve higher levels of
surface and total receptor, either by reduced internalization,
increased recycling, or both, allow responsiveness retention
during continuous or interrupted stimulation. This effect appears,
however, to be limited by concomitant reductions in the inherent
efficacy of ligand-bound receptors such that the peak efficacy
does not continue to increase throughout the full range of
internalization.

Role of GLP-1R biased signaling. We next investigated further
the agonist-specific factors that might explain the marked dif-
ferences in trafficking and secretion highlighted above. GPCR
endocytosis is in many cases dependent on the recruitment of
β-arrestins, which interact with clathrin adaptors to promote
internalization via clathrin-coated pits33. Of note, the role of
β-arrestins in GLP-1R trafficking is unclear, as loss of β-arrestin-1
does not affect GLP-1R internalization14,34; on the other hand,
enhancing β-arrestin-2 action by the overexpression of G protein
receptor kinase 5 (GRK5) increases GLP-1R endocytosis35.
β-arrestins also mediate noncanonical signaling via ERK1/2 and
other kinases, which, for the GLP-1R, is linked to insulin secre-
tion and inhibition of beta cell apoptosis14,36. In this context, the
concept of biased agonism37 has emerged, in which ligands can
selectively engage in different intracellular pathways, potentially
allowing specific cellular responses. We therefore measured
G protein-dependent cAMP generation and β-arrestin-1 and -2
recruitment with exendin-4, exendin-phe1, and exendin-asp3 at
two time-points to avoid kinetic artefacts38, and calculated the
pathway bias by fitting the response data to a modified form of
the operational model of agonism39 (Fig. 4a–d). We found that
exendin-phe1 favored G protein signaling, whilst exendin-asp3
favored β-arrestin recruitment. To exclude any artifacts from an
irreversible interaction between β-arrestin and receptor in the

PathHunter assay, we visualized GFP-tagged β-arrestin-2 in
MIN6B1-SNAP-GLP-1R cells, showing that exendin-4 and
exendin-asp3, but not exendin-phe1, induce robust translocation
to SNAP-GLP-1R-positive PM and endosomes (Fig. 4e). We
repeated bias analysis with the full panel of agonists for β-
arrestin-2 (Supplementary Fig. 1b and 6a-c). As for internaliza-
tion, biased signaling was highly predictive of
maximal agonist-induced insulin release, with compounds
biased away from β-arrestin-2 recruitment the most effective
(Fig. 4f). β-arrestin-1 maximal responses closely mirrored those
of β-arrestin-2 (Supplementary Fig. 6d). Of note, exendin-phe1
acted as a competitive antagonist against the β-arrestin
response to GLP-1 itself, suggesting that it might reduce the
in vivo β-arrestin recruitment by endogenous GLP-1 (Supple-
mentary Fig. 6e, f).

Combined with our trafficking and insulin release results, these
data show a canonical role for β-arrestin recruitment in promoting
GLP-1R endocytosis and desensitization. However, GLP-1R
internalization was previously found to be independent of β-
arrestin-114,34, and a positive role for β-arrestin-1 in stimulating
insulin release has been reported14. We explored this further by
depleting cells of both β-arrestin isoforms to better represent the
loss of recruitment of both β-arrestins seen with exendin-phe1.
We found that prolonged exendin-4-induced insulin secretion was
increased in INS-1 832/3 and MIN6B1 cells after treatment with
small interfering RNA (siRNA) to silence both β-arrestins, and
also in human EndoC-βH140 beta cells lentivirally transduced with
β-arrestin-1 and β-arrestin-2 small hairpin RNA (shRNA)
(Fig. 4g–i, Supplementary Fig. 7a-e). While GLP-1R internaliza-
tion was reduced after dual arrestin siRNA in MIN6B1-SNAP-
GLP-1R cells (Supplementary Fig. 7f,g), this effect was more
modest than agonist-related differences. To investigate whether
this partial effect was due to an incomplete knockdown, we
performed experiments in HEK293 cells with both β-arrestin
isoforms deleted by CRISPR-Cas941. Interestingly, we found that,
whilst exendin-4-induced SNAP-GLP-1R internalization was
delayed in β-arrestin-less vs. wild-type HEK293 cells, extensive
endocytosis was still achieved with longer incubations (Supple-
mentary Fig. 7h), with no effect on GLP-1R recycling. Never-
theless, cAMP signaling in response to exendin-4 was enhanced in
β-arrestin-less cells, as evidenced by the increased potency relative
to wild-type, as well as a tendency to increased efficacy over time
(Supplementary Fig. 7i, j).

These observations suggest that during pharmacological GLP-
1R agonism, the net effect of β-arrestin recruitment is to reduce
prolonged insulin release. However, this may not be exclusively
through modulation of receptor trafficking.

Fig. 2 GLP-1R agonist trafficking in MIN6B1-SNAP-GLP-1R cells. a Schematic for GLP-1R internalization and recycling measurements by FACS after labeling

with cleavable SNAP-Surface probe. b Agonist-induced GLP-1R internalization in MIN6B1-SNAP-GLP-1R cells, n= 3, two-way randomized block ANOVA

with Dunnett’s test vs. exendin-4. c GLP-1R recycling in MIN6B1-SNAP-GLP-1R cells 30min after an initial 15 min agonist pulse to induce internalization;

recycling measured in the presence of exendin(9-39) to block further endocytosis, n= 5 (exendin-4) or 3 (exendin-phe1 and -asp3), one-way ANOVA with

Dunnett’s test vs. exendin-4. d Confocal images indicating GLP-1R internalization in MIN6B1-SNAP-GLP-1R cells, 30min agonist incubation after SNAP-

Surface-488 labeling, representative image from n= 3 experiments; scale bars, 8 μm. e Immunofluorescence showing increased co-localization of exendin-

phe1-FITC vs. exendin-4-FITC and exendin-asp3-FITC with Rab11-positive recycling endosomes after 60min agonist exposure, representative image from

n= 2 experiments; scale bars, 4 μm. Individual red and green channels shown in Supplementary Fig. 12. f Representative electron micrographs showing

subcellular localization of SNAP-GLP-1R (labeled with cleavable SNAP-Surface-biotin plus streptavidin-10 nm gold, arrows), 60min agonist exposure; scale

bars, 0.1 μm; larger area micrographs shown in Supplementary Fig. 5a. g Gold-particle quantification from f; n= 3 experiments, paired t-tests. PM plasma

membrane, EE early endosome, MVB LM multivesicular body limiting membrane, MVB ILV multivesicular body intraluminal vesicle, Tub/RE tubular/

recycling endosome, LE late endosome. h Immunoblots showing SNAP-GLP-1R (~73 kDa) levels in MIN6B1-SNAP-GLP-1R cells after 4 and 16 h agonist

exposure, representative of n= 3 experiments. A smaller band possibly corresponding to deletion of GLP-1R C-terminal domain is detected under all

conditions analyzed. i Confocal images demonstrating agonist-induced surface GLP-1R downregulation in MIN6B1-SNAP-GLP-1R cells; surface receptor

labeled after 16 h agonist treatment; scale bar, 100 μm. j Quantification of experiments from i, five images analyzed per condition from n= 3 coverslips,

mean cellular fluorescence indicated, one-way ANOVA with Dunnett’s test vs. exendin-4. k As for j, but quantified by FACS in separate experiments,

results normalized to vehicle control, n= 4, one-way randomized block ANOVA with Dunnett’s test vs. exendin-4. Agonists applied at 100 nM. *p < 0.05,

***p < 0.001, by statistical test indicated above. Error bars indicate SEM
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Role of GLP-1R binding kinetics. The length of time that an
agonist remains bound to its receptor, or residence time, is an
important factor influencing the duration of drug action and a
suggested driver of sustained signaling from internalized recep-
tors7. Residence time is defined by the rate of dissociation from
the receptor (1/koff), so we used time-resolved Forster resonance
energy transfer (TR-FRET) to measure agonist-binding kinetics
in CHO-SNAP-GLP-1R cells. Here, FITC-conjugated agonists act
as FRET acceptors when bound to GLP-1Rs labeled with lan-
thanide (terbium) SNAP-tag probes42. We monitored the real-
time cell surface dissociation of exendin-4-FITC, exendin-phe1-
FITC, and exendin-asp3-FITC in the presence of exendin(9-39),
having first inhibited endocytosis using a cocktail of metabolic
inhibitors9 (Fig. 5a, Supplementary Fig. 8a, b). Exendin-phe1-
FITC dissociated the fastest (short residence time), and exendin-
asp3-FITC the slowest (long residence time). To exclude arti-
factual alterations by the FITC group, we performed kinetic-
binding experiments with unlabeled agonists, in competition with

exendin-4-FITC, and defined both association rate constants and
residence times43 with consistent effects (Fig. 5b–d).

We also analyzed whether the agonists would differ in their
propensity to remain bound to GLP-1R in endosomes. Exendin-
4-FITC and exendin-phe1-FITC co-localized with SNAP-GLP-1R
(Fig. 5e), but to determine the persistence of agonist–receptor
complexes, we adapted our TR-FRET binding assay to include
reversible labeling using cleavable SNAP-biotin complexed to
streptavidin-terbium to label the surface GLP-1Rs and, after
internalization with different FITC-agonists, stripping residual
surface receptors of label to ensure that FRET was derived only
from internalized receptors (see Fig. 5f for explanation). The
ratiometric FRET signal takes account of differences in the
number of internalized receptors, and is indicative of avidity of
binding. We observed that exendin-asp3 remained bound with
highest avidity and exendin-phe1, the least (Fig. 5g). As agonist
dissociation within endosomes is a determinant of post-endocytic
targeting to recycling or degradative pathways44, these
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Fig. 3 Prolonged cAMP generation in beta cells. a cAMP measurement in INS-1 832/3 cells in response to continuous agonist exposure for indicated times.

Incubations performed in the presence of 25 µM IBMX and the results expressed relative to IBMX-only response for each time-point, n= 4, one-way

randomized block ANOVA comparing Emax with Dunnett’s test vs. exendin-4. b As in a, but with 100 nM agonist in MIN6B1 cells, n= 3, two-way

randomized block ANOVA with Dunnett’s test vs. exendin-4. c cAMP accumulation dose response in INS-1 832/3 cells at the end of the 16 h agonist

incubation; accumulation induced with 10 min addition of 500 µM IBMX, n= 6, one-way randomized block ANOVA comparing Emax with Dunnett’s test vs.

exendin-4. d As in c, but 100 nM agonist in MIN6B1 cells, n= 5, one-way randomized block ANOVA with Dunnett’s test vs. exendin-4. e cAMP responses

in INS-1 832/3 cells induced by the addition of 500 µM IBMX or 500 µM IBMX+ 1 µM exendin-4 for the final 10 min after 16 h exposure to 1 µM agonist,

expressed relative to response without agonist pretreatment, n= 4. f Response to 10 µM forskolin (FSK) in INS-1 832/3 cells pretreated with indicated

agonist for 16 h, 10 min stimulation plus 500 µM IBMX, n= 5. g As for f, but with MIN6B1 cells, n= 5. h Homologous desensitization in INS-1 832/3 cells

exposed to the indicated agonist for 24 h, washout, 1 h resensitization, and rechallenge ± GLP-1 100 nM, n= 5, one-way randomized block ANOVA with

Dunnett’s test vs. exendin-4. i Cytosolic Ca2+ response to the indicated doses of GLP-1 in PathHunter CHO-GLP-1R cells exposed to 1 µM agonist for 90

min before a 30min resensitization period, expressed as peak fold change from baseline reading, n= 5. *p < 0.05, **p < 0.01, ***p < 0.001 by statistical test

defined in the text. Error bars indicate SEM
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observations may explain the contrasting recycling patterns of
exendin-phe1 vs. exendin-asp3.

To explore through an alternative strategy whether GLP-1R
binding kinetics influence PM recycling and insulin secretion, we
utilized the GLP-1R allosteric modulator 4-(3-(benzyloxy)phe-
nyl)-2-(ethylsulfinyl)-6-(trifluoro-methyl)pyrimidine (BETP),
which alters the residence time of orthosteric GLP-1R agonists45.
We confirmed that exendin-4 residence time is increased by
BETP, without changes in the association rate (Fig. 5h, i). In
CHO-SNAP-GLP-1R cells, BETP slowed GLP-1R recycling after
exendin-4 exposure, with minimal effect on internalization

(Fig. 5j, k). In contrast to its known potentiating effect on insulin
secretion with the GLP-1 metabolite and weak agonist GLP-1(9-
36)NH2

46, BETP paradoxically reduced the exendin-4-induced
insulin secretion with prolonged incubations (Fig. 5l). This did
not appear to be through changes to signal bias, as BETP at this
dose did not affect cAMP or β-arrestin-2 recruitment responses
(Fig. 5m, n). Therefore, via its effects on GLP-1R binding kinetics
and trafficking, BETP reduces the agonist responsiveness when
exposed for extended periods. This observation holds implica-
tions for the design and therapeutic use of positive GLP-1R
allosteric modulators.
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Overall, these findings show that GLP-1R recycling is influenced
by persistence of agonist binding within the endosomal compart-
ment, resulting in enhanced insulin-releasing properties of fast-
dissociating agonists which maintain an adequate population of cell
surface receptors over prolonged periods.

Exendin-phe1 outperforms other GLP-1R agonists. We next
compared the pharmacological characteristics and beta cell actions
of exendin-phe1 with those of other clinically approved GLP-1R
agonists, including Lixisenatide, Liraglutide, Semaglutide, and
Dulaglutide. In comparison to the marked differences between N-
terminally substituted exendin-4 agonist responses, differential
effects on binding kinetics, β-arrestin recruitment, internalization,
and recycling were relatively modest within these licensed com-
pounds, albeit statistically significant in some cases (Fig. 6a-f). We

also performed principal component analysis38 as a further way to
compare the overall agonist responses across several readouts.
Exendin-phe1 was clearly separated from other GLP-1R agonists
(Fig. 6g), as expected from its distinct signaling and trafficking
responses. Furthermore, exendin-phe1 was the most efficacious
insulin secretagogue when tested in parallel with extended incu-
bations (Fig. 6h). We noted that Semaglutide and Dulaglutide, for
which the residence times were shorter than other compounds and
also induced modestly increased recycling, were closest to ex-phe1
in this insulin release assay (albeit consistently less efficacious). By
contrast, Lixisenatide, which exhibited long residence times and
slow recycling, was the least effective.

Therefore, compared to other GLP-1R agonists, exendin-phe1
possesses advantageous pharmacological properties that max-
imizes insulin secretion.
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Exendin-phe1 responses in human islets. To gain insight into
whether the beta cell effects of exendin-phe1 might translate to
humans, we compared the responses of exendin-4 and exendin-
phe1 in intact human islets. With prolonged agonist treatment,
relative preservation of surface GLP-1Rs was detected with
exendin-phe1 (Fig. 7a). Accordingly, exendin-phe1 induced less
homologous desensitization, as measured by cytosolic Ca2+ and
cAMP increases (Fig. 7b–f), and was a more powerful secreta-
gogue than exendin-4 during long incubations (Fig. 7g). We note
that even during acute incubations, in the majority of matched
experiments, exendin-phe1 was more insulinotropic than exen-
din-4, but this trend did not reach statistical significance (Fig. 7h).

GLP-1R trafficking is relevant in vivo. We next investigated the
therapeutic potential of exendin-phe1 in mice fed with a high fat
and high sucrose (HFHS) diet, an animal model of T2D. We first
established that a single injection of exendin-phe1 led to greater
lowering of blood glucose over 8 h compared to exendin-4
(Supplementary Fig. 9a, b). Intraperitoneal glucose tolerance tests
(IPGTTs) were then performed at 0, 4, and 8 h after 2.4 nmol
kg−1 agonist administration, revealing a strikingly persistent anti-
hyperglycemic effect of exendin-phe1 vs. exendin-4, associated
with greater insulin release (Fig. 8a–c). Importantly, there were
no pharmacokinetic differences between agonists that could
explain this differential effect (Fig. 8d). As well as stimulating
insulin release, GLP-1R agonists promote satiety and reduce food
intake, leading to weight loss. Intriguingly, despite clear differ-
ences in beta cell effects, appetite suppression was similar for each
treatment (Fig. 8e); however, pica (consumption of nonnutritive
materials), a rodent correlate of nausea47, was more frequently
observed with exendin-4 administration (Fig. 8f, Supplementary
Fig. 9c), as determined by behavioral testing48. None of the
treatments led to conditioned taste aversion (Supplementary
Fig. 9d), as also reported elsewhere in GLP-1R agonists admi-
nistered peripherally in mice49. Key results were repeated at a
lower dose of 0.24 nmol kg−1, comparable to that of exenatide
when used clinically in humans after allometric scaling (Supple-
mentary Fig. 9e-j). By extending the in vivo screening to other
panel agonists with IPGTTs performed in lean mice, we unveiled
an inverse relationship between glucose lowering and internalized
receptor (Supplementary Fig. 9k, Fig. 8g).

Therefore, we found that the enhanced insulinotropic effect of
exendin-phe1 in vitro is recapitulated in a mouse model of T2D,
suggesting that GLP-1R trafficking plays a role in determining the
responses to therapeutic GLP-1R agonists in vivo.

Chronic administration study. Finally, to determine whether
exendin-phe1 beta cell effects persist with chronic administration,
we administered agonists continuously to HFHS-fed mice for
2 weeks via subcutaneous minipumps, using a relatively low dose
of agonist (0.24 nmol kg−1 day−1) to reduce the weight-
dependent effects. Fasting glucose reductions were apparent
with both treatment groups by the end of the study (Fig. 9a).
However, when assessed by IPGTT, chronic exendin-4
treatment at this dose failed to exert significant effects on glu-
cose tolerance, whereas exendin-phe1 remained effective (Fig. 9b,
c). Pharmacokinetic differences were again excluded (Fig. 9d).
Cumulative food intake and body weight reduction with either of
the agonists were no different from vehicle (Fig. 9e, f), consistent
with a divergence between beta cell and central effects of exendin-
phe1. Note that the minor degree of weight loss in all groups is
commonly seen with the implantation of osmotic minipumps due
to nonspecific stress50.

In view of the recent interest in GLP-1R agonism as a
nonalcoholic fatty liver disease treatment, we evaluated liver
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histology after chronic treatment, showing greater steatosis
resolution with exendin-phe1 (Fig. 9g, Supplementary Fig. 9h).
This interesting finding, occurring without weight loss, is
consistent with preclinical and clinical studies showing
weight-independent effects of GLP-1R agonism on liver steato-
sis51–53.

Therefore, metabolic improvements from acute and chronic
administration of exendin-phe1 exceeded those of exendin-4. The
pharmacology of this compound may be an effective approach to
improve therapeutic outcomes without loss of tolerability.

Discussion
In this study, we have identified how single amino acid sub-
stitutions to exendin-4 can dramatically enhance insulin secretion
via modulation of GLP-1R binding kinetics, biased signaling, and
trafficking. Findings from human islets and an in vivo T2D model

suggest that these compounds may have the potential to improve
T2D treatment. These effects were achieved under reduced acti-
vation of noncanonical signaling pathways including receptor
internalization and β-arrestin recruitment, an initially surprising
observation as these have previously been linked to increased
GLP-1R responses when measured acutely10,14,36. However, our
study focuses specifically on pharmacological aspects of GLP-1R
agonism, with prolonged incubations deliberately chosen to
mimic in vivo drug exposure, and knockdown of both β-arrestin
isoforms to better approximate the response to exendin-phe1 and
related agonists. We propose that the effects of cumulative loss of
surface receptor with fast-internalizing, slow-recycling, lysosome-
targeting agonists, along with increases in β-arrestin-induced
desensitization, become more apparent with time, eventually
overriding any positive effects associated with noncanonical sig-
naling. Our findings do not exclude a positive role for endosomal
signaling or β-arrestin-1 recruitment in acute responses to
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treated with IP agonist (2.4 nmol kg−1), n= 8/group, Mann–Whitney test comparing exendin-4 vs. exendin-phe1. g Relationship between agonist-induced

GLP-1R internalization efficacy (Supplementary Fig. 1) and glucose lowering during IPGTT (Supplementary Fig. 10g), assessed as AUC relative to glucose at
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physiological GLP-1, but highlight how the kinetic context must
be taken into account when exploiting noncanonical pathways
during drug development. The relevance of this observation
extends to the wider family of GPCRs, with individual effects
almost certainly receptor-specific, as both β-arrestin-biased54 and
G protein-biased55 ligands have proved effective for individual
receptors in preclinical studies.

Our study reveals how agonist-related differences in GLP-1R
surface loss are predictive of prolonged signaling and secretory
responses. It was apparent, however, that agonists diverged both
in internalization and recycling capacity, both of which contribute
to the net changes to GLP-1R PM residence over time. We were
therefore not able to differentiate the relative contribution of each
to the overall insulinotropic response. Receptor endocytosis, an
intermediate step toward downregulation, is also necessary for
resensitization via dephosphorylation and recycling11, thus,
totally inhibiting endocytosis will likely result in reduced signal-
ing as surface receptors become desensitized via β-arrestin
recruitment. Indeed, previous reports indicate that GLP-1R sig-
naling is blunted when dynamin-dependent endocytosis is
inhibited chemically10 or genetically56. Adapting these studies to
investigate how endocytosis inhibition impacts prolonged insulin
secretion is challenging due to the nonspecific effects of chemical
approaches57, as well as the role of dynamin in insulin granule
exocytosis58. Also, rapid desensitization of surface receptors that
are prevented from entering the endocytic pathway may be less
relevant with agonists such as exendin-phe1, for which β-arrestin
recruitment is markedly reduced. We provide evidence here for
the importance of recycling via our studies with BETP, which
reduced recycling without affecting acute signaling or endocy-
tosis, and accordingly reduced exendin-4-induced insulin secre-
tion. In the future, further insights into this question may be

gained by identification of additional proteins with specific roles
in GLP-1R sorting along the endocytic pathway as targets for
genetic manipulation. A caveat when interpreting our results is
that in many cases we treated cells with relatively high doses of
agonist in order to establish differences in maximal response.
Nevertheless, in vitro exendin-phe1-induced insulin release
exceeded that of exendin-4 in the low nanomolar range (Fig. 1g),
suggesting that the mechanisms we unveiled are likely active at
doses corresponding to those in vivo59, and indeed were sup-
ported by our own in vivo results. Overall, the net effect of agonist
trafficking differences on surface and total receptor down-
regulation, however achieved, appears highly relevant to patterns
of insulin release.

We found here that agonist trafficking properties, as well as
insulin secretion, mirrored β-arrestin recruitment propensity,
contrasting with some14,33 (but not all34) previous work sug-
gesting that β-arrestins do not impact GLP-1R trafficking14,34,35,
as well as reports of coupling of GLP-1R to insulin secretion via
β-arrestin-114 (although not β-arrestin-260). The potential for
redundancy between β-arrestin isoforms prompted us to inves-
tigate the effect of depleting both β-arrestins together. Suggesting
that variable β-arrestin recruitment of our agonists may indeed
influence their capacity for pharmacological insulin secretion,
insulin release from dual β-arrestin knockdown was consistently
increased. This was corroborated by a marked effect on cAMP
signaling in β-arrestin-less HEK293 cells, which progressively
diverged with longer exendin-4 treatment, reminiscent of the
effect of exendin-phe1 on beta cell cAMP production. Interest-
ingly however, a more modest effect was seen on GLP-1R
endocytosis when β-arrestins were ablated, suggesting that the
role of desensitization by β-arrestins supersedes their role in GLP-
1R trafficking. This is relevant to our studies with exendin-asp3,
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Fig. 9 Effects of chronic treatment with exendin-phe1. a Fasting blood glucose in HFHS mice treated with continuous subcutaneous agonist or vehicle for

16 days, n= 10/group, one-way ANOVA with Tukey’s test. b Blood glucose during IPGTT (2 g kg−1) performed after 14 days continuous agonist treatment,

n= 10/group, two-way repeat measures ANOVA with Tukey’s test, with significance for exendin-phe1 vs. exendin-4 indicated. c AUC calculated from b,

relative to baseline glucose at t= 0, one-way ANOVA with Tukey’s test. d Plasma drug level after 16 days treatment with indicated agonist (2.4 nmol kg−1

day−1) or vehicle in lean mice, n= 5/group, unpaired t-test. e Cumulative food intake, and f body weight change with continuous administration of agonist,

n= 10/group. g Histologically determined steatohepatitis, quantified as nonalcoholic activity score (NAS), after 16 days agonist administration, n= 10/

group, Kruskal–Wallis with Dunn’s test. Except where indicated (pharmacokinetic study), agonist administered at 0.24 nmol kg−1 day−1. *p < 0.05, **p <
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for which differences in loss of surface GLP-1R vs. exendin-4
were small; bias towards β-arrestin-induced desensitization is an
additional factor that could explain the reduced insulinotropic
efficacy of this compound.

Recently, a biased GLP-1R agonist with reduced β-arrestin-1
recruitment was described as poorly insulinotropic in vivo61,
contrasting with our observations for exendin-phe1 and several
other analogs. The reasons for this disparity are not clear, but
methodological differences are likely as we specifically sought
evidence of beta cell desensitization by performing delayed
IPGTTs. Furthermore, while both our study and that of Zhang
et al.58 identified bias between β-arrestin and G protein signaling,
there are undoubtedly further intracellular signaling pathways
linking GLP-1R to insulin release which may differ but were not
measured in either study. Untargeted or semi-targeted approa-
ches, such as phospho-proteomic or kinomic analyses may be
required to highlight agonist-related differences in global signal-
ing networks, as for other GPCRs, such as the angiotensin II type
1 receptor62.

We did not elucidate the specific GLP-1R interactions made by
N-terminally modified exendin-4 analogs responsible for their
marked differences in signaling and trafficking. A large muta-
genesis study identified key residues in the GLP-1R surface region
which either interact with the ligand or assist with propagation of
occupancy to the cytosol20. The end of the ligand N-terminus,
most relevant to our biased analogs, was less well defined in the
homology model derived from this and other data. Further
reciprocal mutagenesis studies will be required to identify key
interactions responsible for the contrasting effects of exendin-
phe1, exendin-asp3 and other analogs, facilitating future design of
agonists with even greater selectivity. Major advances in the
understanding of the structure of class B GPCRs have recently
been made, including for the GLP-1R63,64. It is hoped these may
eventually allow identification of receptor conformations asso-
ciated with selective engagement of particular intracellular
effectors.

Despite efficacious beta cell effects of exendin-phe1 in vivo vs.
exendin-4, both peptides performed similarly for appetite sup-
pression, indicating that while exendin-phe1 matches the weight-
lowering properties of exendin-4, it exhibits additional selective
promotion of beta cell-mediated glycemic benefits. The
mechanisms responsible for this dichotomy remain to be estab-
lished. One possibility is that GLP-1R endocytosis is required for
agonist uptake by the brain via hypothalamic tanycytes, as
described for leptin65. As GLP-1R agonists mediate their appetite-
reducing effects within the central nervous system, the trafficking
phenotype of exendin-phe1 could result in reduced brain pene-
tration, mitigating against presumed advantageous effects on
neuronal GLP-1R desensitization. Notably, mice lacking GLP-1R
exhibit reduced brain uptake of fluorescently labeled
Liraglutide66.

The potential clinical relevance of this finding relates to the
dose-limiting effect of nausea with existing GLP-1R agonists.
A total of 30–50% of patients taking this class of drug at
clinically licensed doses experience nausea15. Careful analyses
of trial withdrawal statistics suggest that nausea may in fact be
underrecorded, and is strongly associated with treatment
discontinuation67. Moreover, several clinical studies show that
glycemia improves when doses are increased but with unac-
ceptable rates of gastrointestinal adverse events16–18, sug-
gesting that maximum benefits from GLP-1R agonism are in
fact not realized with current treatments. In contrast, the
powerful beta cell action of exendin-phe1 provides a potential
means to avoid tolerability issues associated with high doses of
other agents, and might therefore be a novel therapeutic
option for T2D.

Methods
Peptides. Exendin-4, exendin(9-39), and GLP-1 (7–36)NH2 were from Bachem;
Liraglutide, Lixisenatide, and Dulaglutide from Imperial College Healthcare NHS
Trust pharmacy; and custom peptides from Insight Biotechnology.

Cell culture and generation of stable cell lines. PathHunter CHO-GLP-1R
β-arrestin-1/-2 reporter cell lines (DiscoverX) were maintained in the manu-
facturer’s Culture Medium. INS-1 832/3 were maintained in RPMI-1640 at 11 mM
D-glucose, supplemented with 10% fetal bovine serum (FBS), 10 mM HEPES, 2 mM
L-glutamine, 1 mM pyruvate, 50 µM β-mercaptoethanol, and 1% penicillin/strep-
tomycin21. MIN6B1 cells (a kind gift from Prof. Philippe Halban, University of
Geneva, Switzerland) were maintained in DMEM at 25 mM D-glucose supple-
mented with 15% FBS, 50 µM β-mercaptoethanol, and 1% penicillin/streptomy-
cin22. Stable CHO-SNAP-GLP-1R and MIN6B1-SNAP-GLP-1R cells were
generated by transfecting pSNAP-GLP-1R (Cisbio) into wild-type CHO-K1
(ECACC) or MIN6B1, G418 (1 mgml−1) selection, and single-cell sorting by
fluorescence-activated cell sorting (FACS) following SNAP-Surface-488 (New
England Biolabs) labeling. Wild-type (ECACC) and β-arrestin-less HEK293 cells41

stably expressing SNAP-GLP-1R were generated by G418 selection and maintained
in DMEM at 25 mM D-glucose supplemented with 10% FBS and 1% penicillin/
streptomycin. Stable EndoC-βH1 shRNA cell sublines were generated by infection
of the parental EndoC-βH1 line40 with lentiviral particles expressing shRNA
duplexes previously cloned into pLKO.3G (Addgene #14748). See Supplementary
Table 1 for shRNA target sequences. Lentiviruses were generated by co-transfection
of each shRNA construct with envelope plus packaging vectors (pMD2.G, Addgene
#12260 and psPAX2, Addgene #12259) and viral supernatants purified by ultra-
centrifugation onto 20% sucrose gradients. EndoC-βH1 sublines were maintained
in DMEM at 5 mM D-glucose supplemented with 2% BSA, 50 µM β-mercap-
toethanol, 10 mM nicotinamide, 5.5 μg ml−1 transferrin, 6.7 ng ml−1 sodium sele-
nite, and 1% penicillin/streptomycin40. Mycoplasma testing was performed yearly.

Human islet isolation and culture. Human islet studies were approved by the
National Research Ethics Committee London (REC 07/H0711/114). Islets were
obtained from normoglycemic donors, according to the local ethics rules (including
next-of-kin consent) and isolation techniques, and cultured in RPMI supplemented
with 5.5 mM D-glucose, 10% FCS, 100 U penicillin, 100 μg streptomycin, and 0.25
μg μl−1 fungizone (37 °C, 5% CO2)

28. Experiments were performed with randomly
allocated, size-matched islets. Donor characteristics and isolation center details are
indicated in Supplementary Table 2.

cAMP assays. Cyclic AMP accumulation was determined by HTRF (cAMP
Dynamic 2, Cisbio). CHO-SNAP-GLP-1R were stimulated at 37 °C in serum-free
DMEM. For dose responses, a full GLP-1 curve was included to establish the assay
Emax with curve fitting to a four-parameter fit. INS-1 832/3 and MIN6B1 cells were
stimulated in serum-free media plus 3 mM glucose and IBMX as indicated, with
results expressed relative to time-point-specific IBMX-only baseline.

β-arrestin recruitment assay. PathHunter CHO-GLP-1R β-arrestin-1 and -2
reporter cell lines were used, following the manufacturer’s instructions; in short,
cells were stimulated in the manufacturer’s stimulation buffer for the indicated
time period at 37 °C, before addition of the chemiluminescent substrate and
luminescence read after a further 60 min incubation at room temperature. A full
GLP-1 dose response was included to establish the assay Emax.

Quantitation of bias. Bias between cAMP, β-arrestin-1, and β-arrestin-2 responses
was determined using a modified operational model of agonism. Concentration
response data was fitted with described equations39 to derive transduction ratios
(τ/KA) for each agonist and pathway. Log (τ/KA) values were normalized by sub-
tracting log (τ/KA) for exendin-4 in each pathway, giving Δlog (τ/KA). To deter-
mine the bias between the two pathways, Δlog (τ/KA) values were subtracted,
yielding ΔΔlog (τ/KA). Statistical analysis was performed by determining Δlog
(τ/KA) for each agonist and experiment, and propagating error from average Δlog
(τ/KA) from several experiments to calculate 95% confidence intervals (CI); sta-
tistical significance was inferred if the 95% CI of ΔΔlog (τ/KA) estimate did not
cross zero.

Cell surface labeling plate reader trafficking. GLP-1R internalization and
recycling in CHO-SNAP-GLP-1R cells was measured by surface labeling with anti-
GLP-1R antibody or the SNAP-tag probe Lumi4-Tb (Cisbio). For antibody label-
ing, after treatments at 37 °C, cells were placed on ice to arrest further endocytosis
before fixation, and the surface GLP-1R was detected by ELISA with monoclonal
anti-human GLP-1R antibody68 (Mab 3F52, Developmental Studies Hybridoma
Bank (DSHB), 1/100) plus horseradish peroxidase (HRP)-conjugated rabbit
anti-mouse secondary (ab97046, Abcam, 1/5,000). 3,3′,5,5′- tetramethylbenzidine
(TMB) substrate was added and the absorbance was read at 450 nm after 1 M HCl
addition. For Lumi4-Tb, cells were labeled at 40 nM at 4 °C, followed by time-
resolved (TR) fluorescence measurement in a Molecular Devices i3x (excitation
335 nm, emission 620 nm). Residual surface expression was determined from
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peptide- vs. control-treated wells. Recycling was measured by comparing the
surface receptor immediately after internalization vs. a further period of recycling
with agonist washed off and replaced with 10 μM exendin(9-39); and recycling
calculated as percentage recovery of surface GLP-1R in the recycling plate vs.
surface receptor loss in the internalization plate.

DERET assay. GLP-1R internalization in real-time26 was measured in CHO-
SNAP-GLP-1R cells labeled with Lumi4-Tb and incubated with 24 μM fluorescein
in HBSS. TR fluorescence was serially read with a Flexstation 3 (Molecular Devi-
ces), with 340 nm excitation, 520 nm (cut-off 495 nm) and 620 nm (cut-off 570 nm)
emission, 400 μs delay and 1500 μs integration time. To prevent endocytosis,
metabolic inhibitors (10 mM NaN3, 20 mM 2-deoxyglucose)9 were added 20 min
before labeling completion and maintained throughout the experiment when
indicated. Surface receptor loss was calculated from 620 nm over 520 nm signals.

Surface dissociation kinetics. Binding of FITC-agonist to SNAP-GLP-1R was
measured in real-time by TR-FRET42. CHO-SNAP-GLP-1R cells were labeled with
Lumi4-Tb plus metabolic inhibitors as above. FITC-agonists were added for the
last 30 min. Agonist dissociation was monitored immediately after washing in 10
μM exendin(9-39) by TR-FRET at 37 °C, with 50 μs delay and 300 μs integration
time, and binding quantified as 520 nm over 620 nm signal after nonspecific
binding subtraction with excess (10 μM) unlabeled agonist. To calculate dissocia-
tion kinetics, a one-phase exponential decay function was fitted to specific binding
data.

Competitive association kinetics. TR-FRET was monitored on simultaneous
addition of four or more concentrations of unlabeled agonist plus 10 nM exendin-
4-FITC to CHO-SNAP-GLP-1R cells labeled with Lumi4-Tb and pre-incubated
with metabolic inhibitors. Association and dissociation rate constants were
calculated using the kinetics of competitive binding algorithm in GraphPad
Prism43. Residence time= 1/koff; Kd= koff/kon.

Endosomal binding. CHO-SNAP-GLP-1R cells were labeled with 5 µM
BG-SS-biotin, a cleavable SNAP-Surface probe containing a disulfide bond between
O6-benzylguanine and biotin moieties (a gift from New England Biolabs) plus
streptavidin-terbium cryptate (Cisbio, 0.24 µg ml−1 active moiety). FITC-agonist
was added for 30 min at 37 °C to induce internalization, then removed and washed
with cold HBSS to arrest further endocytosis, and cells treated with 500 mM ice-
cold sodium 2-sulfanylethanesulfonate (MesNa), a membrane-impermeable redu-
cing agent, in alkaline TNE buffer (100 mM NaCl, 50 mM Tris-HCl, pH 8.6) to
cleave BG-SS-biotin specifically from cell surface receptors. Exendin(9-39) was
then added to block further surface receptor binding. FRET between FITC-agonist
and terbium-labeled internalized SNAP-GLP-1R was measured as above.

Endosomal pH investigation. The effect of pH on FITC-agonist fluorescence was
determined as fluorescence intensities [485 nm excitation, 520 nm emission (cut-off
495 nm)] of agonist solutions at specific pHs and data fitted using linear regression.
CHO-SNAP-GLP-1R cells were pretreated ± 100 nM bafilomycin to generate
neutral endosomal pH30 and exposed to 100 nM FITC-agonists for 30 min at 37 °C
to induce internalization. After washing, internalized agonist fluorescence was
measured over 60 min. Average pH of endosomal compartments was estimated
using the relative signal change ± bafilomycin (bafilomycin assumed to achieve a
pH of 7.4) in conjunction with pH calibration for each FITC-agonist.

Immunofluorescence and confocal microscopy. Cells were labeled at 37 °C with
1 μM SNAP-Surface 488 in HEPES-bicarbonate buffer (120 mM NaCl, 4.8 mM
KCl, 24 mM NaHCO3, 0.5 mM Na2HPO4, 5 mM HEPES, 2.5 mM CaCl2, and 1.2
mM MgCl2, saturated with 95% O2/5% CO2, pH 7.4) plus 3 mM glucose and 1%
BSA, stimulated with agonists at 11 mM glucose for the indicated times, fixed and
processed for immunofluorescence with mouse anti-Rab11 (610657, BD Bios-
ciences, 1/20) or anti-rodent GLP-1R monoclonal antibody (Mab 7F38, DSHB, 2
μg μl−1) plus Alexa Fluor 546 secondary (Life Technologies, 1/200), mounted in
Prolong Diamond antifade reagent with 4,6-diamidino-2-phenylindole (Life
Technologies) and imaged with a Zeiss LSM-780 inverted confocal laser-scanning
microscope in a ×63/1.4 numerical aperture oil-immersion objective and analyzed
in Image J. Surface GLP-1R downregulation was measured from images taken with
fixed microscope settings throughout the experiment using a ×20 objective. Mean
intensities were quantified from several images per treatment following thresh-
olding to cell-occupied areas.

Human islet histology. Human islets were incubated overnight in medium plus
11 mM glucose ± 100 nM agonist prior to transfer to 4 °C to arrest endocytosis and
labeling with 1 μM exendin-FITC, PFA fixation, 70% ethanol dehydration and
suspension in 4% agarose small plugs. Once set, plugs were dehydrated through a
serial ethanol gradient and HistoChoice (Sigma) before paraffin embedding with
the Histoembedder station (Leica) and cutting to 1 µm sections with a Leica Jung
RM2035 microtome.

Sections were dewaxed and stained with a rabbit polyclonal anti-FITC (711900,
Thermo Fisher Scientific, 1/100) plus secondary Alexa Fluor 488 antibody (Life
Technologies, 1/200), and guinea pig anti-human insulin (A0564, Dako, 1/1000)
plus secondary Alexa Fluor 546 antibody (Life Technologies, 1/1000) prior to
confocal imaging as above.

FACS trafficking. MIN6B1-SNAP-GLP-1R or CHO-SNAP-GLP-1R cells were
pre-incubated in HEPES-bicarbonate buffer plus 3 mM glucose and 1% BSA before
labeling at 37 °C with 1 μM cleavable BG-SS-488 SNAP-Surface probe (a gift from
New England Biolabs) and stimulation with 100 nM agonist in HEPES-bicarbonate
buffer plus 11 mM glucose and 1% BSA, and trafficking assays performed as fol-
lows27: Briefly, for receptor internalization, cells were placed at 4 °C to arrest
endocytosis following incubation at 37 °C for the indicated times, or directly put at
4 °C for 0 min time-point, and treated with ice-cold alkaline TNE buffer ± 100 mM
MesNa to strip surface-exposed label (plus MesNa) or to measure total labeled
receptor (minus MesNa). For recycling, cells were incubated with agonists at 37 °C
for 15 min, followed by endocytosis arrest at 4 °C, surface label removal as above,
30 min incubation at 37 °C with 10 μM exendin(9-39) to prevent further inter-
nalization, and a second round of surface label removal at 4 °C.

For surface downregulation, labeling was performed with SNAP-Surface-488 in
MIN6B1-SNAP-GLP-1R cells before fixation, or with anti-rodent GLP-1R (2 μg
μl−1) in fixed MIN6B1 and INS-1 832/3 cells plus FITC-conjugated anti-mouse
secondary (F0257, Sigma, 1/200).

Cells were resuspended in ice-cold PBS plus 0.1% BSA and processed using a
BD LSR II flow cytometer (10,000 cells/sample) for receptor trafficking, or BD
LSRFortessa X-20 for surface downregulation. The data was analyzed with FlowJo:
median fluorescence emission at 525 nm from living, single cells was measured. For
MIN6B1-SNAP-GLP-1R, highly auto-fluorescent cells were excluded by dual 525
and 585 nm fluorescence measurement.

The percentage of internalized receptor was calculated as follows:
Equation (1)

FþMe txð Þ=F�Me txð Þð Þ � FþMe t0ð Þ=F�Me t0ð Þð Þ

1� FþMe t0ð Þ=F�Me t0ð Þð Þ
´ 100;

where F+Me(t) and F
−Me(t) are median fluorescence ±MesNa at time tx (15, 30, or

60 min) or t0 (0 min). The percentage of recycled receptor was calculated by
subtracting residual median fluorescence following the recycling protocol from that
measured at t= 15 min, and normalizing to the percentage of internalized receptor
at the same t= 15 min time-point.

Degradation assay. Cells were treated in serum-free medium plus 11 mM glucose
± agonist (100 nM) before lysis (20 mM Tris base, 150 mM NaCl, 1 mM EDTA, 1
mM EGTA, 0.5% Triton X-100 plus complete mini EDTA-free protease inhibitor
(Roche)), addition of urea sample buffer (100 mM Tris-HCl pH 6.8, 2.5% SDS, 4M
urea, 100 mM DTT, 0.05% bromophenol blue), 10 min incubation at 37 °C and
immunoblotting.

Electron microscopy. MIN6B1-SNAP-GLP-1R cells cultured on Thermanox
coverslips (Agar Scientific) were labeled with 2 μM cleavable SNAP-Surface biotin
probe in HEPES-bicarbonate buffer plus 3 mM glucose and 1% BSA, followed by
incubation with 5 μg ml−1 NaN3-free Alexa Fluor 488 Streptavidin, 10 nm colloidal
gold conjugate (Molecular Probes) and stimulation with 100 nM agonist in buffer
plus 11 mM glucose. Conventional EM was performed as described69. Briefly, cells
were fixed, processed, mounted on Epon stubs, polymerized at 60 °C, and 70 nm
sections cut en face with a diamond knife (DiATOME) in a Leica Ultracut UCT
ultramicrotome before examination on an FEI Tecnai G2-Spirit TEM. Images were
acquired in a charge-coupled device camera (Eagle), and gold particles quantified
in at least five cells per experiment using Image J.

Insulin secretion assays. Cells were pre-incubated overnight in 3 mM glucose
medium. For INS-1 832/3, agonists were added in HBSS (acute incubations) or
complete medium (prolonged incubations), at 11 mM glucose, at the time of
seeding into plates. MIN6B1 were treated as INS-1 832/3 but in Krebs-HEPES-
bicarbonate (KHB) buffer (140 mM NaCl, 3.6 mM KCl, 1.5 mM CaCl2, 0.5 mM
MgSO4, 0.5 mM NaH2PO4, 2 mM NaHCO3, 10 mM HEPES, and 1% BSA; satu-
rated with 95% O2/5% CO2; pH 7.4). EndoC-βH1 sublines were treated as INS-1
832/3.

For human islets, acute incubations were performed in KHB buffer at the
indicated concentration of glucose ± agonist28. Overnight incubations were
performed in complete RPMI plus 11 mM glucose ± 100 nM agonist. Samples were
obtained for secreted and, where indicated, total insulin, and analyzed by HTRF
(Cisbio). Percentage of release was calculated, and agonist-stimulated results
expressed relative to 11 mM glucose alone as insulin stimulation index.

Caspase and TUNEL assays. INS-1 832/3 cells were exposed overnight to thap-
sigargin (1 μM) in serum-free RPMI plus 11 mM glucose. Apoptosis was
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determined using Caspase Glo 3/7 (Promega). Signal was expressed relative to
thapsigargin-only wells.

MIN6B1 cells were incubated overnight with serum-free media plus 25 mM
glucose and 0.5 mM palmitate/BSA ± 100 nM agonists, fixed, processed with the In
Situ Cell Death Detection Kit, TMR red (Roche), and imaged as above. Five images
were taken in random areas and a minimum of 500 cells counted per experiment.

Calcium assay in CHO-GLP-1R cells. PathHunter GLP-1R cells were loaded with
calcium dye (Calcium 6, Molecular Devices) in HBSS plus 20 mM HEPES and 2.5
mM probenecid ± 1 μM agonist for 90 min at 37 °C. Agonist was washed and fresh
dye added for 30 min. Fluorescence before and after robotic addition of GLP-1 was
serially read using a Flexstation 3 with 485 nm excitation, 525 nm emission (cut-off
515 nm), and expressed relative to average baseline to establish fold change, with
GLP-1 concentration response data analyzed by four-parameter fit.

Human islet calcium imaging. Ca2+ imaging was performed as described29.
Briefly, islets were incubated for 1 h with Fluo-2 (10 µM) in HEPES-bicarbonate
buffer plus 11 mM glucose. For homologous desensitization, islets were pre-
incubated overnight with 100 nM agonist. Fluorescent signals were normalized
using F/Fbaseline where F is fluorescence at a given time-point and Fbaseline is average
fluorescence between 2 and 4 min.

RNA interference. siRNA transfections were performed with Lipofectamine 2000
for 72 h. Sequences for MIN6B1 were ON-TARGET plus Non-targeting Control
Pool and ON-TARGET plus Mouse Arrb1 and Arrb2 SMARTpools (Dharmacon).
For INS-1 832/3, Silencer Select siRNA (Thermo Fisher Scientific) targeting rat
Arrb1 (ID: 129662) and Arrb2 (ID: 129665), or negative control siRNA, were used.
See Supplementary Table 1 for siRNA target sequences.

Quantitative PCR. Knockdown efficiency was determined by qRT-PCR using
standard methodologies. For INS-1 832/3, Rn01648673_m1 (Arrb1) and
Rn01456874_g1 (Arrb2) Taqman probes were used, with 18S as endogenous
control. For MIN6B1, SYBR Green primers were designed using PerlPrimer. See
Supplementary Table 3 for qRT-PCR primer sequences.

SDS–PAGE and western blotting. Samples were fractioned by SDS–PAGE on 8%
gels under reducing conditions, immunoblotted onto nitrocellulose membranes
(GE Healthcare) and bands detected by enhanced chemiluminescence (GE
Healthcare) onto films developed on a Xograph Compact X5 processor.

Antibodies were primaries rabbit anti-β-arrestin-1/2 (D24H9, Cell Signaling,
1/1000), rabbit anti-SNAP tag (New England Biolabs, 1/500), mouse anti-α-tubulin
(T5168, Sigma, 1/1000), rabbit anti-β-actin (4970, Cell Signaling, 1/1000), and
mouse anti-GAPDH (6C5, Merck, 1/10,000); and IgG-HRP secondaries (Santa
Cruz Biotechnology).

Animal studies. All animal procedures were approved by the British Home Office
under the UK Animal (Scientific Procedures) Act 1986 (Project Licence 70/7596).
Male C57BL/6 J mice (8–10 weeks, Charles River) were maintained at 21–23 °C and
light-dark cycles (12:12 h schedule, lights on at 07:00). Ad libitum access to water
and normal chow (RM1, Special Diet Services) or a HFHS diabetogenic diet (AIN-
76A, TestDiet) was provided unless otherwise stated. HFHS animals were initially
group housed (5 per cage) for >4 months before transfer to single cages. Treat-
ments were randomly allocated according to body weight. Group sizes of 8–10 were
deemed adequate to detect treatment-related differences as per initial dose-finding
glycaemia. During experiments, one researcher was aware of treatment allocation
but others were blinded. No animals were excluded from the analysis.

Dose-finding glycaemia study. HFHS mice were fasted for 2 h before IP injection
of 50 μl agonist or vehicle (0.9% NaCl). Blood samples were obtained at indicated
time-points, and glucose measured using a Contour glucose meter (Bayer).

Intraperitoneal glucose tolerance tests. Mice were fasted overnight (HFHS
mice) or the morning of the procedure (lean mice). Agonist was administered by IP
injection, and D-glucose (2 g kg−1) injected IP immediately, 4 or 8 h afterwards.
Tail vein samples were obtained for immediate glucose measurement as above, or
into lithium heparin-coated microvette tubes for plasma insulin measurement
using a mouse insulin-specific HTRF (Cisbio).

Pharmacokinetic study. Plasma agonist concentration after a single IP injection
(24 nmol kg−1) was measured with an exendin-4 C-terminus-specific ELISA
(Phoenix Pharmaceuticals), a peptide region that does not differ between agonists,
hence equally detecting exendin-4 and exendin-phe1 (confirmed by analysis of
known concentrations of each agonist).

Acute food intake study. Mice were fasted overnight and access to their
normal diet was returned after IP agonist injection with weight monitoring of food
intake.

Behavioral satiety study. Lean mice were fasted overnight before IP agonist
injection. Observers were blinded to treatment allocation. A 30 min after agonist
injection, diet was returned. Behavior of each mouse was observed for 5 s every 3
min for 60 min. Behaviors were classified as feeding, drinking, pica (consumption
of nonnutritive material), activity (locomotor, rearing, grooming), or stationary.
Number of observations of each behavior per mouse was recorded.

Conditioned taste aversion study. Lean mice were trained to consume their daily
water requirements over 1 h, then given access to saccharin-sweetened Kool-Aid,
followed immediately by IP injection of a potentially aversive stimulus (vehicle,
agonist, or LiCl 0.15 M in a volume equivalent to 2% body weight as positive
control). After 24 h recovery, mice were given a free choice of water or Kool-Aid.
Taste preference was calculated as Kool-Aid/total fluid consumed.

Chronic administration study. Subcutaneous osmotic minipumps (ALZET
model 2004, Charles River) filled with agonist or vehicle (0.9% NaCl) to ensure
delivery of a weight-adjusted dose of 0.24 nmol kg−1 day−1 were inserted under
gas anesthesia. Mice and diet were weighed 1 day post-surgery and body and
food weight measured at indicated intervals. IPGTTs were performed on day 14
and mice sacrificed by decapitation during fasting. As the exendin-4 ELISA
above was not sensitive enough to detect circulating drug levels at this dose, a
separate cohort of lean animals received 2.4 nmol−1 kg−1 day−1 agonist via
osmotic minimpump and, with samples taken after 16 days and exendin-4 levels
analyzed as above.

Liver histology. Liver tissue was PFA-fixed and dehydrated in 70% ethanol.
Heaematoxylin- and eosin-stained sections were scored by a histopathologist
blinded to treatment allocation using the Nonalcoholic Activity Score70 with fat
scored 0–3, ballooning 0–2, and lobular inflammation 0–2.

Statistical testing. GraphPad Prism 6.0 was used for all analyses. Curve fitting and
bias calculation were performed as described above in the relevant Methods sec-
tion. For in vitro experiments, intra-experimental replicate mean was treated as a
single replicate. ANOVAs or two-tailed t-tests were performed throughout, with
data visually confirmed as approximately normally distributed. Dunnett’s post-hoc
tests were performed for specifically comparing agonist responses with exendin-4,
and Tukey’s for differences between all groups. Other post-hoc tests are indicated
in the figure legends.

Data availability. Data supporting the findings of this manuscript are available
from the corresponding authors upon reasonable request. Non-normalized data
sets from selected results are shown in Supplementary Fig. 10. Full scans of blots
presented in cropped form in the manuscript are shown in Supplementary Fig. 11.
Individual red and green channels of RBG images from the main figures are shown
in Supplementary Fig. 12.
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