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Metabolism rewiring is an important hallmark of cancers. Being one of the most abundant

free amino acids in the human blood, glutamine supports bioenergetics and biosynthesis,

tumor growth, and the production of antioxidants through glutaminolysis in cancers. In

glutamine dependent cancer cells, more than half of the tricarboxylic/critic acid (TCA)

metabolites are derived from glutamine. Glutaminolysis controls the process of converting

glutamine into TCA cycle metabolites through the regulation of multiple enzymes, among

which the glutaminase shows the importance as the very first step in this process.

Targeting glutaminolysis via glutaminase inhibition emerges as a promising strategy to

disrupt cancer metabolism and tumor progression. Here, we review the regulation of

glutaminase and the role of glutaminase in cancer metabolism and metastasis.

Furthermore, we highlight the glutaminase inhibitor based metabolic therapy strategy

and their potential applications in clinical scenarios.
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INTRODUCTION

Sustained and unhindered proliferative tumor cells require high levels of energy and building block

molecules which depend partially on the availability of nutrients and oxygen in the

microenvironment. In 2011, Hanahan et al. described reprogramming of energy metabolism as

an emerging hallmark of neoplastic disease (1). Pavlova et al. further summarized six cancer
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associated metabolic changes, including enormous influx of

nutrients, re-shaped nutrient acquisition under hostile

condition, use of intermediates of glycolysis/citric acid cycle

(TCA cycle) for biosynthesis and NADPH production, increased

nitrogen demand, altered epigenetic modification of metabolism

related genes together with changes in post-transcriptional
modification (PTM) of the enzymes, and ultimately the

metabolic interaction with the microenvironment (2).

Reprogrammed metabolism characterized by the markedly

increased consumption of glucose and glutamine is emphasized

when several examples have revealed that it could support tumor

cell survival and biosynthesis (3, 4). Not merely an increased
glucose uptake, remodeled glucose catabolic pattern is also

considered as a feature of proliferating cells. Cancer cells

preferentially utilize glucose in an oxygen “independent” way,

in which they convert most pyruvate to lactate rather than

delivering them into TCA cycle for a higher ATP yield

(described as ‘Warburg effect’) (5). A widely accepted theory
rationalizing such phenomenon is that aerobic glycolysis

provides abundant intermediates for a quick de novo synthesis

of nucleotides, non-essential amino acids (NEAAs) and fatty

acids and certainly, a more rapid ATP supplementation than

TCA cycle (6, 7).

Glutamine is the most abundant amino acid in blood and

muscle, which provides a stable nitrogen and carbon pool for
protein, nucleotide, and lipid biosynthesis (8). After first

evidenced by Eagle et al. that the glutamine consumption in

HeLa cells is 10 to 100 times higher than any other amino acids

(9), augmented glutamine metabolism has been reported to be

significantly linked with tumor growth, invasion, and metastasis

in various cancer types (e.g. ovarian cancer, breast cancer, and
pancreatic cancer) (2, 10). Due to the diversion of pyruvate from

entering TCA cycle, cancer cells rely more on glutamine carbon

for anaplerosis (10, 11). Given the crucial role of glutamine in

bioenergetics and biosynthesis in cancers, the study on glutamine

metabolism could ensure a better understanding of cancer

progression, thus further inspiring the development of

potential methods of targeted therapy. In this review, we focus
on the current understanding of glutaminase-related

glutaminolysis in cancer metabolism. The role of glutaminase

in tumorigenesis and their regulation in metastasis are also

discussed. Furthermore, the glutaminase inhibitor based

metabolic targeted therapies are summarized and highlighted.

GLUTAMINE METABOLISM IN CANCER

Glutamine was believed to be a non-essential amino acid in

normal physiological condition until 1990, when Lacey et al.

firstly uncovered that the supply of glutamine under a catabolic

stressed condition failed to meet the demand of this nutrient.

Since then, glutamine has been regarded as a conditional

essential amino acid (12). Cancer cells undergo aerobic

glycolysis (Warburg effect), resulting in restricting pyruvate
entry into the TCA cycle. A process known as glutaminolysis

replenishes TCA cycle with intermediates from glutamine (13).

Using isotopic tracers, a number of studies, including both in

vitro and in vivo, have demonstrated the massive contribution of

glutamine to TCA metabolites pool in glutamine dependent

cancer cells (11, 14–16). Glutamine-driven oxidative

phosphorylation has also been discovered as a major ATP

source in transformed mammalian cells (17).
Rapidly-dividing cells including those in kidney, gastrointestinal

tract, immune compartments and cancer cells, possess a

tremendous appetite for glutamine. For example, deprivation of

glutamine induces necrosis of intestinal mucosa and apoptosis in

human cell lines (12, 18), while additional oral supplementation of

glutamine among cancer patients undergoing radio- and
chemotherapy improves mucosa healing and ameliorate life

quality (19). Flux of glutamine is mediated by the transporter

SLC1A5 (ASCT2) and antiporter SCL7A5/SCL3A2 on cell

membrane, and the newly identified SLC1A5 variant on the inner

mitochondrial membrane (20, 21). Glutaminolysis in mitochondria

starts from the conversion of glutamine to glutamate by
glutaminase. Then glutamate metabolism forks into two different

ways: either converted by glutamate dehydrogenase (GLUD) intoa-
KG to fuel TCA cycle, or to join a biosynthetic pathway for the

production of NEAAs via aminotransferases (e.g. alanine, aspartate,

and phosphoserine) (10). Apart from its contribution in

bioenergetic and biosynthetic process, glutaminolysis is also

directly involved in the regulation of redox homeostasis through
the synthesis of glutathione (GSH) by providing glutamate (22). In

addition, glutamine could also function as a signaling molecule,

such as in the regulation of mTOR pathway (23, 24). Despite the

diverse constitution and activity of enzymes involved in

glutaminolysis under different cellular status, the maintenance of

a sufficient intracellular concentration of glutamate relies
predominantly on the activity of phosphate-dependent

glutaminase (GLS), whose disrupted expression has been observed

in various cancer cell lines (25). Human GLS could roughly be

summarized as two isoforms which derive from two different but

related genes. The kidney-type (GLS1 or KGA) is ubiquitously

expressed in various normal tissues, while the liver-type (GLS2 or

LGA) is restricted in the liver, brain and pancreas (26, 27). Unlike
the coherent expression tendency of GLS1 in various cancer types

(26), the function pattern of GLS2 seems to be more complex and

controversial (28, 29). Accumulating evidence has confirmed that

the activity of both GLS1 and GLS2 rest highly on the metabolic

state of the cells, as GLS1 is activated by high level of phosphate and

inhibited by the enzymatic product glutamate, while GLS2 is
activated by lower level of phosphate as well as ammonia (30, 31).

Though glutaminases are mainly reported as mitochondrial

proteins, the localization of KGA in cytosol and GLS2 in nuclei

have also been revealed (32, 33). Further discussion of the

glutaminase isoenzymes are displayed in the following parts.

Besides, as one key component in cellular intermediary

metabolism, glutamine can act either as nitrogen donor (a- and
g- nitrogen) or carbon donor. While the carbon skeleton from

glutamine could directly reserve as a carbon reservoir in protein and

fatty acid synthesis, the release of a free amide (g-nitrogen) group
exploits its new role in de novo biosynthesis for purines and

pyrimidines with 2 glutamine derived nitrogen molecules for the
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purine ring and one nitrogen for pyrimidine ring (34). In addition,

glutaminemetabolites account partially for the synthesis of fatty acid

synthesis in cancer cells with impaired TCA cycle products, e.g.

citrate that could support the synthetic process. Such mechanism is

mediated by a process called reductive carboxylation, which is

briefly described as the conversion of a-ketoglutarate (a-KG) to
citrate catalyzed by isocitrate dehydrogenases (IDHs) (35). Studies

have observed reductive carboxylation in hypoxic cancer cells in

vitro and confirmed its importance in supporting lipid genesis for

tumor progression in vivo (36, 37). Additionally, glutamine

metabolites participate in keeping cellular and organismal

homeostasis. Free ammonia, which could be released from
glutamine catabolism, is a key component for acid-base

homeostasis in kidney (38). Enhanced reductive formation of

citrate from glutamine by IDHs also supports redox homeostasis

and mitigates oxidative oxygen species (ROS), thus cooperatively

facilitating spheroid forming in 2 lung cancer cell lines (39). Taken

together, altered glutamine metabolism in cancer cells strongly
supports tumor growth and progression, which in turn could

encourage the investigation for metabolic targeted therapy

of cancers.

REGULATION OF GLUTAMINASES

IN CANCER

Glutaminases are encoded by two different genes called GLS1
and GLS2, and both have longer and shorter isoforms as a result

of alternative splicing: KGA and glutaminase C (GAC) for GLS1,

and LGA and glutaminase B (GAB) for GLS2 (31) (Figure 1).

While GLS1 is usually upregulated in cancers, the expression of

GLS2 is generally repressed in cancers (26). GAC has higher

activities and is the predominant GLS1 isoform in cancers (40–
42). Recently, Redis et al. revealed that the alternative splicing of

GLS1 is regulated by a long non-coding RNA (lncRNA) called

CCAT2, which interacts with CFIm complex and results in the

preferential expression of GAC (43). Here, we summarize the key

regulators of glutamine metabolism in cancers, focusing on the

regulation of glutaminases by oncogenes (c-Myc, KRAS), tumor

suppressor (TP53) and other factors.

The oncogene c-Myc has been reported to regulate the
expression of several genes in glutamine metabolism, including

GLS1 (44), glutamine synthetase (GLUL) (45), GLUD and

aminotransferases (46). c-Myc promotes the uptake of glutamine

by directly binding to the promoter region of glutamine

transporters SLC1A5 and SLC38A5 (47, 48). However, for the

regulation of GLS1, c-Myc indirectly promotes the expression of
GLS1 through transcriptional repression of miR-23a and miR-23b

(44), which are also repressed by NF-kB (49). MYC could also

upregulate GLS1 by repressing the expression of an antisense

lncRNAGLS-AS (50). Another oncogenic transcriptional factor c-

JUN also regulates the gene expression of GLS1 (51). Several

pathways regulate the expression of GLS1 through c-MYC
have also been reported. The GSK3a/b pathway indirectly

upregulates GLS1 through modulating the protein stability of c-

Myc and c-Jun (52). The mTORC1/S6K1 pathway positively

regulates GLS1 through the eIF4B-dependent control of c-Myc

translation (53).

RAS proteins are frequently mutated in many types of human

cancers (54). KRAS is the most frequently mutated isoform,
especially in pancreatic cancer with more than 90% of the

patients (55). Both c-Myc and KRAS have been reported to

enhance glycolysis and glutamine addiction, while diverting

glucose away from TCA cycle (11, 47). However, the

mechanism of glutamine-dependent tumor growth is largely

unknown. Son et al. reported a non-canonical pathway of
glutamine use in pancreatic ductal adenocarcinoma (PDAC)

cells, in which the anabolic metabolism of glutamine is mainly

through the glutamic-oxaloacetic transaminase 1 (GOT1)

dependent pathway (56). This non-canonical glutamine

A

B

FIGURE 1 | Genomic structures of human GLS1 and GLS2 and alternative transcripts. (A) Two alternative transcripts arise from GLS1, KGA, and glutaminase C

(GAC). KGA is the longer isoform with all exons except exon 15, while GAC is the shorter isoform with exons 1–15. (B) Two alternative transcripts arise from GLS2,

GAB, and LGA. GAB is the longer isoform with all exons, while LGA is the shorter isoform lack of exon 1.
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metabolism also contributes to the maintenance of redox

homeostasis in PDAC, and the inhibition of anabolic

glutamine metabolism sensitizing PDAC to oxidative stress.

Interestingly, it was suggested that different KRAS mutations

may show different effects. For instance, KRAS G12Vmutation is

less glutamine-dependent than G12C or G12D mutation in lung
cancer cells (57). However, this difference of glutamine-

dependence is not explained by the differential expression of

glutaminolysis related enzymes. In addition to the regulation of

GOT1 by KRAS, oncogenic PIK3CA mutations also have been

reported to mediate metabolic reprograming of glutamine in

colorectal cancer (CRC) by upregulating glutamate pyruvate
transaminase 2 (GPT2) (58). However, KRAS mutants did not

show differential response to glutamine deprivation in case of

CRC cell lines. Moreover, NRF2 (nuclear factor erythroid 2-

related factor 2) pathway plays a critical role in the metabolic

reprogramming to glutamine dependence in KRAS-mutated cells

(59, 60). Mukhopadhyay et al. reported that glutamine
metabolism was rewired by NRF2, which also promotes

chemotherapy resistance in KRAS-driven PDAC cells (59).

Galan-Cobo et al. reported that LKB1 (liver kinase B1) and the

KEAP1/NRF2 pathways cooperatively drove metabolic

reprogramming and enhanced sensitivity to the glutaminase

inhibitor CB-839 both in vitro and in vivo (60).

Hypoxia-inducible factor (HIF) drives metabolic adaptation to
hypoxic conditions in many solid tumors (61, 62). Under hypoxic

conditions, cells use glutamine to generate citrate by enforcing a

shift from glutamine oxidative metabolism towards reductive

carboxylation to support proliferation through lipids synthesis

(35, 36, 63). Thus, hypoxia is an inducer of reductive metabolism

of glutamine in cancers. Furthermore, hypoxia upregulates GLS1
expression in amanner of transcriptional activation by HIF-1a (64).

Besides the transcriptional and post-transcriptional regulation of

glutaminase, PTM is also important for the activity of glutaminase

(65–67). Wang et al. found that hyperactivation of Rho-GDPase/

NF-kB significantly enhanced glutaminase activity by promoting its

phosphorylation, while not affecting the expression levels of the

enzyme (65). Later on, Han et al. revealed that the key Ser314
phosphorylation site on GAC was regulated by NF-kB-PKCϵ axis
(68). In addition, HGF-MET axis is reported to activate GLS activity

by phosphorylation, though the phosphorylated site is not indicated

(69). Furthermore, mitochondrial desuccinylase SIRT5 stabilizes

GLS through desuccinylation of residue K164, which protects GLS

from ubiquitin mediated degradation (70).
GLS2 seems to be regulated in a different way from GLS1’s.

GLS2 has been proved to be a target of p53 (71, 72). Interestingly,

the regulation of GLS2 by p53 was involved in the regulation of

ferroptosis (73, 74). Besides p53, TAp63 and TAp73 as well

regulate the expression of GLS2 (75, 76). Differently to GLS1,

GLS2 is directly upregulated by N-Myc in neuroblastoma (77). In

breast cancer, GLS2 expression is preferentially upregulated in
luminal-subtype cancers via promoter methylation and GATA3,

a master regulator of luminal differentiation (78). Recently, the

post translational modification of GLS2 by GCN5L1 has also

been revealed, which modulates the oligomerization and

acetylation of GLS2 (79). In summary, these observations renew

our understanding of glutamine metabolic reprogramming in

cancers and contribute to the optimization of glutamine targeting

therapy. A summary of the regulation of glutamine metabolism in

cancers is depicted in Figure 2.

OPPOSITE ROLES OF GLS1 AND GLS2

IN TUMORIGENESIS

Glutaminase is dysregulated in many cancers, which makes it an
appealing target for cancer therapies (22). However, whether the

functions of glutaminase is tumorigenic or tumor suppressive

remains controversial, especially from the view of isoenzymes

(26). Generally, the upregulation of GLS1 links with augmented

tumorigenesis, while the expression of GLS2 is more likely

related with quiescent or differentiated cell states.
GLS1, a mitochondrial enzyme, hydrolyzes glutamine into

glutamate and fuels rapid proliferation of cancer cells. GLS1

might be emphasized as a multiple player in tumorigenesis and

progression of human cancers (44, 80). Increased GLS1

expression in a variety of human cancer types was associated

with significantly decreased patient survival, which suggests its

function as a potential prognostic biomarker for many human
cancers, including hepatocellular carcinoma (HCC), ovarian

cancer, osteosarcoma, colorectal cancer (CRC) and breast

cancer (64, 81–85). Directly or indirectly elevated expression of

GLS1 correlates with poor prognosis in these human cancers and

GLS1 could be developed as a diagnostic and therapeutic target

for these types of cancers (26). Xiang et al. demonstrated that
GLS1 expression was required for hypoxia-induced migration

and invasion in vitro and for tumor growth and metastatic

colonization in vivo in CRC cells (64). The important role of

GLS1 also shows that the overexpression of GLS1 induced

metastasis and invasion and promoted epithelial-mesenchymal

transition (EMT) in intrahepatic cholangiocarcinoma (ICC) cells

(86). In addition, Li et al. demonstrated that targeting GLS1 not
only reduced the expression of stemness-related genes including

NANOG, OCT4, KLF4, SOX2 and c-Myc, but also suppressed

CSC properties via ROS/Wnt/b-catenin signaling (81).

Compared with GLS1, GLS2 is more regarded as a tumor

suppressor. GLS2 is repressed in glioblastoma, HCC and colon

cancers (87–89), while overexpressed in luminal subtype of breast
cancer (78). As a target gene of p53, GLS2 shows antioxidant

function through regulation of ROS level and GSH/GSSG ratio in

cells, contributing to its role in tumor suppression (71, 72, 90). The

upregulation of GLS2 in cancer cells induced an antiproliferative

response with cell cycle arrested at the G2/M phase and reduced

tumor cell colony formation in HCC (33, 71). The researches

revealed that GLS2 negatively regulates the PI3K/AKT signaling
and plays an important role in tumor suppression in HCC (89).

Furthermore, Kuo et al. demonstrated that expression of GLS2

inversely correlates with poor prognosis and early recurrence in

HCC patients (91). On the contrary, Dias et al. revealed that GLS2

amplification or overexpression is linked to worse overall, disease-

free and distant metastasis-free survival in breast cancer (92). The
increased expression of GLS2 leads to enhanced cell migration,
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invasion and lung metastasis (92). Consistently, Lukey et al. found

that the expression of GLS2 supports proliferation and tumorigenesis

in luminal subtype breast cancers (78). These data established an

unforeseen tumorigenic role of GLS2 in breast cancer.
Interestingly, Ishak Gabra et al. reported that dietary

glutamine supplementation inhibited melanoma tumor growth

by suppressing epigenetically activated oncogenic pathways (93).

The inhibitory effect of glutamine in tumor growth observed here

is due to the elevated intra-tumoral a-KG level, consistent with

the reported role of a-KG as a tumor suppressor (94, 95). Taken
together, GLS1 is more likely to be tumorigenic and a promising

therapeutic target, whereas GLS2 behaves more like a tumor

suppressor factor despite some controversial results.

GLUTAMINOLYSIS AND CANCER

METASTASIS: EMT, TUMOR

IMMUNOLOGY, AND TUMOR

MICROENVIRONMENT

In addition to the multiple functions of glutamine metabolism in

regulating tumor biology described above, a number of studies

have also suggested that glutamine metabolism participated in

several aspects of tumor metastasis. By analyzing eight ovarian

cancer cell lines, Yang et al. suggested that glutamine dependent

ovarian cancer cells showed stronger invasion ability and were
related to worse patient survival when compared with glutamine

non-dependent cancer cells (83). In addition, suppressing

glutamine uptake by inhibiting glutamine transporter ASCT2

significantly inhibited prostate cancer growth and metastasis

(96). Moreover, in patient-derived organoids model, Braun et al.

found that glutamine was increased more than four times from
early-recurrent PDAC patients with the development of tumor

recurrence within the first six months after radical surgery, than

those from late-recurrent patients, suggesting that glutamine

metabolism may be diverse according to different tumor

malignancies (97). To date, the exact mechanisms linking

glutamine metabolism to tumor metastasis are still unclear, but

studies have demonstrated that glutamine may participate in the
metastatic process through the interaction with EMT, tumor

immunology and tumor microenvironment.

EMT is an important cellular program that enables

epithelial cells to acquire a mesenchymal phenotype with

increased motility as well as invasive ability, and is widely

considered as a critical process for the initiation of the

FIGURE 2 | Glutamine metabolism in cancer. Cancer cells uptake glucose and glutamine through GLUT and ASCT2, respectively. After transporting into cells,

glutamine is catalyzed to glutamate by glutaminases, which have two isoforms: GLS1 and GLS2. Glutamate is further converted to a-KG through GLUD or

aminotransferases. The resulting metabolites can supply for bioenergetics through tricarboxylic/critic acid (TCA) cycle and support biosynthesis of proteins,

nucleotides and lipids. In addition, glutamine metabolism also contributes directly to GSH synthesis. The regulation of glutaminase is marked in pink.
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metastatic cascade (98). Glutamine metabolism was reported

to be related to EMT in several types of malignant tumors.

Takaoka et al. found an inverse correlation between GLS1 and

E-cadherin expression by analyzing seven CRC cell lines. And

the knockdown of GLS1 not only elevated E-cadherin

expression but also suppressed Vimentin and Slug expression
in CRC cells, referring to as an EMT induction by GLS1 (99).

By transactivating GLS1 and GOT2 to enhance asparagine

synthesis, SOX12 overexpression promotes CRC cell proliferation,

migration, invasion, and metastasis (100). GLS1 was also reported

to promote cell migration and invasion by regulating EMT in

intrahepatic cholangiocarcinoma, in which GLS1 expression was
higher in tumor tissues than in peritumoral tissues, and the higher

expression of GLS1 independently predicted a poor survival (86).

Besides, Ramirez-Peña et al. found that experimentally induced

EMT breast cancer cells showed a decreased GLS2 expression,

which could be further restored by inhibiting the EMT

transcription factor FOXC2 (101). GLS2 was found to be
capable of repressing cell migration, invasion, and metastasis

of HCC through the suppression of EMT secondary to the

downregulation of Snail via Dicer-miR-34a-Snail axis in vitro

and in vivo (91), suggesting a negative regulation role of GLS2 on

EMT. Likewise, GLS2 but not GLS1 could not only inhibit HCC

cell migration and invasion in vitro, but also suppress lung

metastasis in a mouse model through inhibiting Rac1 activity
and mediating p53’s function (28). Conversely, Dias et al.

reported that GLS2 expression was able to increase the EMT

markers as well as cancer cell migration and invasion partly

through the regulation of ERK and ZEB1 in breast cancer (92),

indicating a positive induction of EMT by GLS2. In general,

GLS1 shows a positive regulation of EMT process while
the functions of GLS2 on EMT are diverse and may be

attributed to different tumor types as well as varying degrees of

tumor malignancy.

Immune escape is a major reason for tumor progression and

metastasis. Some studies have suggested that a crosstalk may

exist between glutamine metabolism and tumor immunology.

GLUL was found to modulate macrophage skewing toward the
M2 phenotype that was relevant for metastasis formation,

where GLUL-deficient macrophages inhibited T Cell

suppression, endothelial cell capillary formation as well

cancer cell motility, and induced lymphocyte recruitment to

prevent tumor metastasis (102). GLUL was also found to

enhance HCC cell migration and invasion both in vitro and
in vivo, and higher GLUL level independently predicted a

poorer prognosis in HCC patients (103). In addition, Wu

et al. suggested that glutamine metabolism could support

highly immunosuppressive tumor-infiltrating immature

myeloid cells with glutamine-derived a-ketoglutarate, and

could also regulate their suppressive capacity through the

glutamate-NMDA receptor axis, in which inhibiting GLS1
improved the efficacy of anti-PD-L1 treatment, with

decreased Arginase1+ myeloid cells, increased CD8+, IFNg+,
as well as granzyme B+ T cells, and delayed tumor growth in an

immunotherapy-resistant mouse model (104). Johnson et al.

demonstrated that GLS1 plays an important role in T cell

activation and subset specification (105). GLS1 could promote

differentiation of Th17 cells but distinctly suppress

differentiation and effector function of CD4 Th1 and CD8

CTL cells. Despite that chronic GLS deficiency could impair

T cell responses, transient GLS inhibition by CB839 also

showed enhanced Th1 and CD8 CTL effector function and
long-lasting cell numbers in vivo, providing a novel hint that

transient GLS inhibition may be used in combination with

immunotherapy to enhance the treatment effect (105). JHU-

083 is a new inhibitor synthesized by Jonathan D group which

is the prodrug of glutamine antagonist DON (106). By

concurrently using JHU-083, Leone RD et al. found that
glutamine blockade enhanced the anti-tumor effects of the

anti-PD-1 therapy compared with anti–PD-1 therapy alone.

Glutamine blockade with JHU-083 monotherapy could also

enhance endogenous antitumor immunity by triggering tumor

immune rejection and adaptive immune memory without

additional immunotherapy (106). Besides, targeting glutamine
metabolism with JHU-083 inhibits both tumor growth and

metastasis in an immune-dependent manner, including inhibiting

infiltration of myeloid-derived suppressor cells, reprogramming

myeloid-derived suppressor cells and tumor-associated

macrophages from a suppressive to a proinflammatory

phenotype, increasing immunogenic cell death and antigen

presentation, and reducing kynurenine levels in both tumor and
myeloid-derived cells by inhibiting IDO expression, which in turn

inhibited the development of metastasis and further enhanced

antitumor immunity (107). Given the low response rate as well as

high tendency of adaptive or acquired resistance in cancer

immunotherapy (108), investigating the relationship between

glutamine metabolism and tumor immunology may provide an
insightful treatment solution in the future.

Glutamine metabolism is also joined in the biologic interaction

within the tumor microenvironment. Yang et al. found that cancer

associated fibroblast (CAF) synthesize glutamine in glutamine-

deficient tumor microenvironment to maintain glutamine-

addicted ovarian cancer cell growth, where targeting glutamine

synthetase in tumor stroma could reduce tumor weight and
metastasis in orthotopic ovarian carcinoma mouse model, and

the treatment effect can be further enhanced by co-targeting

glutaminase in cancer cells (109). Due to the poor vascularization

and hypoxic environment, PDAC tumors have been found to be

commonly deprived of several nutrients, including glutamine

(110). Pharmacologically, glutamine deprivation by glutamine
analog DON leads to the induction of EMT through selectively

up-regulating the EMT transcription factor Slug in both KPC

mouse model and human PDAC cell lines, contributing to

enhanced tumor migration and invasion capacities (111).

Besides, under the hypoxic condition, Xiang et al. found that

GLS1 was implicated in hypoxia-induced cancer cell invasion

and metastasis, where GLS1 knockdown significantly suppressed
CRC cell migration and invasion in vitro, as well as tumor

growth and metastatic colonization in vivo (64). Besides,

extracellular vesicles (EV) are wildly considered as an

important bridge connecting cell communications in the tumor

microenvironment and are involved in the process of pre-
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metastatic niche formation (112). In the LNCaP prostate cancer

progression mode, Dorai et al. linked EV to glutamine

metabolism, in which large EVs produced from highly

bone metastatic C4-2B cells was significantly decreased when

treated with glutaminase inhibitor BPTES, leading to an

inhibition of bone metastasis in prostate cancer (113).
Moreover, GLS1 inhibition combined with metformin

treatment suppressed tumor growth and reduced metastatic

progression in spontaneous metastasis mouse models with

osteosarcoma (114).

Tumor metastasis is a natural and mostly inevitable process

during the tumor progression, and also the leading cause of
tumor-associated death. Given glutamine metabolism is involved

in different phases of tumor metastasis development, genetically

or pharmacologically targeting glutamine metabolism may

suppress the initiation and progression of metastasis and

provide a promising prospect in cancer treatment.

GLUTAMINASE INHIBITOR BASED

THERAPEUTIC STRATEGY

Due to the critical role of glutaminolysis in cancer metabolism, it
has been a promising therapeutic target to combat cancers. As

the first step of glutaminolysis, glutaminase convert glutamine to

glutamate. This important role of glutaminase in glutamine

metabolism makes it a valuable target for cancer therapy. The

application of glutaminase inhibitors attenuates the glutamine to

glutamate conversion, elevates intracellular ROS level and
impairs antioxidant GSH production in cancer cells (15, 115,

116). Furthermore, the combination of glutaminase inhibitors

with chemotherapy agents also increased sensitivity of cancer

cells to chemotherapy in pancreatic cancer and ovarian cancer

(59, 117, 118).

To date, many potent small molecule inhibitors have been

developed to target glutaminase, including DON, JHU-083,
BPTES, CB-839, and compound 968 (119). DON is a

glutamine antagonist, binds covalently to the enzyme active

site and broadly inhibits glutamine-using enzymes, including

glutaminase and glutamine amidotransferases involved in de

novo nucleotide synthesis, amino acid synthesis, and

hexosamine production (120). However, this ‘non-selective’
inhibition of glutamine metabolism induces high degree of

toxicity, prevents its further investigation in glutamine

targeting. To minimize the toxicity of DON, a prodrug strategy

is developed (120). JHU-083 is a newly synthesized prodrug of

DON, which can be administered in an inert state and then be

activated preferentially in the tumor microenvironment through

enzymatic cleavage, thus alleviating the previously reported
toxicity of DON (106, 121). Other DON prodrugs such as

Rais-5C and Nedelcovych-13d have also been reported (122–

124). Unlike the glutamine mimetics, the allosteric inhibitors

such as BPTES and CB-839, are selectively targeting glutaminase

without disturbing other aspects of glutamine metabolism (25,

124). BPTES is now the most frequently used allosteric
glutaminase inhibitor, which specifically inhibits kidney type

glutaminase activity through the formation of an inactive

complex (125). Though BPTES shows high specificity and

efficiency in inhibiting cancer cell proliferation in vitro, the

drawbacks of poor aqueous solubility and low bioavailability in

vivo restrict its further applications in clinical trials (124). In

order to improve drug solubility, several derivatives of BPTES
were synthesized through structural modifications (119, 126–

128). Later on, CB-839, a more potent, and orally bioavailable

BPTES derivative was discovered. CB-839 shows a broad anti-

proliferative activity in a number of cell lines in culture (42, 129,

130). Importantly, dozens of clinical trials of monotherapy or

combination therapy with CB-839 are currently ongoing (42,
124). Another widely used glutaminase inhibitor is compound

968, a dibenzophenanthridine, which is first reported to be a

GAC inhibitor and repressed oncogenic transformation in breast

cancer cells, but is lately found by Lukey et al. to be a pan-

glutaminase inhibitor with a moderate selectivity for GLS2 (65,

78). Recently, more potent GLS inhibitors were investigated,
including CB-839 selenadiazole-derivatives CPD-20, CPD-23

(131), and Physapubescin I (132). Structures of selected

inhibitors and the allosteric binding of GLS1 with BPTES and

CB-839 are shown in Figure 3 (66). However, less efforts have

been made to target GLS2 due to its controversial roles in tumor

suppression (26, 71, 92). Lee et al. reported a series of alkyl

benzoquinones that preferentially inhibit GLS2 rather than
GLS1, which function through the specific binding to an

allosteric pocket at the C-terminal end of GLS2 monomer

(133). Yeh et al. reported a class of thiazolidine-2,4-dione

compounds targeting both GLS1 and GLS2, while moderately

selective for GLS1 over GLS2 (134).

Despite the promising cell proliferation inhibition results
observed in vitro, some cancer cells show resistance to

glutaminase inhibitors. More importantly, the in vivo data of

glutaminase inhibition is still quite limited and shows

controversial results (42, 130, 135). Gross et al. reported

significant antitumor activities of CB-839 in two xenograft

models, a patient-derived TNBC model and a basal like

HER2+ cell line model (JIMT-1) (42). Lee et al. reported a
successful inhibition of undifferentiated pleomorphic sarcoma

(UPS) tumor growth with CB-839 (135). Combination therapy

of CB-839 and PARP inhibitor olaparib also showed prolonged

survival in a xenograft model of ovarian cancer (136). However,

Biancur et al. found no antitumor effect of CB-839 in both

autochthonous and subcutaneous mouse models of PDAC (130).
Their work suggested that compensatory metabolic networks

emerged during glutaminase inhibition, with the activation of

alternative pathways of glutamate production. Nevertheless, the

high clearance rate of CB-839 in mice should also be considered

(42). Noteworthy, reducing cell culture medium nutrients to

physiological levels also compromised the sensitivity of lung

cancer cells to glutaminase inhibitors (137). Singleton et al.
found that CB-839 activity was significantly compromised in

three dimensional spheroids assay compared with two

dimensional monolayer culture in TNBC cells (138). Davidson

et al. reported that KRAS-driven lung tumors require pyruvate

carboxylase and pyruvate dehydrogenase, and are less dependent
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on glutaminase than cultured cells (139), suggesting a crucial

impact of tumor microenvironment in glutamine metabolism

and glutaminase inhibition. In addition, Muir et al. showed that
cystine levels dictate glutamine dependence via the cystine/

glutamate antiporter SLC7A11 (xCT) and concurrent high

expression of GLS and xCT may predict response to glutaminase

inhibition (78, 137, 140). Grinde et al. found that addiction to

proline synthesis from glutamine is associated with response to CB-

839 in breast cancer (141).
The questions then arise: what is the molecular mechanism of

glutaminase inhibition resistance and how could we overcome

the therapy resisatnce? Firstly, as the most frequently used

glutaminase inhibitors such as BPTES and CB-839 are GLS1

selective, the resistance to glutaminase inhibition may be due to

the differential expression of GLS1 and GLS2 in cells, as
demonstrated in luminal and basal-like breast cancer cells (78).

Application of a pan-glutaminase inhibitor 968 suppresses

BPTES-resistant breast cancer growth. Importantly, a number

of studies have demonstrated that glutaminase inhibition could

be rescued by alternative metabolic pathways, such as glycolysis

and fatty acid oxidation (FAO) (130, 138, 142). A combinatorial

strategy may help to overcome glutaminase inhibition resistance.
Several inhibitors targeting glycolysis have demonstrated a

synergistic effect with glutaminase inhibitor, such as metformin

(115, 143, 144), Erlotinib (EGFR inhibitor) (145), MLN128

(mTOR inhibitor) (52), and Glutor (glucose uptake inhibitor)

(146). Co-inhibition of FAO with etomoxir (CPT1 inhibitor) as

well inhibits the cell proliferation in resistant cells (130, 142).

However, the combination of CB-839 and etomoxir was lethal in

mouse models. In addition, combined therapy targeting oxidative
stress response also show enhancement of the sensitivity to

glutaminase inhibition (60, 130). Together, combinatorial

strategies show the effectiveness in overcoming the glutaminase

inhibition resistance. A summarized diagram of glutaminase

inhibition resistance is showed in Figure 4.

Although as a promising therapeutic approach to combat
cancer, limited clinical research data of glutaminase inhibition is

available. In the last few years, CB-839 is the only glutaminase

inhibitor undergoing clinical trials. Most recently, a new inhibitor

DRP-104 (glutamine antagonist) is now entering clinical trials

(NCT04471415). However, most of the trials are in a stage of

phase I/II, evaluating the safety and tolerability of the inhibitors.
Nevertheless, results of CANTATA (NCT03428217) showed

encouraging clinical activity and tolerability of combination

therapy of CB-839 plus cabozantinib in metastatic renal cell

cancer (147). Supportively, Zhao et al. reported that combination

of CB-839 and 5-fluorouracil induced PIK3CA-mutant tumor

regression in CRC xenograft models (148). Importantly, an

exploratory analysis of a phase I clinical trial (NCT02861300)
showed a trend of better response to combination therapy of CB-

839 plus capecitabine (prodrug of 5-fluorouracil) in PIK3CA-

mutant CRC patients as compared to PIK3CA-WT cohort (148).

More data are needed to evaluate the efficiency of glutaminase

inhibition in clinical scenarios.

A

B

FIGURE 3 | Structures of glutaminase inhibitors. (A) The structures of selected glutaminase inhibitors, including BPTES, CB-839, DON and JHU-083. (B) The

structure and allosteric binding pocket of GLS1 (rcsb.org). Left, structure of GLS1 in complex with BPTES, PDB entry 3VOZ; right, structure of GLS1 in complex with

CB-839, PDB entry 5HL1. The inhibitors are at the center of the structures.
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CONCLUSIONS

Uncontrolled cell growth is an essential feature of cancers, which is

supported by the augmented glycolysis as well as glutaminolysis.

Studies of cancer metabolic reprogramming provide new insights

into the nature of malignancy and reveal a potent target to combat
cancer. Despite the pivotal role of glucose, the importance of

glutamine metabolism in cancer is well recognized. In this review,

we updated the current understanding of glutaminolysis in cancer

from the view of glutaminase isoenzymes and summarized the

glutaminase inhibitor based therapeutic strategies. However, high

metabolic heterogeneity increases the complexity of metabolic

targeting therapies. Pharmacological inhibition of glutaminases
gives different responses in various cancers, which may be due to

the differential expression of glutaminase isoenzymes or emerge of

alternative metabolic pathways. Combinatorial strategies have

shown promising synergistic effects in some context and may

help overcome glutaminase inhibition resistance. Identification of

glutaminase inhibitor sensitive cancers and optimization of
combination therapies would be an interesting focus for targeting

glutaminolysis in a variety of cancers.
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