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One of the most appreciated consequences of immunosenescence is an impaired

response to vaccines with advanced age. While most studies report impaired antibody

responses in older adults as a correlate of vaccine efficacy, it is now widely appreciated

that this may fail to identify important changes occurring in the immune system with age

that may affect vaccine efficacy. The impact of immunosenescence on vaccination goes

beyond the defects on antibody responses as T cell-mediated responses are reshaped

during aging and certainly affect vaccination. Likewise, age-related changes in the innate

immune system may have important consequences on antigen presentation and priming

of adaptive immune responses. Importantly, a low-level chronic inflammatory status

known as inflammaging has been shown to inhibit immune responses to vaccination

and pharmacological strategies aiming at blocking baseline inflammation can be

potentially used to boost vaccine responses. Yet current strategies aiming at improving

immunogenicity in the elderly have mainly focused on the use of adjuvants to promote

local inflammation. More research is needed to understand the role of inflammation in

vaccine responses and to reconcile these seemingly paradoxical observations. Alternative

approaches to improve vaccine responses in the elderly include the use of higher vaccine

doses or alternative routes of vaccination showing only limited benefits. This review will

explore novel targets and potential new strategies for enhancing vaccine responses in

older adults, including the use of anti-inflammatory drugs and immunomodulators.
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INTRODUCTION

Human aging is associated with a general decline in physiological functions and increased

susceptibility to disease. A dysregulation of the immune system, known as immunosenescence, is

characteristic of aging and has been linked with negative clinical outcomes in older adults (1). One

of the most appreciated consequences of immunosenescence is an impaired response to new
infections and vaccination in older people (2). Four vaccines are currently recommended for

individuals over 65 years of age to protect against infections that disproportionately affect older

adults, including influenza, herpes zoster, pneumococcal disease and tetanus and diphtheria. However,
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responses to these vaccines are often impaired in older individuals

placing them at further risk of disease (3, 4). This has considerable

implications for vaccination against emerging infectious diseases

such as COVID-19 that have a disproportionately larger effect on

older subjects (5).

While most studies report antibody responses as a correlate of
vaccine efficacy, it is now widely appreciated that this may fail to

identify important changes occurring in the immune system with

age that may affect vaccine efficacy (6, 7). The impact of

immunosenescence on vaccination goes beyond the defects on

T and B cell responses and changes in innate immunity and

increased systemic inflammation, also referred to as inflammaging,
may have additional consequences on vaccine efficacy (8). While

the mechanisms of immune aging are not yet fully understood, it is

now apparent that this process is dynamic and multifaceted, with a

decline in many primordial functions but also gain of new

functions as well as changes in the microenvironment. Globally,

age-related changes in the immune system are better described as a
remodeling than a decline in immune functions (9). A better

understanding of the full spectrum of changes characterizing

immunesenescence is fundamental to the development of novel

and improved vaccines for older adults.

HOW CAN IMMUNOSENESCENCE AND

INFLAMMATION AFFECT VACCINE

RESPONSES?

Changes affecting both innate and adaptive immune function with

age may lead to impaired vaccine responses in older people.

Immunosenescence is primarily linked to the involution of

primary lymphoid organs (bone marrow and thymus), resulting

in depletion of the peripheral pool of naive B and T cells (10). To

maintain peripheral cell numbers, there is a clonal expansion of
antigen-experienced cells resulting in extreme differentiation and

altered functionality (11). Consequently the immune space becomes

filled with antigen-specific memory cells leading to a contraction of

the immune repertoire and impaired responses to neo-antigens

(12). In parallel with this, the effects of aging on hematopoiesis result

in a lineage skewing towards an increase in myeloid versus
lymphoid precursor (13). Although the numbers of most

circulating innate immune cells may not be significantly reduced

with age, alterations in their functionality have a particular impact

on antigen presentation due to decreased antigen uptake, reduced

phagocyte functions and altered cytokine production (13, 14). In

addition to cell-intrinsic changes, alterations in the
microenvironment including a low-grade chronic inflammatory

status and architectural changes occurring in lymph nodes may

play previously underappreciated roles in shaping vaccine responses

with age (1, 15). Excessive baseline inflammation has been recently

associated with poor responses to vaccination (16) however more

research is needed to reconcile this evidence with the current

paradigm that adjuvants enhance immune responses to vaccines
by promoting local inflammation. It is plausible that stronger local

inflammatory signals are needed to overcome background

inflammation or that specific inflammatory pathways should be

triggered to overcome local inhibitory responses. Thus a better

understanding of the role of inflammation in vaccination and of the

mechanisms of action of adjuvants is needed to be able to fine tune

immune responses and selectively stimulate pathways that lead to

long-lasting immune protection. In this review, we will describe the

most recent data on the effects of aging on immune responses to
vaccination and discuss, in light of the current knowledge, how can

immunesenescence and inflammaging be targeted to improve

vaccine responses in older adults.

Age-Related Changes in
Adaptive Immunity
Changes in the T Cell Compartment
The effects of aging are particularly evident in the T cell

compartment and reduced vaccine responses in older people

are, at least in part, due to defective T cell memory responses

with age (17). Different mechanisms may be contributing to

reduced T cell responsiveness with age (18), but the loss of

proliferative capacity (19) and decreased TCR function (20–22)

and TCR diversity (23) are certainly determining factors. Prior
antigen exposure, in particular latent viral infections such as

cytomegalovirus (CMV) and Epstein-Barr Virus (EBV) have a

significant impact on immunosenescence by shaping the

immune repertoire with large proportions of terminally

differentiated cells with reduced proliferative capacity and

features of replicative senescence (24–26). Despite this, data on
the impact of CMV infection on vaccine responses are

controversial, with studies showing an association between

CMV-seropositivity and impaired antibody responses to

vaccination in older adults (3, 27) while others have found

enhanced antibody responses to influenza vaccination in

CMV-seropositive compared to CMV-negative individuals (28,

29). Nevertheless, it has been shown that CMV seropositivity is a
better predictor of a decline in T cell responses to influenza

challenge rather than antibody responses in vaccinated older

adults (30, 31). When using functional assays of CD8+ T cell

cytolytic activity upon ex vivo influenza challenge, CMV-

seropositivity was associated with impaired cytolitic responses

to influenza, measured by granzyme B levels in virus-challenged
T cells (30, 31).

Mechanistically, we have described that highly differentiated

T cells with features of senescence exhibit decreased TCR

responsiveness as a results of loss of key components of the

TCR signalossome (20, 22). Interestingly, these cells concomitantly

express NK lineage receptors and acquire TCR-independent
functionality (32). Thus, non-proliferative senescent-like T cells,

in particular CD8+ T cells, are reprogrammed to acquire broad,

innate-like killing activity regulated by a group of stress sensing

molecules known as sestrins (32). Studies in human centenarians

have found an expansion of these NK-expressing T cells in old

individuals compared to young (33) while others have shown that

the expression of NK cell markers on CD8+ T cells is particularly
evident in individuals with high levels of CD57, indicative of an

aged immune system (34). The biological significance of the

acquisition of innate-like receptors and functions by T cells is

unclear, but we believe that this may serve as a beneficial adaptation

to ensure broad and rapid effector function with age, independently
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of antigen-specificity, and this may represent a relatively

unexplored opportunity to enhance vaccine-elicited immunity

(35, 36). Despite the loss of proliferative potential, aged T cells

are metabolically active and exhibit increased production of pro-

inflammatory cytokines and thus may have detrimental effects on

the tissue microenvironment, contributing to age-associated low-
grade inflammation (37–39).

Changes in the B Cell Compartment
As with T cells, there is an age-dependent accumulation of late-

stage memory B cells, while the circulating pool of naïve B cells

progressively decreases, skewing the B cell repertoire and

limiting the number of clones available to respond to novel

antigens (40). B cells experience significant functional changes
with age with reduced proliferative potential and impaired

capacity for differentiation into plasma cells after antigen

challenge (41). Senescent B cells have also been shown to

spontaneously secrete pro-inflammatory cytokines contributing

to age-related chronic inflammation and further immune

dysregulation (42). Overall, these changes have been associated

with poor health outcomes (43) and diminished responses to
vaccination in old age (44). Several studies have shown that older

adults have lower antibody responses following vaccination

compared to younger adults and have been reviewed elsewhere

(45). The quality of these antibody responses is also

compromised with reduced diversity in the antibody repertoire

(46, 47). This is particularly well described for influenza
vaccination (48, 49), although responses to pneumococcal

vaccines are equally compromised (50). Intrinsic defects of B

cells, such as reduced somatic hypermutation and isotype switch

as well as reduced numbers of plasma cells contribute to reduced

antibody responses after vaccination and this correlates with

decreased vaccine efficacy (41).

Changes in Innate Immunity With Age
Alterations in the phenotype and function of innate immune

cells with age are increasingly well recognized (13, 14) and

particularly relevant for vaccine-induced immune responses.

Reduced chemotaxis, alterations in signaling pathways following

antigen recognition and aberrant cytokine production have been
described in neutrophils (51, 52), monocytes/macrophages (53,

54) and dendritic cells (DCs) (55, 56) derived from older persons

further affecting their capacity to process and present antigen to T

cells. Toll-like receptor (TLR) signaling has a crucial role in

vaccination by linking innate and adaptive immune responses

(57). Although the surface expression of TLRs does not show a

consistent change with age, altered cytokine production and
impaired downstream TLR signaling have been described in

older adults (58). Interestingly, an age-dependent decrease in TLR

function in human DCs has been linked with poor antibody

responses to influenza immunization, providing evidence for the

impact of an aging innate immune system in vaccine responses (59).

Moreover, intracellular cytokine production in the absence of TLR
ligand stimulation was elevated in cells from older compared with

young individuals (59), suggesting a dysregulation of cytokine

production that may contribute to age-related inflammation.

Changes affecting the local microenvironment at the site of

injection may have a significant effect on vaccine responses.

Neutrophils and tissue-resident macrophages contribute to a pro-

inflammatory environment at the site of vaccine injection that is

important for recruiting other immune cells and for the priming of
adaptive immune responses (60). However, as it will be discussed in

more detail there is a growing appreciation that excessive local

inflammation may be detrimental to vaccine responses (16).

The effects of age on the phenotype and function of NK cells

have been described elsewhere (13, 61) and may as well affect the

efficacy of vaccination in older people. As discussed later, NK cells
have a previously unrecognized role in vaccination, contributing for

protection during the early phases post-vaccination by mechanisms

that involve the generation of innate immune memory (62). Thus,

the effects of aging on cytotoxicity and cytokine secretion mediated

by NK cells may have wider implications for immune responses to

vaccination in older adults (63).
Age-related changes in innate T cells are less well described

however a decreased frequency and change in phenotype of

peripheral gd T cells (64) and mucosal-associated invariant T

(MAIT) cells (65) have been reported in older adults compared

to young. Recently it has been described that MAIT cells in

older adults have an increased baseline inflammatory profile

that was associated with reduced Escherichia coli–specific
responses in aged MAIT cells compared with their young adult

counterparts (66).

Inflammaging
Aging is associated with a chronic and systemic sterile

inflammatory state termed inflammaging (67). This is

supported by the findings of higher levels of tumor necrosis
factor (TNF), IL-6 and other pro-inflammatory cytokines in the

serum of older individuals compared to young (68, 69). A variety

of stimuli may sustain inflammaging, not only chronic antigen

stimulation by pathogens, but also activation of the

inflammasome by endogenous cell debris and misplaced self-

molecules and microbial translocation due to increased gut
permeability (70). Although the innate immune system, in

particular the monocyte-macrophage network are thought to

be at the center of inflammaging (70, 71), accumulating evidence

indicates that senescent cells in general, including senescent T

and B cells have an important contribution with their senescent-

associated secretory phenotype (SASP) (72). Regardless of the
origin, this low-grade systemic inflammation is predictive of

frailty and earlier mortality (73) and is an established risk factor

for many age-related diseases including heart disease, age-related

macular degeneration, type II diabetes, osteoporosis and cancer

(74, 75).

There is accumulating evidence that increased chronic

background levels of inflammation might be detrimental for
vaccine responses (76–81). Nakaya et al. investigated gene

signatures predictive of influenza vaccine responses in young

and old adults and found that pre-vaccination signatures

associated with T and B‐cell function were positively correlated

with antibody responses at day 28 after vaccination, while
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monocyte‐ and inflammation‐related genes were negatively

correlated with antibody responses (76). Similarly, studies on

HBV vaccination in the elderly revealed that a more pronounced

inflammatory gene expression profile at baseline predicted a

poorer response to vaccination (77, 78). Our group has shown

that older individuals exhibit reduced cutaneous immunity to
varicella zoster virus recall antigen challenge associated with

increased baseline local inflammation (79). Subsequently we

demonstrated that infiltrating monocytes play a crucial role in

the inhibition of cutaneous immunity, by a mechanism driven by

increased cyclooxygenase 2 (COX2) expression and production

of prostaglandin E2 (PGE2), ultimately leading to reduced
proliferation of skin resident-memory T cells and reduced

responses to antigenic stimulation (82). Overall, these findings

support the concept that elevated baseline inflammation may

have a significant role in the age-related hypo-responsiveness to

vaccination and thus reducing background inflammation might

be a promising strategy to enhance vaccine responses (83). This
may be a particularly important consideration for older subjects

who develop severe inflammation after SARS-Cov-2 where

reducing inflammation may boost vaccine efficacy (84).

CURRENT STRATEGIES TO IMPROVE

VACCINE EFFECTIVENESS

Current recommendations for vaccination in older adults include

vaccines against influenza, herpes zoster, pneumococcal disease

and a booster against tetanus and diphtheria. Despite being able to

mitigate the severity of the disease to some degree, these vaccines
often fail to induce protective immunity in the elderly. Several

approaches are currently in place to improve vaccine effectiveness

in this population [discussed in detail elsewhere (4)] and largely

focus on the use of adjuvants, higher antigen doses and alternative

routes of immunization.

Influenza Vaccines
Adjuvanted influenza vaccines are now the first choice for those
over 65 years in countries such as Austria and the United

Kingdom (UK) to overcome the low effectiveness of standard

vaccines in the elderly (85). Data from the 2018/19 influenza

season in the UK, the first season after the introduction of

adjuvanted vaccines for persons above 65 years, demonstrated

better protection from pneumonia-associated hospitalizations
and laboratory-confirmed influenza cases with adjuvanted

compared to non-adjuvanted vaccines (86). Studies have

demonstrated that the addition of MF59® to influenza vaccine

enhanced antibody production with increased seroconversion

and seroprotection rates (87), improved antibody binding affinity

and a more diverse antibody epitope repertoire (88) and induced

broader serological protection against drifted strains (89)
providing support for the use of adjuvants in influenza

vaccination of older populations. Despite this, a study

comparing cell-mediated immune responses to vaccination in

adults ≥ 65 years old randomized to receive one of 4 seasonal

influenza vaccines—standard subunit, MF59 adjuvanted subunit

and split-virus vaccines given intramuscularly or intradermally

—found no benefit of the MF-59 adjuvanted formulation over

non-adjuvanted formulations delivered by intramuscular and

intradermal routes (90).

Alternatively, the use of high-dose influenza vaccines in

individuals over 65 years has also been shown to induce higher
antibody titers and seroprotection rates compared to standard-

dose vaccine (91), leading to their approval for clinical use in

person aged 65 and older (92). Meta-analysis of randomized

controlled trials (RCTs) showed that high-dose vaccines (split-

virus and subunit recombinant hemagglutinin formulations)

were more effective than standard-dose vaccines in preventing
influenza-like illness, influenza hospitalization and all-cause

mortality in adults ≥65 years old (93). When looking at T cell-

mediated immune responses, high-dose influenza vaccines had

little impact on the development of functional T cell memory in

older adults compared to standard-dose vaccines (31).

Another approach to improve influenza vaccine
immunogenicity in older people is the use of alternative routes

of vaccination. Most vaccines are delivered by intramuscular or

subcutaneous injection, bypassing the mucosal immune

compartment. Intranasal and intradermal routes for influenza

vaccination have been developed with the aim of enhancing

immunogenicity, particularly cell-mediated and mucosal

immunity. Although studies suggest that intradermal influenza
vaccination may enhance immunogenicity compared to standard

intramuscular vaccines in persons over 65 years of age (94),

pooled analysis of RCT found no significant differences in

seroprotection and seroconversion rates in older adults with

intradermal vaccine compared to intramuscular (95) and

intradermal influenza vaccines are no longer recommended. T
cell responses were also not different between intramuscular

versus intradermal injection in a randomized study comparing

influenza vaccines in adults ≥ 65 years old (90).

It should be noted that when comparing different types of

influenza vaccines, the formulation may differ. Current licensed

inactivated influenza vaccines are manufactured using either

split-virus or subunit formulations. They are all designed and
licensed based on hemagglutinin antibody responses but while

they may induce similar antibody responses, the differences

become more evident when measuring cellular immune

responses to vaccination (96). Split-virus vaccine lack some of

the purification steps of subunit vaccines and therefore may

contain a larger amount of internal viral proteins such as matrix
protein (M1) and nucleoprotein (97) that are important to elicit

T cell responses (98). Co et al. showed that the presence of

influenza internal proteins, M1 and NP, contained in standard-

dose split-virus vaccines but not in subunit vaccines, were

necessary for stimulating CD8+ T cell responses measured by

IFN-gamma production and by cytotoxicity assays in vitro (96).

Importantly, a study evaluating the clinical effectiveness of split-
virion versus subunit trivalent influenza vaccines in older adults

using a case-positive, control test–negative study design,

demonstrated a vaccine effectiveness of 77.8% (95% confidence

interval [CI], 58.5%–90.3%) for the split-virion compared with

44.2% (95% CI, −11.8% to 70.9%) for the subunit vaccine (99).
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Unfortunately, there are not many studies performing head-to-

head comparisons between the different available influenza

vaccine options for older adults comparing both humoral and

T cell responses. A randomized clinical trial comparing

immunogenicity of currently available vaccine options for

older adults—standard-dose quadrivalent vaccine, MF59-
adjuvanted trivalent vaccine, high-dose trivalent vaccine, or

recombinant-hemagglutinin quadrivalent vaccine – is currently

under way and it will be important for identifying improved

vaccination strategies for influenza in older adults (100).

Herpes Zoster Vaccines
Herpes zoster results from the reactivation of latent varicella-

zoster virus (VZV) infection. Although the reactivation of VZV
can occur throughout life, the risk increases substantially with

age and in conditions associated with a decline in T cell

immunity. A live-attenuated VZV vaccine (Zostavax®) is

approved for older adults to boost VZV-specific cell-mediated

immunity (CMI). Evidence that the vaccine is partially effective

in older patients comes from the Shingles Prevention Study that

demonstrated a reduction in the incidence of herpes zoster and
post-herpetic neuralgia by 51% and 67%, respectively (101).

However, the efficacy of the vaccine was age-dependent,

dropping from 64% in the age group 60–69 years to 41% in

the age group 70–79 years. In addition to this, data on long-term

follow-up indicates that vaccine-induced immune responses

decline over time. Revaccination can have a booster effect
although current evidence is not sufficient to support

revaccination of older people (102).

A new adjuvanted recombinant zoster vaccine (Shingrix®) has

been recently approved to prevent herpes zoster in older adults. It

consists of recombinant VZV glycoprotein E and a liposome‐

based AS01B adjuvant system. This system consists of two

adjuvants, 3-O-desacyl-40-monophosphoryl lipid A (MPL) and
QS-21 formulated in a liposomal delivery system (AS01B) (103).

MPL is a TLR agonist, activating the innate immune system at

the site of the injection and enhancing antigen-presentation

(104). Whist the molecular mechanisms underlying the

adjuvant effect of QS-21 are not yet fully understood, it has

been demonstrated that it induces strong and persistent Th2
humoral and Th1 cell-mediated immune responses (105). It is

thought that the use of liposomal formulations facilitates

the escape of the antigen into the cytosol enhancing antigen-

presentation through MHC-I pathway leading to cross-

presentation to CD8+ T cells and an early IFN-gamma response

that promotes vaccine immunogenicity (106). Interestingly, the

AS01B adjuvant system seems to require the synergistic action of
the three components together for optimal adjuvant effect (107).

The efficacy of the adjuvanted recombinant vaccine has been

demonstrated in two randomized placebo-controlled Phase III

clinical trials, where the administration of two doses resulted in

97.2% protection against HZ in persons over 50 years of age (108)

and 89.8% in adults over 70 years of age (109). While long-term
follow-up is still ongoing, robust antibody and CD4+ T cell

responses were found for at least 3 years after the vaccination,

although CD8+ T cell correlates of protection were not identified

(110). A meta-analysis comparing the two vaccines in adults over

50 years of age confirmed the superiority of the adjuvant

recombinant subunit vaccine compared to the live attenuated

vaccine for the prevention of herpes zoster infection despite a

greater risk of adverse events at injection sites (111). An

additional advantage of the recombinant zoster vaccine over the
l ive-attenuated vaccine is i ts sui tabi l i ty to use in

immunocompromised patients, including HIV-infected patients

(112) and in transplant recipients (113).

Pneumococcal Vaccines
The currently available 23-valent polysaccharide vaccine (PPV-

23) has been used for many years in older adults and is still the
first choice in many countries. However this vaccine does not

generate adequate immunological memory, as purified

polysaccharides do not induce persistent antigen-specific

memory B cells (114). Furthermore, responses to PPV-23 were

impaired in older adults compared to young individuals (115). A

13-valent conjugate vaccine (PCV-13) has been introduced and

is now the first line choice for older adults in several countries as
it has improved immunogenicity compared to the polysaccharide

vaccine (116). Conjugation of polysaccharide antigens enables

the uptake and antigen presentation in the context of MHC-II to

CD4+ T helper cells resulting in the generation of memory B cells

specific for the polysaccharides (114). A large randomized

placebo-controlled trial demonstrated that the conjugate
vaccine is effective in persons over 65 years of age, reducing

the number of hospitalizations due to community-acquired

pneumonia caused by vaccine-type strains by 45.6% and the

number of cases of invasive pneumococcal disease by 75% (117).

It is still debatable which pneumonoccal vaccine is more suitable

to the elderly and this is largely reflected in the heterogeneity of

the recommendations for pneumococcal vaccines from country
to country. PCV-13 induces stronger and long-lasting memory

responses compared to PPV-23, however PPV- 23 covers more

serotypes. This is particularly relevant in the context of the

serotype replacement that is seen as a consequence of routine

childhood vaccination with PCV-13 leading to the reduction in

the incidence of pneumococcal disease caused by vaccine
serotypes while other serotypes become more prevalent (118).

Tetanus and Diphtheria Vaccines
Antibody responses to tetanus and diphtheria vaccines are also

suboptimal in old age. In addition to reduced antibody

concentrations in the elderly, protection is short-lasting and a

second booster after 5 years did not lead to additional long
lasting immunity in older people (119).

Overall, immune responses to currently recommended

vaccines are suboptimal in older people. Despite the important

successes achieved with strategies currently in place to improve

vaccine responses in the elderly, most available vaccines still fail

to elicit long-lasting immune responses and insufficiently trigger
cell-mediated and mucosal immunity. Therefore, novel

approaches should be explored to enhance immunogenicity

and efficacy of vaccines in this population.
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NOVEL STRATEGIES FOR ENHANCING

VACCINE RESPONSES

Implementing New Correlates of
Vaccine Efficacy
Although real estimates of vaccine efficacy can only be
established in randomized, placebo-controlled trials against

laboratory-confirmed cases, the standard of practice is to use

surrogate markers of vaccine-induced protection against disease

(120–122). Hemaglutinin inhibition (HI) assays detecting

antibody responses to vaccine strains are the most widely used

correlates of protection induced by vaccines. Nevertheless,

studies in older adults have found a poor correlation between
antibody responses to influenza vaccine and protection against

laboratory-confirmed cases of influenza (7, 123). The limitations

associated with over-reliance on HI assays to ascertain vaccine

responses have been reviewed elsewhere (124), however there is

growing appreciation that the use of HI antibody titers as a sole

measure of vaccine efficacy may fail to detect important changes
in cellular immunity that occur with age (6, 7). It has been shown

that older adults exhibit lower T cell responses to influenza

compared to young controls (125) and that preexisting CD4+ T

cells against conserved internal influenza proteins are important

for limiting virus replication and disease severity (126).

Additionally, Sridhar et al. showed that, in the absence of

crossreactive neutralizing antibodies, CD8+ T cells specific to
conserved viral epitopes correlated with crossprotection against

symptomatic influenza (127). However, T cell correlates of

protection based on the frequency of IFN-gamma-producing

CD4+T (126) and CD8+ T cells (128) have only been established

in young adults and have not yet been validated in older adults.

On the other hand, other studies have demonstrated that ex vivo
T cell parameters (e.g., interferon (IFN)-gamma and IL-10 ratio,

granzyme B levels) measuring cellular immune responses to

influenza challenge performed better than antibody titers as

correlates of vaccine efficacy in older adults (7, 129). Correlates

of protection based on functional assays of CD8+ T cell cytolytic

activity are important to better predict vaccine efficacy and
should ideally be incorporated into the evaluation of protective

immunity in the elderly (7). Nevertheless, there is still limited

data on functional T cell responses to vaccines, particularly in

older adults, such as CD8+ T cell-mediated ex vivo virus

inhibition assays as described in HIV vaccine development

(130). Although recent data indicates that innate immune cells

may be important contributors for developing effective cytolytic-
mediated immunity to infection this requires a functional

readout of the response to vaccination.

Novel correlates of vaccine effectiveness are needed and an

evolving area of interest is the contribution of neutralizing and

cross-reactive antibodies induced by vaccination to enhanced

protection against disease (131). The use of functional assays
such as antibody-dependent cell mediated cytotoxicity (ADCC)

and serum neutralization assays to detect cross-reactive

antibodies that may not necessarily be detected in HI assays

has been suggested as alternative correlates of protection

however they are difficult to standardize across laboratories.

Likewise, the incorporation of methods to assess antibody

binding affinity, specificity, and epitope diversity of polyclonal

antibodies would be important for a more comprehensive

assessment of the quality of immunization-induced antibody

responses and for developing more effective vaccines (132).
Sequencing B and T cell receptors to analyze repertoire

clonality and diversity could represent a valuable tool to

predict vaccine efficacy by identifying vaccine-induced clones

that will respond better and for longer to a given immunogen

(133, 134). Although difficult to implement as routine measure of

vaccine efficacy, assessment of repertoire clonality and diversity
would be important to direct the development of next-generation

vaccines that provide long-lasting immunity against infection.

Searching for Novel Adjuvants to
Stimulate the Immune System
Adjuvants act as enhancers of vaccine-induced immunogenicity
at multiple dimensions: inducing local proinflammatory

cytokine production, recruiting and activating innate immune

cells, stimulating antigen presentation and ultimately boosting

humoral and cellular immune responses (135). For many years,

aluminium salts have been the only adjuvant in use in human

vaccines. In recent years, high-throughput screening approaches

have led to the discovery of many novel adjuvants. However, to
date only two adjuvants (MF59 and AS01B) are currently

licensed for persons older than 65 years, while the majority

failed to translate to effective therapeutics mostly due to their

side-effects (136). As our understanding of the mechanisms that

boost immunogenicity rapidly increases, new adjuvants are being

developed with focus on generating multifaceted immune
responses. Recent research efforts have also focused on

developing new ways to deliver old adjuvants in order to

improve their function while reducing side-effects (137). The

requirements for effective novel adjuvants are to boost innate and

adaptive immune responses to vaccines and induce long-term

protective memory as well as to counterbalance the low-grade

inflammatory state that might hamper vaccine responses (136,
138). The incorporation of pathogens associated molecular

patterns (PAMPs) in vaccine formulations that act as ligands

for pattern recognition receptors (PRRs) on innate immune cells

is a strategy already in place for enhancing vaccine-specific

responses. PRR activation leads to inflammatory cytokine and

type I IFNs production, facilitating antigen cross-presentation
and activation of cytotoxic T cells (135). Due to their ability to

induce strong cell-mediated responses, TLR ligands are attractive

sources for developing new adjuvants (57, 139, 140). Some TLR

agonists are already in clinical stage as vaccine adjuvants.

Monophosphoryl lipid A is among the first of a new

generation of TLR agonists to be already approved and in

clinical use worldwide as an adjuvant in several vaccine
formulations including a vaccine against hepatitis B virus

(FENDrix) and human papilloma virus (Cervarix) (141).

Another TLR4 agonist, glucopyranosyl lipid adjuvant (GLA)

formulated in a squalene-in-water emulsion (SE), has been
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shown in a first-in-human trial to improve magnitude and

quality of humoral and T-helper 1 type cellular responses

elicited by the ID93 tuberculosis vaccine (142). The

stimulatory effect of GLA-SE is well preserved in older adults

(143) and in vitro studies in the context of vaccination with a

split-virus influenza vaccine in older adults confirmed the
activation of DCs to induce a Th1 response, increasing the

interferon-g to IL-10 ratio and the cytolytic (granzyme B)

response to influenza virus challenge, both of which have been

shown to correlate with protection against influenza in older

adults (144). However, the response to TLR agonists was

impaired in aged compared to young mice (145) and the age-
related defects in TLR function and cytokine production might

limit the utility of TLR ligands in older adults (58, 59). Although

more research is needed, the use of combinations of TLR agonists

has been proven effective in experimental models and might be a

possible strategy for more effective vaccination in the older

population (140).

Triggering Innate Immune Memory
Effective vaccination strategies should aim at inducing

protective adaptive immunity but also incorporate novel means

of triggering innate immune memory to induce life-long

protection against infection (146). Recent findings suggest that

NK cells may play important roles in vaccination, through the

modulation of adaptive immune responses and generation of
innate immune memory (62, 63). NK cells can be activated

following immunization through cytokines produced in response

to adjuvants (147) or by direct stimulation of receptors,

including TLRs (148). Thus, vaccine adjuvants can be

optimized to promote activation and recruitment of NK cells

to target tissues where they can positively or negatively regulate

antigen presenting cells and downstream T cell responses
(149). Additionally NK cells may contribute to enhanced

vaccine responses through the generation of long-lived

‘memory’ NK cells capable of mediating rapid effector

functions following re-exposure to antigen, reminiscent of T-

cell memory responses (62, 150, 151). The concept of innate

immune memory is relatively new and a better understanding of
how memory NK cells are generated and can mediate specific

recognition of antigen is important to define strategies

promoting the development of these cells during vaccination.

Targeting T Cells to Induce Broad
Protective Immunity
An ongoing challenge in vaccination is the development of

vaccines that are able to induce broad protective immunity.

This is particularly relevant for influenza where next-

generation vaccines inducing T cell immunity may potentially

overcome the limitations of current available vaccines that rely

on antibodies to provide narrow subtype-specific protection and

are prone to antigenic mismatch with circulating strains. The
concept of “universal” vaccines is based on the possibility of

inducing heterosubtypic immunity, whereby T cells can target

diverse influenza strains by recognizing highly conserved

peptides (127, 152). Studies conducted during the 2009 H1N1

pandemic provided key insights into the role of cross-reactive T-

cells in mediating heterosubtypic protection in humans. We

conducted influenza studies to map T cell responses before and

during infection in adults with no detectable antibodies to

pandemic H1N1 and found that preexisting CD4+ T cells

targeting highly conserved protein epitopes exhibited cytotoxic
activity across strains and were important to limit viral

replication and disease severity (126). By mapping the type of

epitopes that were able to generate heterotypic responses across

strains, the results of this work and others (153) can aid the

development of broadly protective T cell vaccines (154). This

may be particularly important in the context of pandemics where
there is no preexisting immunity. Interestingly, a recent study

done in COVID-19 convalescent patients detected circulating

SARS-CoV-2-reactive CD4+ T cells in 40%–60% of unexposed

individuals, supporting the importance of cross-reactive

heterotypic T cell responses for clinical protection and limiting

disease severity (155).

Exploring New Pathways for the
Development of Broadly Protective
Vaccines
Innate T-cells (MAIT cells, gd cells, and NKT cells) are attractive

vaccine targets as they can link both innate and adaptive

immunity by mediating TCR-dependent and independent

(innate-like) functions (156). A common feature of innate T

cells is their capacity to respond rapidly to danger signals and

pro-inflammatory cytokines (such as IL‐12, ‐15, ‐18 and Type I
IFNs) in a TCR‐independent mechanism and participate in the

early stages of defense against certain infections. MAIT cells are

abundant in human lungs where they have been shown to

contribute to protection against influenza infections (157) and

mucosal tissues, such as the intestinal mucosa, making them

attractive targets for mucosal vaccine design. Recent studies have

shown that MAIT cell frequencies can be rapidly ‘boosted’
through mucosal administration of synthetic MAIT cell ligands

with TLR agonists (157, 158) and this could be particularly

beneficial for the elderly who have impaired MAIT cell immunity.

Bystander activation by cytokines is a feature shared by a

subset of conventional T cells, particularly CD8+ T cells. We have

recently shown that as T cells differentiate toward senescence
they become less responsive to TCR conventional signaling while

acquiring innate-like functions (32). The reprogramming of

highly differentiated CD8+ T cells from TCR to NKR

functional activity provides them broad protective functions

that can be beneficial in the context of aging (35) and might be

also relevant for vaccination.
Another area of potential interest is the use of monoclonal

antibodies that selectively block inhibitory receptors to boost T

cell function. In light of the unprecedented results obtained with

the use of checkpoint inhibitors (e.g., PD-1, CTLA-4) in cancer,

new avenues of research are open for the use of these

immunomodulators in other settings, including vaccination

(159, 160). Interestingly, improved vaccine responsiveness has
been linked to reduced frequencies of CD4+ and CD8+ T
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lymphocytes expressing PD-1. For instance, immunological

responses to the live-attenuated zoster vaccine in individuals

over 50 years of age were correlated with pre-vaccination levels of

regulatory T cells and PD1-expressing T cells, regardless of the

age of the vaccine (161). Ex vivo blocking experiments

corroborated a role of PD1 and CTLA4 as modulators of
decreased VZV responses (161). A study on the responses to a

trivalent inactivated influenza vaccine in lung cancer patients

receiving PD-1 blockade therapy compared to age-matched

healthy controls showed comparable serological protection but

an increased rates of immune-related adverse events (IRAEs)

(162) although a subsequent study found no increase in
incidence or severity of IRAEs in patients on immune

checkpoint inhibitors who received the flu vaccine (163).

While more research is needed on the safety and efficacy of

such combinations of immune checkpoint inhibitors with

vaccines, this combinatorial approach has been tested and

proved efficient in preclinical and clinical trials using
therapeutic cancer vaccines with anti-PD1 (164, 165) or anti-

CTL4 (166) monoclonal antibodies. As the expression of

inhibitory receptors on T cells has been shown to increase with

age and differentiation (37, 167) the selective blockade of

inhibitory receptors known to regulate T cell activity could be

explored as means of boosting cellular responses in the elderly

prior to or during vaccination.

Blocking Baseline Inflammation to Boost
Vaccine Responses
Responses to vaccination vary widely across individuals and are
generally poorer in particular groups including not only the

elderly but also individuals with autoimmune diseases, HIV

infection (168) and cancer (169). A common feature among

these groups is the presence of a chronic inflammatory

background that has been associated with adverse health

outcomes (170). Furthermore there is a growing appreciation

that pre-existing inflammation may be a determinant of vaccine
responsiveness and thus modulating baseline inflammation prior

to vaccination has become an attractive area of research to boost

vaccine responses (16, 83, 171). Using high-throughput

technology researchers have identified baseline transcriptional

signatures that predict protective immune responses to vaccines

(76, 78–81). Most of the signatures identified so far are indicative
of broad immune activation and excessive inflammation. For

example, a study comparing responses to the yellow fever vaccine

in an African cohort compared with a Swiss cohort found that an

activated immune profile of NK cells, monocytes and

differentiated T and B cell subsets was associated with reduced

responses to vaccination (81). Our group has previously shown

that older individuals have decrease ability to mount recall
responses to VZV antigen challenge in the skin (172) and this

was subsequently associated with increased baseline local

inflammation (79). Ingenuity pathway analysis indicated that

this inflammation was driven by the activation of p38 MAP

kinase pathway in the skin of old individuals compared with

young. Short-term systemic treatment with an oral p38 MAPK

inhibitor (Losmapimod) significantly increased the cutaneous

VZV response in older subjects (79), supporting the concept

that anti-inflammatory interventions may be promising

strategies for boosting immunity during aging. Furthermore,

oral administration of an mTOR inhibitor (Rapamycin)

prior to influenza vaccination of older adults resulted in
increased antibody titers against all three strains of a trivalent

influenza vaccine by more than 20% in individuals aged above 65

years (173). Other immunomodulator agents such as metformin,

imiquimod (174) and anti-inflammatory drugs inhibiting

COX2 expression (175) (e.g., aspirin and NSAIDS) that are

currently approved for clinical use in other settings may
represent attractive approaches to promote more effective vaccine

responses by transiently alleviating chronic inflammation prior to

vaccination. Finally, it is likely that targeting other sources of

inflammaging by changing the composition of the microbiome

(176) or selectively removing senescent cells using senolytic drugs

(177) may represent further opportunities for enhancing vaccine
immunity in the setting of chronic inflammation.

REFLECTIONS ON COVID-19

VACCINATION STRATEGIES FOR

THE ELDERLY

The discussion about the impact of aging on immunity and

vaccination is particularly relevant at the moment as the

COVID-19 pandemic placed again the spotlight on the

vulnerability of older adults to emerging infectious diseases.
Epidemiological data reveals that individuals over 60 years of

age are disproportionately affected by SARS-CoV-2 infection

experiencing the most severe forms of disease and the highest

hospitalization rates (178–180). Age is a strong predictor of

death among patients hospitalized with COVID-19 (181, 182)

and a review of epidemiological data from different countries

revealed an exponential increase in case fatality rates with age,
regardless of the geographic region (183). Despite being the most

affected risk group, older adults are the least likely to respond to a

new vaccine. This represents a major challenge for vaccine

development and thus it is critical to understand how

immunosenescence and inflammaging impact on vaccine

responses to ensure that vaccination remains effective in
this age group (184). To meet this need, leading vaccine

developers Oxford University/AstraZeneca (ClinicalTrails.gov

number: NCT04516746), NIAID/Moderna Therapeutics

(NCT04405076) and BioNTech/Pfizer (NCT04368728) are

currently recruiting adults over 55 years of age to evaluate

efficacy, safety and immunogenicity of their vaccine candidates

in older individuals. However, due to intricacies of clinical trial
design with strict inclusion/exclusion criteria most COVID-19

vaccine studies may fail to include a sufficient number of older

individuals, in particular those in their 70s and 80s. As of 3 of

September 2020, the COVID-19 vaccine development landscape

includes 33 vaccine candidates in clinical trials, of which 6

candidates are currently in phase III clinical trials (185).
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Despite the promising preliminary reports of their phase I/II

trials (186, 187), current vaccine front-runners have not yet

published results on the vaccine safety and immunogenicity in

elderly. Relaxing the eligibility criteria and ensuring an adequate

representation of the groups most affected by COVID-19 disease -

such as elderly people, those with comorbidities and people from
black, Asian and minority ethnic groups – is of key importance for

successful vaccination strategies for COVID-19.

Trials in older adults are also important to understand why

immune responses to COVID-19 infection and vaccination may

vary from person to person. A recent study performed deep

immune profiling of 125 COVID-19 patients and identified
immune profiles associated with poor clinical outcomes (97).

Severe COVID-19 disease was associated with an immunotype

characterized by the paucity of circulating follicular helper cells

and the presence of highly activated CD4+ and CD8+ T cells, with

increased frequencies of highly differentiated CD8+ T cell

“EMRAs” and exhausted PD1+ CD8+ T cells, providing
evidence for the association between an immunosenescent

phenotype and disease severity. Other studies have shown that

severe COVID-19 disease correlated with elevated serum

concentrations of inflammatory cytokines including interleukin-

6 (IL-6), granulocyte colony-stimulating factor (G-CSF), IP-10,

MCP1, macrophage inflammatory protein 1a (MIP1a) and

tumor necrosis factor (TNF) (188–191). Among these, IL-6 has
received particular attention (189) providing support for several

clinical trials on IL-6 receptor antagonists as potential treatments

for severe COVID-19 disease (192). Accumulating evidence

suggests that the pathophysiological hallmark of COVID‐19

disease is severe inflammation with descriptions of a cytokine

storm syndrome (193, 194) induced by a dysregulated monocyte/
macrophage response (195, 196). As previously discussed, the

presence of low-grade sterile inflammation characterized by high

baseline serum concentrations of pro-inflammatory cytokines

including IL-6 is a hallmark of aging (70) and is predictive of

early mortality (73). Thus, it can be speculated that inflammaging

is one of the mechanisms underlying increased morbidity and

mortality due to SARS-CoV-2 infection in older adults (196). As
pre-existing inflammation may also be detrimental to vaccine

responses it has been proposed that reducing inflammation with

short-term course of mTOR or p38MAPK inhibitors and possibly

other anti-inflammatory agents (e.g., steroidal drugs such as

dexamethasone) may be used as a strategy for improving

COVID-19 vaccine responses in older people (84).

CONCLUDING REMARKS AND

UNSOLVED QUESTIONS

Despite the important successes achieved with current vaccines,

most available vaccines still fail to elicit long-lasting immunity in

older adults. Current vaccine strategies must evolve to be able to

enhance cell-mediated and mucosal immunity in addition to
inducing long-lasting antibody responses. However, to date most

clinical trials leading to vaccine approval in older adults rely

entirely on antibody responses as correlates of protection and

thus novel correlates of vaccine effectiveness are needed that fully

reflect the changes occurring with age in the immune system. The

use of system vaccinology approaches can aid researchers in

identifying signatures that predict protective immune responses

and this information can be used for optimization of current
vaccination strategies. Responses to vaccination vary widely across

individuals and baseline immune profiles matter to determine the

outcome of vaccination. Recent data suggests that excessive

baseline inflammation is deleterious and may hamper immune

responses and thus novel approaches aimed at reducing

inflammation may offer novel opportunities to improve vaccine
responses in older individuals. Yet the prevailing view is that

adjuvants improve vaccine responses by promoting local

inflammation. Thus more research is needed to understand the

role of inflammation in vaccine responses and to reconcile these

seemingly paradoxical observations. It could be speculated that the

effects of systemic versus local inflammation are distinct and that
the beneficial effects of anti-inflammatory drugs on vaccine

response result from the systemic reduction of the low-level

chronic inflammation. Additionally, chronic immune activation

may be associated with desensitization or tolerance to new

antigenic stimulation resulting in poor immune responses. Thus

stronger adjuvants may be needed to overcome this tolerogenic

state and alleviate the consequences of chronic inflammation.
There is a need to develop newer and more specific adjuvants,

able to fine tune immune responses and selectively stimulate

pathways that lead to long-lasting immune protection. As our

understating of immunosenescence and inflammaging increases

new individualized approaches could point towards the

development of more effective vaccines for older individuals.
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