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Abstract  

The Community Domestic Energy Model (CDEM) has been developed to explore potential routes to reduce CO2 

emissions and the model is used to predict the CO2 emissions of the existing English housing stock. The average 

dwelling CO2 emissions are estimated as 5,827 kgCO2 per year, of which space heating accounts for 53%, water 

heating 20%, cooking 5% and lights and appliance 22%. Local sensitivity analysis is undertaken for dwellings of 

different age and type, to investigate the effect on predicted emissions of uncertainty in the model’s inputs.  High 

normalised sensitivity coefficients were calculated for parameters that affect the space heating energy use. The effects 

of the input uncertainties were linear and superposable, so the impact of multiple uncertainties could be easily 

determined. The results show that the accumulated impact on national CO2 emissions of the underperformance of 

energy efficiency measures could be very large. Quality control of the complete energy system in new and 

refurbished dwellings is essential if national CO2 targets are to be met. Quality control needs to prioritise detached 

dwellings because their emissions are both the greatest and the most sensitive to all energy efficiency measures. The 

work demonstrates that the uncertainty in the predictions of stock models can be large; failure to acknowledge this 

can lead to a false sense of their reliability.  
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1. Introduction 

In 2006 the CO2 emissions from the UK residential sector, principally arising from gas, electricity, coal and oil 

consumed for heating and powering domestic buildings, were 149 million tonnes (DEFRA, 2007a). This was 26.9% 

of the UK’s total CO2 emissions and average CO2 emissions per dwelling in 2006 were around 6.1 tonnes. The UK 

Government’s Climate Change Bill 2008 commits the country to a legally-binding reduction in CO2 emissions of 

80% by 2050 based on 1990 levels (DEFRA, 2009). This is to be achieved through a series of five year targets and 

will require CO2 emission reductions in most if not all sectors of the economy. For some sectors, such as transport, 

CO2 reductions are difficult and the burden of achieving the reductions targets may fall on those sectors where CO2 

emission reductions can be more easily implemented. The UK residential sector has long been considered to have 

great potential for CO2 emission reductions through the use of energy efficiency and renewable energy technologies. 

However the UK residential sector is complex and in making any changes there are many technical, social and 

economic barriers to overcome. For this reason a thorough understanding of the nature of energy consumption and 
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CO2 emissions in UK dwellings is required to formulate successful strategies and policies to achieve significant 

emission reductions. 

The complexity of the UK domestic built environment arises from variations in its physical form, the climatic 

conditions it is subjected to and the behaviour of the building occupants. There are over 20 million dwellings in the 

UK and there is a great variation in the size, shape and construction of these buildings. The UK housing stock has 

been constructed over a long period of time and there are many different building materials and techniques used, from 

stone and solid brick walls to highly-insulated cavity wall construction. Within the homes the space and water heating 

provision can vary widely in terms of types of systems, fuels used and efficiency. Each of these buildings is subjected 

to climatic conditions, including ambient air temperature and solar irradiation, which can vary spatially as well as 

containing short-term fluctuations and long-term trends. In particular the local micro-climate can vary considerably 

across the housing stock from highly exposed rural locations to city centres affected by the urban heat island effect. 

The behaviour of the occupants  in the homes is a further complexity and is dependent on the number of people in the 

household, their ages, the occupancy patterns and many other factors. In particular the space and hot water heating 

demands, and the patterns of use of household electrical appliances, is largely determined by building occupant 

behaviour. 

Measured data on the English housing stock is mainly provided by a number of large government surveys. The 

English House Condition Survey reports on the building construction and the building services provision for English 

housing and is based on an annual survey of thousands of dwellings (DCLG, 2007). The UK Census provides the 

number and type of dwellings for a range of different administrative boundaries throughout England (ONS, 2007). 

National statistics are also available from the UK government for the energy consumption by fuel type at the national, 

regional, local authority and sub-local authority levels based on aggregated totals of consumer fuel bills (BERR, 

2008). Climate data is available through the Meteorological Office (Met Office, 2007) and, to a limited extent, 

household behaviour through surveys such as the Family Expenditure Survey (ONS, 2008). However this measured 

data cannot alone provide the information needed to investigate CO2 reduction strategies for the housing stock and, to 

fill the missing information gap, accurate and comprehensive energy and carbon models of the housing stock are 

required. 

Housing stock models provide several benefits. They reduce the need to make time-consuming measurements of 

large numbers of dwellings and can be used to estimate current information, whereas measured data quickly becomes 

out of date. Models can provide information on hard to measure quantities, such as heat loss coefficients or 
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ventilation rates of buildings. Once constructed, a housing stock model can be used for scenario planning to estimate 

the effects of technologies, policies and future climates on overall energy consumption and CO2 emissions. By 

employing a variety of scenarios, and varying the input parameters to the scenarios, optimum CO2 reduction 

strategies can be identified. However for such results to be of use in policy formation the model must accurately 

describe the complexities of the housing stock including the physical, climatic and household behavioural aspects. 

Any model must be thoroughly validated against existing datasets and the uncertainties within the model be fully 

quantified. Without rigorous testing the model predictions will lack credibility and the impact of the results will be 

limited. In particular, as inputs to a housing stock model will, by their very nature, be inferred or estimated values 

(due to the size and complexity of the built environment, the limited data available and the difficulty in making many 

of the necessary measurements), the model should clearly demonstrate the effect of the uncertainty in the model 

inputs on the model predictions. This process ensures that any recommendations based on model predictions can be 

fully qualified according to the knowledge of the housing stock and the buildings’ physical properties available at the 

time of modelling. It also shows which input parameters cause the greatest uncertainty in the model predictions and if 

further field measurements of these parameters would be beneficial. 

The standard approach to modelling the English housing stock has been to simplify the physical complexity by 

adopting a number of house archetypes which together represent all dwellings in the stock. House types may be 

defined by built form (such as detached or semi-detached), building age (usually placed into age bands based on 

building regulation changes), space heating systems and several other factors. For each house type nominal average 

physical parameters (such as size, shape and construction materials) are generated. A core building energy model 

(based on the principles of heat transfer as well as empirical relationships) takes the average physical parameters as 

inputs and is used to predict the energy consumption for each house archetype. Aggregating the predictions for each 

house type gives the overall housing stock energy consumption.  

The house archetype approach has been used by four prominent national housing stock models: the BREHOMES 

model developed by the Building Research Establishment (Shorrock and Dunster, 1997); the UK Domestic Carbon 

Model (UKDCM) reported by Boardman (2007); the model developed by Johnston et al. (2005) (hereafter referred to 

as the Johnston model); and the DECarb model by Natarajan and Levermore (2007). All these models use the 

Building Research Establishment Domestic Energy Model (BREDEM) as the building energy model to calculate 

energy consumption based on supplied input parameters (Anderson et al., 2002). The number of house archetypes 

used varies from two archetypes (in the Johnston model based on pre- and post-1996 construction) to over 1000 
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archetypes (in the BREHOMES model based on built form, age, tenure and central heating ownership). In most cases 

validation has been carried out by comparing a single prediction for the total annual energy consumption of the 

housing stock against UK government statistics (for a single year or a series of years) or by comparison to an energy 

study of dwellings carried out by the English House Condition Survey in 1996. Rarely has the uncertainty in the 

predictions of the models been studied or accounted for in the validation exercises, and a study of this uncertainty is 

the primary aim of this paper. 

The accessibility of these four housing stock models is severely limited; either the models are not available 

publicly or the implementation of the models is very complex and not transparent (in part as a result of the 

complexity of the modelling task itself). This lack of accessibility makes any analysis of the four models themselves, 

in particular an investigation of the assumptions used and the algorithms employed, impractical. One of the aims of 

this paper is to lay the ground for greater transparency in UK domestic energy modelling. 

All four models have been used to make forward predictions to the year 2050 to investigate potential routes to a 

low-carbon UK domestic built environment. This process by its very nature is intensely challenging and involves the 

estimation of current and future trends, technological advancement, policy initiatives and many other determining 

factors. Less attention has been given to the models’ accuracy in describing the variation in current energy 

consumption and CO2 emissions across the housing stock and in no case has the effect of uncertainty within the 

model inputs on predictions been investigated. This is highly important as all four housing models use the same core 

building energy model (BREDEM) and will therefore contain many of the same base assumptions for calculating 

parameters such as wall U-values, ventilation rates and boiler efficiencies. These types of parameters are difficult to 

measure directly, and more difficult to estimate across the entire housing stock, and so the uncertainty contained 

within these parameters could be highly influential in the models’ predictions, for predicting the impact of energy 

intervention and for other energy and CO2  emission scenario investigations.  

This work seeks to address the current lack of knowledge concerning the accuracy of national domestic stock 

models and the uncertainty in their predictions, to quantify the relative impact of different CO2 reduction measures 

and to pave the way to greater transparency in energy modelling through the development of simple models. To 

achieve these aims it is important to understand the sensitivity of BREDEM models’ predictions to the primary input 

parameters, the uncertainty in predictions due to the uncertainty in each model input and the way these uncertainties 

aggregate to give the overall uncertainty in the model predictions.  
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To undertake the work, a new housing stock model has been developed based on the same principles as previous 

models (the use of house archetypes and the same core building energy model). The new model is named the 

Community Domestic Energy Model (CDEM) as future implementations are intended to model not only the national 

housing stock but also regions, local authorities, cities and other sub-national areas. The model development forms 

part of the Carbon Reduction in Buildings (CaRB) project, a wider study investigating energy use and CO2 emissions 

from UK domestic and non-domestic buildings (Lomas et al., 2006). The development and method of CDEM is 

described and initial results for the English housing stock are presented. Local sensitivity analysis (SA) is then carried 

out on the CDEM predictions and is used to identify, from the large number of model input parameters, which ones 

are highly influential on the model predictions. Such an approach has been employed previously by Lomas et al. to 

investigate uncertainties in building thermal simulation programs (Lomas and Eppel, 1992). The testing and 

sensitivity analysis of the housing stock model described in this paper leads to a much better understanding of the 

determining factors for energy consumption and CO2 emissions in English homes.  

2. Modelling methods 

2.1. Use of house archetypes 

The CDEM model consists of two main components: a house archetype calculation engine and a core building 

energy model (Figure 1). The house archetype calculation engine defines the characteristics of 47 individual house 

archetypes which together were used to represent all dwelling types in the housing stock. The house archetypes were 

chosen primarily to capture the variation in space heating, as space heating in dwellings represents the largest 

proportion of domestic energy consumption (around 61% of overall household energy consumption in 2004 (BERR, 

2007). Built form is a key factor in space heating as it determines the number of exposed walls and the average floor 

area (both of which affect the dwelling heat loss). The age of the dwelling is also a key determinant as older buildings 

are constructed to lower thermal standards (for example using solid walls, unfilled cavity wall and single glazing) 

than modern buildings. The house archetypes in CDEM were therefore based on combinations of built form and 

dwelling age. Six built form categories and nine age band categories were used and the 47 CDEM house archetypes 

are defined in Table 1. Pre-1900 purpose built flats and post-1945 other flats were not considered as these 

combinations occur very infrequently in the housing stock.  

In the CDEM model each of the 47 dwellings is designed to be an average example of its archetype. In cases 

where more than one construction technique is present in an archetype, and a direct calculation of an average value is 

not possible, the physical properties are calculated from a weighted average. For example, a number of different wall 
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constructions (such as solid wall, cavity wall and timber frame) exist for 1940s semi-detached English houses and the 

house archetype average wall U-value is calculated from a weighted average of the different wall construction U-

values and the percentage of houses with each type of wall construction. For each archetype, the dwelling heat loss 

coefficient (the rate of fabric and ventilation heat loss in steady state conditions) is calculated. The 47 dwellings are 

subjected to the same weather conditions and initial calculations are made for solar gains, water heating energy 

consumption, cooking energy consumption and lights and appliances energy consumption. Again weighted averages 

are used to account for variations within each archetype, for example different building orientations when calculating 

solar gains or different water heating systems when calculating water heating energy consumption. The average 

internal heat gains for the dwellings are then estimated (based on the weighted average values just calculated) and, 

along with the dwellings’ heat loss coefficients, used to calculate the space heating energy requirements of the 

buildings. This is also calculated as a weighted average, to take into account the distribution of different space 

heating systems, their efficiencies and the different fuels used. From the energy predictions made for the 47 house 

archetypes, the annual energy consumption for a community of dwellings (such as the English housing stock) can be 

expressed as: 

∑
=

×=
n

i
iiCOM NEE

1

      

where ECOM is the overall predicted annual energy consumption for a community of dwellings (kWh), n is the 

total number of house archetypes, Ei is the predicted annual energy consumption for house archetype i (kWh), and Ni 

is the total number of dwellings of house archetype i in the community. 

2.2. Derivation of input parameters 

CDEM has many input parameters which describe the characteristics of UK dwellings including geometric 

properties of dwellings, physical properties of construction materials, the composition of households and climatic 

variables. For the sensitivity analysis undertaken later in this paper a specific set of input parameters was used. These 

were defined as primary input parameters and consisted of numerical inputs which fed directly into the core building 

energy model. The remaining input parameters were defined as secondary input parameters as these were not directly 

used by the core building energy model but instead were used to calculate the primary input parameters. As an 

example, average wall U-value (for each house archetype) is a primary input parameter. The secondary input 

parameters which are used to calculate average wall U-value are: distribution of wall types (solid, cavity, timber); 

construction age band; default wall U-values for different constructions and ages (based on BREDEM tables); 
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percentage of dwellings with solid wall insulation; and percentage of dwellings with cavity wall insulation. It was not 

considered necessary to perform sensitivity analysis on each of these secondary input parameters individually as their 

effects are all encapsulated in the primary input parameter (the overall wall U-value in this example). 

There were 27 primary input parameters to CDEM and these were classified in the following categories: location, 

geometry, construction, services and occupancy. Location parameters included climate data (monthly external 

temperatures and solar radiation) sourced from the UK Meteorological Office (Met Office, 2007), the site latitude and 

the number of dwellings for each built form, derived from Census 2001 data (ONS, 2007). Geometry input 

parameters describe the size and shape of the house archetypes and were based on standard house descriptions by 

Allen and Pinney (1990). Average floor area, storey height and window area data, taken from the 2001 English House 

Condition Survey (EHCS) (DCLG, 2007) and  reference tables in SAP 2005 (DEFRA, 2007b), was used to scale the 

Allen and Pinney house descriptions to generate unique geometries for each house archetype. Construction input 

parameters consist of average U-values for the building envelope elements (walls, windows, roofs and floors) and 

average infiltration rates for each house archetype. These were calculated from the construction information provided 

in the EHCS 2001 (for example the distribution of wall construction type), average U-values given in SAP 2005 and 

BREDEM default tables and procedures. Similarly the services input parameters (which described the equipment 

used to provide heat and power to the building) were sourced from EHCS 2001, SAP 2005 and BREDEM default 

tables. The EHCS did not include data on the proportion of low energy lighting or the distribution of cooker type and 

information from the Market Transformation Programme (MTP, 2007a and MTP, 2007b) was used to derive 

estimates for these values. Occupancy input parameters included the average number of occupants for each house 

archetype (again taken from the 2001 EHCS) and the average heating patterns used in the households. In this work 

the standard BREDEM default heating pattern was assumed (a thermostat setting of 21ºC and a heating period of 9 

hours on weekdays and 16 hours on weekends). As an example, all important values of primary and secondary input 

parameters for the 1945 to 1964 semi-detached house archetype, along with their data sources and sample values, are 

shown in Table 2.  

2.3. Energy and carbon calculations 

The core building energy model is based on the calculation algorithms of BREDEM-8, a monthly version of the 

physically-based BREDEM model (Figure 1). This calculates the energy consumption for four end use categories: 

space heating; water heating; cooking; and lights and appliances (Anderson et al., 2002). It has an extensive history of 

testing and validation (Shorrock et al., 1994 and Dickson et al., 1996) and is used in many applications including the 
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UK Government’s Standard Assessment Procedure (SAP) for dwellings (DEFRA, 2007b) and in commercial energy 

rating schemes such as the National Home Energy Rating (NHER, 2007). BREDEM-8 uses a combination of 

physical and empirical relationships to calculate a dwelling’s energy consumption.  

For space heating, monthly energy consumption is calculated using the BREDEM steady-state physical equation 

based on the difference between the monthly average external air temperature and monthly average internal air 

temperature (the average internal temperature is calculated using a complex procedure within the model), the 

estimated heat loss parameters of the dwelling (including fabric and infiltration heat loss) and the dwelling heat gains 

(including solar gains and internal heat gains) (Anderson et al., 2002). Empirical relationships are used to calculate 

the remaining energy end uses of water heating, cooking and lights and appliances. The empirical algorithms used 

make use of descriptive variables such as the total floor area of the dwelling and the number of occupants and do not 

directly represent any physical processes. For example, the amount of hot water used by the occupants per day (in 

litres) is calculated using a simple linear function of the number of occupants in the household. CO2 emissions are 

derived from energy predictions using standard energy to CO2 emission factors sourced from the Carbon Trust (2007). 

For the four main fuel types considered in CDEM these are: gas 0.19 kgCO2/kWh; electricity 0.43 kgCO2/kWh; oil 

0.26 kgCO2/kWh; and solid fuel (coal) 0.3 kgCO2/kWh. 

CDEM is constructed using spreadsheet software (Microsoft Excel) so it is possible to see the intermediate 

workings of the model calculations, such as the solar gains or internal temperatures. The BREDEM algorithms are 

implemented in a batch processing format so that predictions for each house archetype can be made simultaneously. 

The open structure of the model will allow ongoing data being collected in other studies within the CaRB project, to 

be easily incorporated into the model inputs and calculation algorithms. These studies include: a nationally 

representative survey of around 500 English dwellings which is collecting information on heating practices and is 

monitoring energy use and internal temperatures (Shipworth et al., 2008); a study monitoring appliance energy use 

trends in domestic buildings (Firth et al., 2008); a study monitoring the energy consumption of individual appliances 

in a sample of dwellings with a focus on ‘infotainment’ appliances (such as televisions, computers and games 

consoles); and an investigation of domestic lighting energy use from a socio-technical perspective (Wall and Crosbie, 

2007). 

3. Initial predictions of energy consumption and CO2 emissions  

Predictions for the energy consumption and CO2 emissions for the 2001 English housing stock were made using 

1971 to 2000 average climate data so the results would not be skewed by the weather patterns of one particular year. 
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Predictions for six built form types are summarised in Table 3. The energy consumption predictions are broken down 

by fuel type and the CO2 emission predictions by fuel type and by end use. Descriptive statistics are also given for the 

numbers and average size of the dwellings, the average number of occupants, the average dwelling heat losses and 

the average annual internal temperatures. The CO2 emissions of the average English dwelling, based on the 30 year 

average climate data, is predicted to be 5,827 kgCO2. This is comparable to the UK average figure of 6.1 tonnes CO2 

in 2004 (DEFRA, 2007a).  

Detached houses have the largest CO2 emissions (8,220 kgCO2) followed by end terraces (5,811 kgCO2) and 

semi-detached houses (5,776 kgCO2). Purpose-built flats have the lowest CO2 emissions (3,642 kgCO2). The 

distribution of CO2 emissions from end use consumption is: space heating 53%; water heating 20%; cooking 5%; and 

lights and appliances 22%. These figures match exactly estimates given by the UK Government for CO2 emissions 

end-use in UK dwellings in 2003 (DEFRA, 2006). Detached houses have the largest space heating CO2 emissions 

(5,128 kgCO2) and lights and appliances CO2 emissions (1,629 kgCO2), due to the high dwelling heat loss and large 

total floor area. The consumption of gas accounts for 73% of all energy use but only 57% of CO2 emissions due to its 

relatively low carbon intensity (0.19 kgCO2/kWh) compared to the other fuels. Electricity, with its high carbon 

intensity (0.43 kgCO2/kWh), accounts for 19% of overall energy consumption but 34% of CO2 emissions. The 

percentage of CO2 emissions from oil consumption (5%) and solid fuel consumption (4%) represents a small 

proportion of overall CO2 emissions. The total annual CO2 emissions per person are highest in detached houses 

(3,088 kgCO2 per person) and are lowest in mid terraces (1,811 kgCO2 per person). The combination of relatively 

high CO2 emissions and low occupancy means the other flats have the second highest per person CO2 emissions 

(2,643 kgCO2 per person).  

4. Local sensitivity analysis 

4.1. Theoretical basis 

Local sensitivity analysis investigates the changes in a model’s output variables based on small changes in the 

model’s input parameters (Saltelli et al., 2000).  It is the first step in the sensitivity analysis process and begins to 

provide information on the relative importance of the input parameters. The technique is particularly useful when a 

model contains a large number of input parameters and it is not immediately apparent which of these should be 

included, and which (if any) can be ignored, in subsequent analysis. Local sensitivity analysis has the following steps: 

a) each input parameters is assigned a set value kj (typically based on the average or expected value for the parameter 

of the system under study); b) each input parameter in turn is subjected to a small change Δkj whilst the other input 
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parameters are held constant at their set values; c) for each change in the input parameters in step b) the model is run 

and the new output variables are used to calculate a series of sensitivity coefficients; and d) normalised sensitivity 

coefficients are calculated to allow comparisons between the effects of different input parameters.  

The sensitivity coefficients represent the partial derivatives of output variables to input parameters and can be 

calculated using finite-difference approximation based on central differences. For a model with n output variables and 

m input parameters, the sensitivity coefficients are given by: 

j

jjijji

j

i

k
kkykky

k
y

∆

∆−−∆+
≈

∂
∂
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where iy is the ith output variable; jk is jth input parameter; ji ky ∂∂ is the sensitivity coefficient for output 

value iy and input parameter jk ; and )( jji kky ∆+ denotes the value of iy  when the input parameter jk  is 

increased by a small increment jk∆ . In this work 27 input parameters are considered (m=27) and a single output 

variable, average dwelling annual CO2 emissions (n=1). 

If the model is non-linear then the sensitivity coefficients will be affected by two factors. Firstly using different 

set values to initially populate the input parameters will give different results, as the sensitivity coefficients will be 

describing a new parameter space. Secondly the size of the small increment used to change the input parameters (Δkj) 

will have an effect. An increment that is too small will be subjected to potential rounding errors in the output 

variables. An increment that is too large will be unduly affected by the non-linearity of the model. Following 

suggestions from the literature, in this work an increment of a ±1% change in the input parameter is used (Saltelli et 

al., 2000).  

The final step is to calculate normalised sensitivity coefficients which allows the comparison of sensitivity 

coefficients based on input parameters with different units. The normalised sensitivity coefficients Si,j represent the 

percentage change in the output variables given a one percent change in the input parameters. For each input 

parameter and output variable combination, the normalised sensitivity coefficients are given by: 
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4.2. CDEM predictions of average dwelling CO2 emissions 

Local sensitivity analysis was carried out on the CDEM model by varying the 27 primary input parameters and 

recording the change in average dwelling CO2 emissions. Table 4 shows the results for the local sensitivity analysis 

for CDEM based on initial set values of the 2001 English housing stock and 1971 to 2000 climate data (the same 

values used to generate the results shown in Section 3). The sensitivity coefficients for 27 primary input parameters 

were calculated. A single output variable, average dwelling annual CO2 emissions for all dwellings in the stock, was 

used in the analysis. The values shown in Table 4 are the weighted average value for all 47 house archetypes. Where 

the set values for an input parameter varied across the house archetypes (for example total floor area was different for 

each archetype) then the input parameter of each archetype was individually adjusted. The resulting overall change in 

the output variable (yi) is shown in the table together with the sensitivity coefficients and normalised sensitivity 

coefficients (Si,j). The results are presented in order of the absolute value of the normalised sensitivity coefficients 

within each parameter group: location; geometry; construction; services; and occupancy. 

The largest Si,j values in Table 4 are all based on input parameters which almost exclusively influence space 

heating energy consumption in dwellings. Space heating accounts for the largest proportion of CO2 emissions in 

dwellings (predicted as an average of 53% in Table 3) and therefore changes in space heating energy consumption 

will strongly influence overall CO2 emissions. The heating demand temperature (which in most cases is the 

thermostat set point temperature used in the dwelling to control the heating system) results in the most sensitivity (Si,j 

= 1.55). This can be interpreted as a 1% rise in the heating demand temperature in an average dwelling results in a 

1.55% increase in the CO2 emissions of that dwelling. This is significantly higher than the other Si,j values and 

suggests that heating demand temperature is the key determinant of CO2 emissions in housing. The length of the daily 

heating period has the second highest sensitivity (Si,j = 0.62) and external air temperature has, in magnitude, the third 

highest (Si,j = -0.58). The negative sensitivity for external air temperature is because an increase in external air 

temperature will cause a decrease in space heating energy consumption (and therefore overall CO2 emissions). 

Together the heating demand temperature, length of heating period and the external air temperature determine the 

temperature difference across a building’s envelope so it is not surprising that energy use is rather sensitive to these 

values. Certainly external air temperature, and also to a large extent heating demand temperature and heating period 

length, are not amenable to energy efficiency initiatives. 

The results of the local sensitivity analysis require careful interpretation due to the nature of the model 

calculations. For example, total floor area is often cited as a key parameter in determining space heating, and indeed 
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CO2 emissions are sensitive to floor area and to storey height. However in the core building energy model, total floor 

area is also used to calculate the energy used by lights and appliances (as described in Section 2.3) and the total 

glazing area, so an increase in floor area also results in increased heat gains from appliances and from solar gains. 

This means slightly less space heating is needed and thus makes overall CO2 emissions less sensitive to total floor 

area than might be expected. A second example is the negative Si,j value given for site latitude (Si,j = -0.10) which 

seems strange as an increase in site latitude would result in lower temperatures and so an increase in space heating 

energy consumption and CO2 emissions. However, in the model the site latitude is only used for the solar gains 

calculations (and is not coupled to the external temperature or solar radiation). Thus an increase in latitude only 

results in a lower solar elevation which increases the solar gains to the dwelling reducing the space heating energy 

consumption and the CO2 emissions. 

The technique of using average values for the 47 house archetypes can also potentially obscure the detail of some 

of the results. For example, the window area input parameter is shown to have a relatively low sensitivity value (Si,j = 

-0.10). This is because a larger window area will result in increased solar gains (which reduces the space heating 

energy use) but also increased heat losses (due to the higher U-values of windows compared to walls). Whilst the net 

result of these opposite effects gives, on average, a low sensitivity, it is clear that this might not be the case for 

individual dwellings with certain combinations of wall and window U-values, window areas and orientations. 

4.3. Built form type and building age band 

The normalised sensitivity coefficients in Table 4 were the average values calculated for the 47 house archetypes. 

Figure 2 shows, for the eight input parameters with the highest sensitivities in Table 4, the individual Si,j values for 

each house archetype. This illustrates, for each input parameter, the variation in sensitivity caused by built form type 

and building age band. In all cases the Si,j are widely distributed and there are large differences between the built 

form types (notably detached houses and flats) and between older dwellings (pre 1850) and newer dwellings (1991 to 

2001). In many cases detached houses have the largest Si,j values (either the highest for positive sensitivities such as 

demand temperature or the lowest for negative sensitivities such as external air temperature). Mid terraces, purpose 

built flats and other flats generally have the lowest Si,j values. Semi-detached houses and end terraces appear to be 

very similar in most cases. This suggests that the area of building envelope is an important factor when considering 

the relative sensitivities of different built form types.  

For the majority of the input parameters the Si,j values become smaller with increasing building age. This might be 

expected as modern housing has increased insulation and higher air tightness, and therefore will be less sensitive to 
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the same change in an input parameter (such as heating demand temperature) than older housing. For gas boiler 

efficiency there is a very different pattern where the Si,j values initially become larger as building age increases before 

either remaining relatively constant or decreasing slightly. This effect is likely to be due to the fact that not all 

dwellings, especially older dwellings, have gas boilers installed. The average Si,j is less for older dwellings as there 

are fewer gas boilers present in this category of dwellings. Similarly for window U-values there is, overall, an 

increase in Si,j values between 1851 and 1990. One explanation for this is because as walls becomes better insulated 

over this time period the effect of window U-values become more significant for CO2 emissions.  

4.4. Testing for linearity and superposition 

The normalised sensitivity coefficients illustrate the sensitivity of the model around small changes in the model 

input parameters (±1% for the Si,j values calculated in Sections 4.1 and 4.2). If the sensitivity of the model is linear 

then the effects of larger changes in the input parameters can be estimated from the calculated Si,j values. Linearity is 

defined as meaning that multiplying some input Δk by a scaling factor α yields the same scaled output αy: 

)(.).( kyky ∆=∆ αα  

Figure 3 shows, for the five input parameters with the highest sensitivities, the effect on average dwelling CO2 

emissions for changes in the input parameters of ±10%. It can be seen that for each input parameter the change in 

CO2 emissions is approximately linear. This result is also observed in many of the other input parameters given in 

Table 4.  

A second important test is to check if the sensitivity coefficients can be superimposed and give reliable results. 

For example, heating demand temperature has an average Si,j of 1.55 and external air temperature has an average Si,j 

of -0.58. If the combined effect of a 1% increase in demand temperature and a 1% increase in external air temperature 

results is equal to the sum of the two Si,j values then this would show that superposition can be applied in this case. If 

this is true then the effects of changes in several input parameters, occurring at the same time, can be estimated from 

the individual normalised sensitivity coefficients given in Table 4. Superposition is defined as meaning that adding 

two input variables Δk1 and Δk2 yields the sum of the two outputs: 

)()()( 2121 kykykky ∆+∆=∆+∆  

The results of a superposition test for the nine input parameters with the largest sensitivity is shown in Figure 4. 

The change in input parameter is chosen such that a positive change in average dwelling CO2 emissions always 

results (all the input parameters are increased by 1% apart from external air temperature and gas boiler efficiency 

which are decreased by 1%). In the first case the overall change in average dwelling CO2 emissions is simply 
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calculated from the sum of individual Si,j values as given in Table 4 (shown by the solid black line). In the second 

case the 1% changes in the input parameters are applied cumulatively to the model to give the overall change in 

average dwelling CO2 emissions (shown by the dashed black line). The percentage change in average dwelling CO2 

emissions for the two approaches are very similar which suggests that superposition of the Si,j values is valid for the 

housing stock model at least over a limited change of parameter  values. 

The tests for linearity and superposition (shown in Figures 3 and 4) show that the normalised sensitivity 

coefficients calculated in Table 4 may be used to estimate the effects on CO2 emissions of changes within the housing 

stock. For example, a 2% reduction in space heating demand temperatures (Si,j = 1.55) will, according to the model 

predictions, result in an approximate CO2 emissions reduction, for the average dwelling, of 3.1%. If this was 

combined with a 10% reduction in wall U-values (Si,j = 0.27), the overall CO2 reductions would be approximately 

5.8%. This approach has the potential to provide a simple and effective method of calculating potential CO2 emission 

reductions in dwellings. It can also be used to test the impact on energy demands of any failures to meet expected U-

values or in situ boiler efficiencies etc during dwelling refurbishment works. 

5. Discussions 

The sensitivity analysis described in this work clearly illustrates the relative influence of input parameters on 

overall housing stock CO2 emissions. The findings are also relevant for three areas of further work: the uncertainty 

associated with predictions of domestic stock CO2 emissions; the development of more targeted CO2 intervention 

strategies; and the development of simpler and more transparent domestic stock models.  

There will always be uncertainty associated with models which seek to predict the energy consumption and 

carbon emissions of the housing stock due to the complex nature of the domestic built environment and the many 

assumptions needed in order to make predictions. However in all the previous models surveyed in the literature, none 

have attempted to quantify the uncertainty in their predictions. The main difficulty with uncertainty analysis is in 

sourcing the uncertainty associated with the input parameters, for example the 95% confidence interval (CI) 

associated with, say, average wall U-values. In this work the sensitivity coefficients ∂yi/∂kj given in Table 4 show 

how CO2 emissions will vary with uncertainty in the input parameters. For example if the infiltration rate (average 

value of 0.7 ach) has a 95% CI of ±0.1 ach then the resulting uncertainty in average dwelling CO2 emissions would 

be, at the 95% CI level, ±101 kgCO2 (±0.1 ach x 1010.4 kgCO2/ach).  

A rough estimate of the potential uncertainty in the model can be made without sourcing (or measuring directly if 

the information is not available) the exact uncertainty in the input parameters. For example, suppose the 95% CIs for 
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five of the important input parameters are: wall U-value 0.0 to 0.2 W/m2K; window U-value 0.0 to 0.1 W/m2K; 

infiltration rate 0.0 to 0.1 ach; boiler efficiency -0.1 to 0.05; and heating demand temperature -0.25 to 0.5 ºC. In the 

case of U-values it is more likely that the range of uncertainty will be larger, but not smaller, than the original set 

values due to factors such as gaps in insulation, unexpected heat bridging, etc. Likewise, in practice, boilers are likely 

to be less, rather than more, efficient when installed than expected. Using the estimated CIs for the input parameters, 

the uncertainty for average dwelling CO2 emissions would be, at the 95% CI level, -304 to 977 kgCO2, which is a 

significant proportion of the predicted value of 5,827 kgCO2 (Table 3).  

 More work is needed in the area of the predictive uncertainty of stock models: the transparent easy-to-run model 

presented here will enable this. From these illustrative results some useful observations can however be made.  Firstly, 

that the uncertainty in the predictions of stock models could be rather large for example here the CI is -5% to +17% 

of the basic value. Most UK stock modelling work has ignored the issue of uncertainty, but to do so is to convey a 

false sense of the reliability of the predictions1

Secondly, knowing the factors that most influence energy demand in different dwelling types, quality control 

efforts can be more effectively focussed. The results here show, for example, an obvious need to achieve target wall 

U-values in practice and for boiler efficiencies to match expectations. In contrast, there is ample evidence, e.g. from 

thermographic surveys, that heat bridging, missing insulation and air leakage is common in new dwellings and 

refurbishment studies tend to show, partly for similar reasons, that energy savings are less than expected.  

. Related to this is the need to better understand what the variability of 

key model parameters is in practice and if and how these variations might differ with house type and age. For 

example, the efficiency of older boilers in larger and older houses might be rather more uncertain and have a bigger 

impact on CO2 emissions than the efficiency of boilers in modern homes. Thus the uncertainty in predictions might 

be much greater for some house types than for others. 

 Thirdly, the uncertainty in the predicted emissions is markedly skewed. In dwellings that produce higher than 

anticipated (predicted) CO2 emissions, e.g. due to faulty wall insulation, low boiler efficiency etc, the emissions can 

be much higher. In contrast dwellings that cause lower than predicted emissions produce only a little less. The 

skewed overall uncertainty arises because for many of the energy efficiency measures to which the model is sensitive, 

                                                           

1 However it does need to be recognised that the energy use of the national housing stock is known quite 

accurately from official statistics on delivered energy. Thus, a stock model will often be run such that its predictions 

are matched to the official statistics, thereby effectively greatly reducing the uncertainties in the predictions. 
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performance is unlikely to be better than the idealistic calculated value but it can very easily be much worse. What is 

surprising perhaps is just how skewed the overall uncertainty in the CO2 emissions becomes. This clearly suggests 

that avoiding the accumulation of defects in the complete energy system (plant, fabric, etc) is critical to achieving 

predicted CO2 reductions in practice. This quality control, by builders, refurbishment companies, and building 

inspectors needs to consider the complete energy system and not just isolated components of it. Furthermore, because 

sensitivities differ substantially with dwelling type (see Figure 2) attention ought to be focussed on those for which 

sensitivities are greatest. In this regard, detached houses are more sensitive to under-performance in virtually all the 

factors studied than any of the other house types: because of their greater envelope area and higher intrinsic heating 

demands (Table 3). There is therefore an argument for prioritising quality control on new and refurbished detached 

dwellings.   

It is also useful to consider the implications of the sensitivity analysis results for energy and CO2 reduction 

policies. Clearly, it is more useful to address those factors that have a big impact on emissions and that are amenable 

to intervention than those that are not. This is demonstrated for different built form types and building ages in Figure 

2. For example it can be observed that promoting the reduction of demand temperatures (i.e. thermostat settings) in 

detached houses will result in larger CO2 reductions that in purpose built flats. Similarly measures targeted at older 

dwellings will, in general, have a larger effect than those in modern dwellings. It is also detached houses for which 

changes in physical size (as represented by floor area and storey height) have the greatest impact on CO2 emissions. 

In this regard we might also observe that the potential for extensions tends to be much greater in detached dwellings 

than in most other dwelling types. In passing it is worth noting that results for external air temperature begin to 

illustrate the emissions impact of future climate change.  

Finally, from the stock modelling perspective, the linearity and superposition tests carried out on the sensitivity 

coefficients suggests that there is potential to develop simpler and more transparent domestic stock models. Rather 

than use complex, physical models (such as the CDEM model described in this work), it may be possible to construct 

models for estimating CO2 reductions which are based on a set of basic parameters with associated sensitivity 

coefficients. Such models could be framed as a set of simple linear equations with the coefficients defined by the 

uncertainties. These models would be straightforward to use, operate very quickly and thus provide policy makers 

with access to very simple tools with which to investigate methods of reducing CO2 emissions in housing. Although 

this paper has developed sensitivity coefficients for the English housing stock similar coefficients could be developed 
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for smaller areas of interest such as regions or local authority areas. An initial step in developing such a tool would be 

to fully determine the range of applicability of the linearity and superposition principles of the stock model. 

6. Conclusions 

This work has described the development of a new model, the Community Domestic Energy Model (CDEM), to 

predict energy consumption and CO2 emissions in dwellings. The CDEM modelling method has been described in 

detail and predictions for the existing 2001 English housing stock have been presented based on 1971 to 2000 

average climate data. The predictions are made using 47 house archetypes, unique dwelling types based on the built 

form type and the dwelling age. Local sensitivity analysis, including linearity and superposition tests, has been 

carried out on the CDEM predictions to understand the influence of the model input parameters. 

• The overall average dwelling annual CO2 emissions for the 2001 English housing stock, using average climate 

data from 1971 to 2000, was predicted as 5,827 kgCO2. Detached houses had the largest annual CO2 emissions 

(8,220 kgCO2), followed by end terraces (5,811 kgCO2) and semi-detached houses (5,776 kgCO2). Purpose-built 

flats had the lowest annual CO2 emissions (3,642 kgCO2). Space heating usage contributed 53% of overall CO2 

emissions, water heating 20%, cooking 5% and lights and appliances 21%. Gas consumption accounted for 73% 

of overall total energy consumption but only 57% of overall CO2 emissions due to the low carbon intensity of 

mains gas. Similarly electricity consumption accounted for 19% of energy consumption but 34% of overall CO2 

emissions due to the high carbon intensity of centrally-generated grid electricity. 

• The characteristics and use of heating systems, and the heat losses of buildings, are the most influential factors of 

dwelling CO2 emissions. In particular the heating demand temperature was calculated, for the average dwelling 

in the 2001 English housing stock, to have a normalised sensitivity coefficient of 1.55 on dwelling CO2 

emissions. This means that for every 1% increase in the heating demand temperature, a 1.55% increase in 

average dwelling CO2 emissions will result. Other factors with high normalised sensitivity coefficients included 

length of heating period (0.62), the dwelling size, as reflected in the average storey height (0.48) and floor area 

(0.34), gas boiler efficiency (-0.45), and wall U-value (0.27). All of these factors relate strongly to the space 

heating energy consumption and this analysis shows that a sound knowledge of these factors is essential when 

modelling CO2 emissions in dwellings.  

• There can be a large difference in the influence of input parameters depending on the built form and age of a 

dwelling. In general, detached houses and older dwellings are shown to be most susceptible to changes in their 

input parameters. Mid-terraces, flats, and newer dwellings are, in general, the least susceptible. For example, all 
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the factors with high normalised sensitivity coefficients (listed above) have two to four times more influence on 

the CO2 emissions of 1900-1918 detached houses than on the emissions from 1991 to 2001 purpose built flats. 

Thus interventions to reduce CO2 emissions are more effective in some dwellings, such as older detached houses, 

than others; conversely these dwellings are more susceptible to the underperformance of installed energy 

efficiency measures.  

• Tests have shown that the effects on CO2 emissions of the calculated sensitivity coefficients can be added in a 

linear fashion and superimposed to reliably estimate the cumulative effect of multiple uncertainties. This means 

that the local sensitivities can be used to make rapid estimates of the CO2 savings that arise from implementing 

multiple energy efficiency measures and, conversely, for estimating the effects of the underperformance of 

multiple energy efficiency interventions.  

•  A preliminary investigation has shown that the cumulative uncertainty in stock model predictions, due to the 

uncertainties in just a few key model input parameters, could be large. Failure to reflect this, when predicting the 

impact of past energy efficiency interventions and the possible effect of future proposed interventions, leads to a 

false impression of the reliability of stock model predictions and, more seriously, a false impression that the 

intended effects of the interventions will be actually be achieved in practice. More work is needed to quantify the 

real in-situ performance of energy efficiency measures in dwellings of different type and age. 

• Because the cumulative effect of the underperformance of a small number of energy efficiency measures is so 

large, and much larger than the additional emissions reduction that unexpectedly higher performance might yield, 

it is very easy, in practice, for expected emissions reductions not to be realised.  

• There is a need for rigorous quality control by builders, those undertaking refurbishment measures and quality 

control officers if desired CO2 emissions targets are to be met. Such quality control is particularly important for 

larger, older detached dwellings.  

The applicability of the CDEM modelling approach to the problem of reducing national domestic building CO2 

emissions has been clearly demonstrated. The findings have established the need for further modelling work to 

explore the uncertainties associated with the key input parameters used to describe the housing stock. Further work in 

the CaRB project will incorporate the results of several field studies of domestic buildings into the modelling process. 

This will be used to undertake a full validation of the model, using known uncertainties within the model inputs. The 

impact of the underperformance of energy efficiency interventions on the emissions of the national domestic stock 

will be more thoroughly explored. 
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7. Tables 

Table 1: House archetype category combinations 

Built form categories Dwelling age band categories  

End terrace 
Mid terrace 
Semi detached 
Detached 

pre 1850, 1851 - 1899, 1900 - 1918, 1919 - 1944, 1945 - 1964, 1965 -1974, 1975 - 1980, 1980 - 1990,  
1991 - 2001 

Flat: purpose built 
 

1900 - 1918, 1919 - 1944, 1945 - 1964, 1965 - 1974, 1975 - 1980, 1980 - 1990,  
1991 - 2001 

Flat: other (converted 
or in commercial 
building) 

pre 1850, 1851 - 1899, 1900 - 1918, 1919 - 1944 
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Table 2: Sample values of primary and secondary input parameters for the 1945 to 1964 semi-detached house archetype 

Input parameter Category 1 Input data source(s) Sample values for the 1945 to 1964 semi-
detached house archetype 

Number of dwellings in 2001 English 
housing stock 

L Census 2001, EHCS 2.4 million 

Average total floor area G EHCS 78.4 m2 

Building geometry G Allen and Pinney, EHCS, 
SAP 2005 

many values  
e.g. exposed wall area: 67.6 m2 

Average wall U-value C EHCS, BREDEM, SAP 
2005 

1.2 W/m2K 3 
 

Average roof U-value C EHCS, BREDEM  0.44 W/m2K 4 
 

Hot water heating system type distribution S EHCS combi boiler: 18% 
other boiler: 72% 
electric immersion: 9% 
instantaneous: 1% 

Hot water cylinder insulation distribution S EHCS foam: 50% 
jacket: 48% 
none: 2% 

Probability of hot water cylinder 
thermostat present  

S EHCS 56% 

Average fraction of low energy lights 2 S MTP 3% 

Cooker type distribution 2 S MTP electric: 46% 
gas: 40% 
kitchen range: 2% 
gas hob and electric oven: 12% 

Space heating system type distribution S EHCS gas central heating single purpose: 49% 
oil central heating: 1% 
solid fuel central heating: 6% 
electric storage heaters: 4%  
gas room heaters: 5% 
solid fuel room heaters: 1% 
gas central heating back boiler: 32% 

Probability of thermostatic radiator valves 
(TRVs) present 

S EHCS 31% 

Average gas boiler efficiency S EHCS, BREDEM  67% 5 
 

Set point temperature for space heating 2 O BREDEM  21ºC 

Average number of occupants O EHCS 2.6 

 
1 input parameter categories are defined as: location (L), geometry (G), construction (C), services (S) and occupancy (O) 
2 these values will be updated by field measurements from the other CaRB studies currently in progress 
3 based on distribution of wall types: solid 5% (U-value 2.1 W/m2K); unfilled cavity 61% (U-value 1.6 W/m2K); and filled cavity 34% (U-value 

0.5 W/m2K) 
4 based on an average roof insulation thickness of 0.109m 
5 based on distribution of gas boiler: condensing fan assisted 5% (with efficiency 81%); non-condensing fan assisted 36% (with efficiency 71%); 

wall mounted open flue 45% (with efficiency 65%); and floor mounted open flue 15% (with efficiency 60%) 
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Table 3: CDEM energy and CO2 emission predictions by built form type for the 2001 English housing stock 

  End 
terrace 

Mid 
terrace 

Semi-
detached 

Detached Flat: 
purpose 
built 

Flat: other All 
dwellings 

Number of dwellings (thousands) 1,374 4,121 6,713 4,786 2,968 1,212 21,263 

Average dwelling total floor area 
(m2) 

79.9 77.1 83.6 131.2 57.1 68.3 87.9 

Average number of occupants 2.71 2.77 2.69 2.66 1.79 1.95 2.52 

Average dwelling heat loss 
(W/K) 

270 225 262 386 134 208 261 

Average annual internal 
temperature (°C) 

18.0 18.3 18.1 18.0 19.4 18.7 18.3 

         
Average 
annual energy 
consumption 
by fuel (kWh) 

Gas 18,788 15,531 17,727 24,175 9,416 15,300 17,449 

Electricity 4,528 4,448 4,439 5,084 4,248 4,931 4,574 

Oil 173 82 498 4,168 41 229 1,141 

Solid Fuel 830 462 1,233 1,189 53 306 825 

         
Percentage of 
total energy 
consumption 
by fuel 

Gas 77% 76% 74% 70% 68% 74% 73% 

Electricity 19% 22% 19% 15% 31% 24% 19% 

Oil 1% 0% 2% 12% 0% 1% 5% 

Solid Fuel 3% 2% 5% 3% 0% 1% 3% 

         
Average 
annual CO2 
emissions by 
fuel (kgCO2) 

Gas 3,570 2,951 3,368 4,593 1,789 2,907 3,315 

Electricity 1,947 1,913 1,909 2,186 1,826 2,121 1,967 

Oil 45 21 129 1,084 11 60 297 

Solid Fuel 249 139 370 357 16 92 248 

         
Percentage of 
total CO2 
emissions by 
fuel 

Gas 61% 59% 58% 56% 49% 56% 57% 

Electricity 34% 38% 33% 27% 50% 41% 34% 

Oil 1% 0% 2% 13% 0% 1% 5% 

Solid Fuel 4% 3% 6% 4% 0% 2% 4% 

         
Average 
annual CO2 
emissions by 
end use 
(kgCO2) 

Space heating 3,074 2,293 2,971 5,128 1,456 2,829 3,100 

Water heating 1,180 1,172 1,229 1,183 980 1,017 1,153 

Cooking 281 283 280 279 248 254 274 

Lights and 
appliances 

1,276 1,275 1,296 1,629 958 1,080 1,301 

         
Percentage of 
total CO2 
emissions by 
end use 

Space heating 53% 46% 51% 62% 40% 55% 53% 

Water heating 20% 23% 21% 14% 27% 20% 20% 

Cooking 5% 6% 5% 3% 7% 5% 5% 

Lights and 
appliances 

22% 25% 22% 20% 26% 21% 22% 

         
Average annual total CO2 
emissions (kgCO2) 

5,811 5,024 5,776 8,220 3,642 5,179 5,827 

Average annual total CO2 
emissions per person (kgCO2) 

2,138 1,811 2,148 3,088 2,024 2,643 2,308 
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Table 4: Results for local sensitivity analysis of CDEM primary input parameters to the average dwelling CO2 emissions output variable 

for the 2001 English housing stock using 1971 to 2000 climate data. All values in this table are average English housing stock values based 

on weighted averages of the individual 47 house archetype values. 

Primary input parameter Category 1 Initial set 
value for 

input 
parameter 

(kj) 

Overall 
change in 

input 
parameter 
(2Δkj)  

Overall change 
in output 
variable 2 

(change in yi)  

Sensitivity 
coefficient 
∂yi/∂kj 

Normalised 
sensitivity 
coefficient 

Si,j 3 

External air temperature (°C) 4 L 9.3 0.19 -67.5 -362.4 -0.58 
External solar radiation (W/m2) 4 L 110.2 2.20 -13.3 -6.0 -0.11 
Site latitude (°) L 52.4 1.05 -11.5 -11.0 -0.10 
       
Average storey height (m) G 2.5 0.05 55.7 1132.9 0.48 
Total floor area (m2) G 87.7 1.75 39.7 22.6 0.34 
Number of storeys G 1.8 0.04 7.6 215.8 0.07 
Door area (m2) G 1.5 0.03 1.9 65.3 0.02 
Window area (m2) G 17.5 0.35 -0.8 -2.2 -0.01 
       
Wall U-value (W/m2K) C 1.3 0.03 31.4 1172.3 0.27 
Window U-value (W/m2K) C 3.2 0.06 21.7 340.0 0.19 
Infiltration rate (ach) C 0.7 0.01 14.1 1010.4 0.12 
Overshading factor 5 C 0.7 0.01 -13.3 -955.2 -0.11 
Proportion of glass 5 C 0.8 0.02 -13.3 -835.8 -0.11 
Transmission factor 5 C 0.8 0.02 -13.3 -844.5 -0.11 
Floor U-value (W/m2K) C 0.5 0.01 8.1 810.1 0.07 
Roof U-value (W/m2K) C 0.4 0.01 5.8 716.0 0.05 
Door U-value (W/m2K) C 2.5 0.05 2.3 45.9 0.02 
       
Boiler efficiency S 0.7 0.01 -52.3 -3923.6 -0.45 
Hot water cylinder size (l) S 131.0 2.62 2.3 0.9 0.02 

Hot water cylinder jacket insulation 
thickness (mm) 

S 29.5 0.59 -2.2 -3.8 -0.02 

Hot water cylinder foam insulation 
thickness (mm) 

S 29.3 0.59 -0.9 -1.6 -0.01 

Proportion of radiators with thermostatic 
radiator valves 

S 0.3 0.01 -0.8 -120.5 -0.01 

Proportion of hot water cylinders with 
thermostats 

S 0.6 0.01 -0.3 -21.9 0.00 

Proportion of lights with low energy 
bulbs 

S 0.03 0.00 -0.1 -84.9 0.00 

       
Heating demand temperature (°C) O 21.0 0.42 179.8 429.9 1.55 
Length of daily heating period (hours) O 11.0 0.22 36.4 330.9 0.62 
Number of occupants O 2.5 0.05 9.9 195.6 0.08 

 
1 input parameter categories are defined as: location (L), geometry (G), construction (C), services (S) and occupancy (O) 
2 the output variable used in this local sensitivity analysis is average dwelling CO2 emissions (kgCO2). The initial set value for the output variable 
(yi) was 5827 kgCO2 (as given in Table 3) 

3 equivalent to the percentage increase in the output variable when the input parameter is increased by 1% 
4 the temperature and solar radiation values in this table are the average of the 12 monthly input parameter values 
5 these three input parameters are all directly proportional to solar gains (a value calculated internally in the energy model) and therefore they have 
the same normalised sensitivity coefficient values 
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8. Figures 

 
Figure 1: Schematic of the Community Domestic Energy Model (CDEM) modelling process 
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Figure 2: Normalised sensitivity coefficients by built form type and building age band for the eight most influential input parameters 
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Figure 3: Linearity test showing the percentage change in the output variable (average dwelling CO2 emissions) resulting from a 

percentage change of ±10% in the five most influential input parameters 
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Figure 4: Superposition test showing the total percentage change in the output variable (average dwelling CO2 emissions) resulting from 

normalized sensitivity coefficients and cumulative 1% changes in the nine most influential input parameters 
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