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Abstract

Significance: Atrial fibrillation (AF) is a burgeoning health-care problem, and the currently available therapeutic
armamentarium is barely efficient. Experimental and clinical evidence implicates inflammation and myocardial
oxidative stress in the pathogenesis of AF. Recent Advances: Local and systemic inflammation has been found to
both precede and follow the new onset of AF, and NOX2-dependent generation of reactive oxygen species in
human right atrial samples has been independently associated with the occurrence of AF in the postoperative
period in patients undergoing cardiac surgery. Anti-inflammatory and antioxidant agents can prevent atrial
electrical remodeling in animal models of atrial tachypacing and the new onset of AF after cardiac surgery,
suggesting a causal relationship between inflammation/oxidative stress and the atrial substrate that supports
AF. Critical Issues: Statin therapy, by redressing the myocardial nitroso-redox balance and reducing inflammation,
has emerged as a potentially effective strategy for the prevention of AF. Evidence indicates that statins prevent
AF-induced electrical remodeling in animal models of atrial tachypacing and may reduce the new onset of AF after
cardiac surgery. However, whether statins have antiarrhythmic properties in humans has yet to be conclusively
demonstrated, as data from randomized controlled trials specifically addressing the relevance of statin therapy for
the primary and secondary prevention of AF remain scanty. Future Directions: A better understanding of the
mechanisms underpinning the putative antiarrhythmic effects of statins may afford tailoring AF treatment to
specific clinical settings and patient’s subgroups. Large-scale randomized clinical trials are needed to support the
indication of statin therapy solely on the basis of AF prevention. Antioxid. Redox Signal. 20, 1268–1285.

Introduction

Atrial fibrillation (AF) is a heart rhythm disturbance
that is characterized by rapid, irregular electrical and

mechanical activation of the atria, which causes uncoordi-
nated contraction and favors the formation of atrial thrombi.
AF is an increasing health-care burden, because of the aging
population and improved survival from acute cardiovascular
events, such as myocardial infarction. The lifetime risk for
development of AF in all men and women older than 40 is
estimated at about 25%; whereas for those without previous
or concurrent cardiovascular events, the lifetime risk is 16%
(60, 98). The presence of AF independently increases the risk
of mortality and morbidity, mostly due to stroke and heart

failure (HF), resulting in disability and high health-care cost
(24, 92). AF is often associated with a number of cardiac and
noncardiac risk factors, including ischemic heart disease, HF,
valvular heart disease, hypertension, diabetes, alcohol abuse,
thyroid disorders, and pulmonary disease (1, 50), and it is
present in 3%–6% of acute medical admissions, in which the
most common comorbidities are coronary artery disease and
HF (24). AF is also a common postoperative complication,
especially after cardiothoracic surgery (70).

Clinically, AF can be divided into paroxysmal, persistent,
and permanent (24). Paroxysmal AF is defined as recurrent
(two or more) episodes of AF that terminate spontaneously in
< 7 days, usually < 24 h; whereas persistent AF describes AF
episodes lasting beyond 7 days. AF is regarded as permanent
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when attempts to restore sinus rhythm have failed or have
been deemed inappropriate and both patient and physician
accept AF as the underlying rhythm of choice. It is important
to stress that the decision to label AF as permanent reflects a
(potentially reversible) management choice rather than a
separate pathophysiological entity.

The mechanisms underlying the new onset of AF are
hitherto only partially characterized, and the progression
from paroxysmal to persistent AF as well as the factors re-
sponsible for the individual response to treatment are even
further from being completely understood. In keeping with
this, the pharmaceutical armamentarium currently available
aims at controlling symptoms and at reducing the thrombo-
embolic risk, the latter with agents that carry a significant risk
of hemorrhagic events. The advantage of rhythm versus rate
control remains a matter of debate (119), whereas the efficacy
and safety of antiarrhythmic drugs used for the treatment of
AF is an ongoing concern (74). Besides relieving symptoms,
the main aim of the medical management of AF is to reduce
the risk of thromboembolic stroke; however, the widely used
clinically derived risk scores are not very accurate in pre-
dicting which patients with AF would benefit more from
anticoagulant prophylaxis.

In view of these issues, the development of safer antiar-
rhythmic therapies targeted to the pathogenic mechanisms
that are responsible for the initiation and perpetuation of AF
would seem particularly important. In addition, a deeper in-
sight into the pathogenesis of AF might refine the risk pre-
diction scores for thromboembolic complications. In this
context, several experimental and clinical studies have ad-
dressed the link between AF, inflammation, and oxidative
stress.

Inflammation, Oxidative Stress, and AF:
Cause or Effect?

A causal role of inflammation in the initiation of AF is
suggested by the observation that inflammatory states, such
as myocarditis, pericarditis, and cardiac surgery, are fre-
quently associated with AF (113, 149). The first piece of ev-
idence directly linking inflammation to AF was the
histological findings of atrial myocarditis in patients with
lone AF, but not in subjects with sinus rhythm (49). These
findings were later confirmed in animal studies (146).
However, cardiac surgery and cardiopulmonary bypass
(CPB) have probably provided the strongest evidence link-
ing a systemic inflammatory response to the new onset of AF
after cardiac surgery. This is further reinforced by the ob-
servation that the postoperative peak in inflammatory
markers, namely serum C-reactive protein (CRP) and inter-
leukin 6 (IL-6), coincides with the peak incidence of AF (i.e.,
at the 2–3 day after surgery) (21); whereas the milder sys-
temic inflammatory response observed in patients under-
going coronary revascularisation off-pump is paralleled by a
lower incidence of postoperative AF (6, 30). Moreover, pre-
operative levels of circulating cytokines (10) and the activity
of a gp91-containing NADPH oxidase (NOX2) (76) in atrial
tissue samples obtained at the time of CPB have also been
independently associated with the new onset of postopera-
tive AF and other in-hospital complications in patients un-
dergoing cardiac surgery (9) (Fig. 1). These findings suggest
that myocardial NOX2 activity preceding cardiac surgery,

inflammation, and ischemia/reperfusion injury may con-
tribute to the pathogenesis of postoperative AF and help in
refining risk stratification of these patients.

Chung et al. were the first to report an association between
AF and elevated CRP (32). In this case-control study, CRP
level was more than two-fold higher in patients with AF
compared with controls. The association between elevated
CRP and presence of AF was further supported by large
population-based cohort studies. In 5806 elderly individuals
followed for a mean of 6.9 years, CRP was associated with the
presence of AF; whereas in patients with sinus rhythm, ele-
vated CRP levels were independently associated with the
future development of AF (13). In another study, 1 mg/dl
increase in serum CRP was associated with a seven-fold in-
crease in the risk of recurrent AF and a 12-fold increase in the
risk of permanent AF (39). A meta-analysis of seven pro-
spective observational studies, including 420 patients (229
with and 191 without AF relapse), indicated that increased
baseline CRP levels are also associated with a greater risk of
AF recurrence after successful cardioversion (standardized
mean difference = 0.35 units, 95% CI: 0.01–0.69) (94). Fur-
thermore, a meta-analysis of six prospective studies, includ-
ing 366 patients with AF who underwent cardioversion,
found CRP levels to be higher in patients who failed to recover
from sinus rhythm (Fig. 2), suggesting that CRP assessment
may provide prognostic information on the success of this
procedure (95, 100).

Besides CRP, other circulating inflammatory biomarkers,
such as IL-6, IL-8, IL-1b, tumor necrosis factor-a (TNF-a), fi-
brinogen, and complement factors, have been independently
associated with either incident or prevalent AF (21, 96, 127,
132, 139, 140). Indeed, in the Women’s Health Study, a com-
bined ‘‘inflammation score,’’ including high sensitivity CRP,
soluble intercellular adhesion molecules, and fibrinogen, in-
dependently predicted the new onset of AF over a median
follow up of 14.4 years in 24,734 middle-aged women free of
overt cardiovascular disease or cancer at baseline (34) (Fig. 3).
However, patients who develop persistent AF are more likely
to have undetected asymptomatic paroxysmal AF, which, in
turn, might cause an increase in inflammatory markers. This
raises the possibility that inflammation may be a consequence
or a biomarker of AF rather than a causal mechanism (35).
Indeed, restoration of sinus rhythm (either through pulmo-
nary vein isolation or cardioversion) has been associated with
reduction in CRP levels and improvement of endothelial
function (71, 173). Conversely, AF induction in patients with
paroxysmal AF undergoing ablation while in sinus rhythm
has been associated with a rapid increase in soluble CD40
ligand (a member of the TNFa superfamily with pro-
inflammatory and pro-thrombotic actions)(7) and in the en-
dogenous nitric oxide synthase (NOS) inhibitor, asymmetric
dimethylarginine (ADMA), when compared with patients who
were paced at 150 beats per minute or patients with normal
sinus rhythm. Both rapid pacing and AF induction increased
platelet activation and thrombin generation, particularly in the
left atrium, but AF also led to endothelial dysfunction and
activation of the inflammatory cascade (91), suggesting that
rapid atrial activation and altered blood flow are sufficient
to elicit inflammation and increase pro-thrombotic risk. While
the chicken or the egg causality dilemma remains, both are
likely to be relevant, so that pre-existing inflammation paves
the way for the initiation of AF, which, in turn, generates an
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inflammatory response that enhances atrial remodeling, thus
facilitating the persistence of AF (Fig. 4).

How Do Inflammation and Oxidative Stress Induce
an Arrhythmogenic Substrate?

A current understanding of the mechanisms by which in-
flammation (systemic or local) may lead to AF remains fairly
limited. Rapid atrial activation in AF results in myocytes
calcium overload (55), which, in turn, can lead to cardio-
myocyte apoptosis and myolysis (4). The resulting cellular

damage induces a low-grade inflammatory response, which
contributes to atrial structural remodeling. Inflammation-
induced structural alterations in AF are supported by evi-
dence of neutrophil infiltrates, cardiomyocyte necrosis and
apoptosis, and fibrosis in atrial biopsies (49, 171) (Fig. 4). In a
canine model, acute inflammation anisotropically slowed at-
rial conduction in response to programmed electrical stimu-
lation, thus setting the stage for re-entry (155). Similarly,
inhomogeneous atrial conduction and increased AF suscep-
tibility were correlated with atrial neutrophil-derived mye-
loperoxidase (MPO) activity (r = 0.851, p < 0.001) in a canine

FIG. 1. Right atrial (RA) NADPH-stimulated superoxide production (an index of NOX2 activity) is independently
associated with an increased risk of postoperative atrial fibrillation (AF) (A) and longer in-hospital stay (B) in patients
undergoing elective cardiac surgery. Hazard ratio (HR [95% confidence interval (CI)]). p value derived from the Cox
regression, after adjustment for age, use of beta-blockers, EuroSCORE (European System for Cardiac Operative Risk Eva-
luation), and postoperative AF (in B only). Three-day treatment with atorvastatin (atorva) 40 mg once daily decreases RA
NADPH-stimulated superoxide production in statin-naı̈ve patients undergoing cardiac surgery in a randomized, placebo-
controlled comparison (C). **p < 0.01 versus placebo; RLU, relative light units. Modified from Antoniades et al. (8). To see this
illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars

FIG. 2. C-reactive protein (CRP) levels are higher in patients with AF who fail electrical cardioversion. df = degrees of
freedom; SMD = standardized mean difference. Reprinted with permission from Liu et al. (94). To see this illustration in color,
the reader is referred to the web version of this article at www.liebertpub.com/ars
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model of atriotomy or pericardiotomy (67). In the same
model, anti-inflammatory therapy with methylprednisolone
significantly decreased both MPO activity and the inhomo-
geneity of atrial conduction, thus supporting a role for
neutrophil-derived inflammation in generating the atrial
substrate for AF. Patients with AF have higher MPO plasma
levels and a larger MPO burden in right atrial (RA) samples
compared with individuals with sinus rhythm (133). Inter-
estingly, MPO not only represents a marker of leucocyte in-
filtration but also appears to be causal for disease
development, as MPO-deficient mice were protected from
atrial fibrosis and AF susceptibility induced by angiotensin II
infusion (133). Collectively, these findings indicate that in-
flammation-driven oxidative stress plays an important role in
atrial structural remodeling.

Whether inflammation, and the resulting atrial oxidative
stress, also affects atrial action potential duration (APD) and
refractoriness or triggers activity from the pulmonary veins
remains largely unknown. A number of sarcolemmal ionic
currents have been shown to be directly or indirectly modu-
lated by NO or reactive oxygen species (ROS) (162); however,
the relevance of these mechanisms in the context of human AF
remains to be conclusively demonstrated.

ROS also increase cardiac ryanodine receptor (RyR2) open
probability by increasing the channel’s sensitivity to cytosolic
Ca and adenosine triphosphate (ATP) (43, 106), as well as by
disrupting the interaction of RyR2 with triadin (93) and

FKBP12.6 (179). In a murine model, mutations in RyR2 that
enhance sarcoplasmic reticulum Ca leak increase suscepti-
bility to AF by rapid atrial pacing, an effect mediated by ox-
idation-induced dissociation of calstabin2 from RyR2 but
independent of calmodulin kinase II (CaMKII) or protein ki-
nase A (142). On the other hand, CaMKII-dependent phos-
phorylation of RyR2 has been shown to increase diastolic Ca
leak in RA myocytes from patients with AF (115). Overall, it is
reasonable to speculate that phosphorylation and oxidation
act synergistically to increase RYR2 open probability (17, 141).
Indeed, oxidative stress can activate CaMKII (45) and phos-
phorylate RYR2 channels, which then become more prone to
oxidation (141). Similarly, experimental evidence suggests
that ROS-mediated disturbance of intracellular Ca and Na
handling may result in electrical instability and set the stage
for the development of AF (162). Importantly, ROS-induced
ROS release from mitochondria can prevent ATP production
and, consequently, result in activation of sarcolemmal KATP

channels (11). The shorter APD and slower electrical con-
duction, thus, generated promote re-entry-dependent ar-
rhythmias (5).

Finally, oxidative stress-induced atrial remodeling has
been shown to modulate connexin-40 (Cx40) and connexin-43
(Cx43), thereby interfering with gap junctions among atrial
cardiomyocytes (37, 156). The ensuing disruption of appro-
priate cell-to-cell coupling, in turn, affects electrical

FIG. 3. Cumulative incidence of incident AF by inflam-
mation score. The inflammation score, which included high-
sensitivity CRP, soluble intercellular adhesion molecules,
and fibrinogen, partitioned 24,734 middle-aged women free
of overt cardiovascular disease or cancer at baseline into four
groups with a proportionally higher risk of incident AF, and
independently predicted the new-onset AF over a median
follow up of 14.4 years. Reprinted with permission from
Conen et al. (34).

FIG. 4. Schema illustrating the role of acute and low-
grade inflammation in AF. Inflammatory conditions (e.g.,
myocarditis, pericarditis, and cardiac surgery) activate a ra-
pid pro-inflammatory cascade involving cytokine release,
leukocyte infiltration, and myeloperoxidase (MPO) activa-
tion, thus leading to atrial structural changes that provide a
substrate for the maintenance of AF. Rapid atrial activation is
in itself sufficient to generate local and systemic low-grade
inflammation, leading to further atrial remodeling and a pro-
thrombotic state. To see this illustration in color, the reader is
referred to the web version of this article at www.liebertpub
.com/ars
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conduction and refractoriness, both of which are key deter-
minants of the re-entry circuits that sustain AF (163). The role
of connexins in AF is supported by evidence that somatic
mutations or polymorphisms in GJA5, the gene coding for
Cx40, may predispose to AF by impairing gap-junction as-
sembly or electrical coupling (54, 169). However, the preva-
lence of rare nonsynonymous sodium nitroprussides
polymorphisms in the GJA5 gene in AF patients appears to be
low (154), in agreement with the absence of an association
between common variants in or near the GJA5 gene and AF in
the most recent and largest AF genome-wide association
studies (44). There is compelling evidence from both animal
(18, 22, 75, 130, 138) and human (42, 72, 114, 167) studies of
abnormal Cx40 and Cx43 expression and function in AF (134,
148). Overall, AF seems to be characterized not only by re-
duced absolute expression of Cx40 and Cx40/Cx43 ratio, but
also by enhanced redistribution of both connexins from cell-
end gap junctions to lateral margins (41). Heterogeneity and
lateralisation either decrease or completely abrogate function
of these intercellular ion channels (64, 156), hence decreasing
electrical coupling amid cardiomyocytes. Moreover, Cx40
remodeling synergistically co-operates with simultaneously
developing fibrosis to increase arrhythmogenicity by pro-
moting anatomically stable re-entries during AF (64). How-
ever, the highly discrepant results obtained in different
contexts and even within the same animal model obscure the
relationship between connexins and AF (41, 73). For instance,
higher Cx40 expression was reported in left atrial (LA) sam-
ples from patients with lone AF and mitral-valve disease-re-
lated AF; however, Cx43 expression increased only in the
latter group, suggesting differential trends in connexin ex-
pression depending on the underlying pathology (167). The
conflicting results provided by Cx40 knockout mice regarding
AF vulnerability fuel the ongoing controversy (15, 57). Simi-
larly, small molecules aimed at restoring adequate gap-junc-
tion conductance appear to be beneficial in some models
(ischemia and mitral-valve disease-related AF) but not in
other clinically relevant scenarios (e.g., congestive HF) (56,
145). Noteworthy, gene transfer with either Cx40 or Cx43 has
emerged as a promising novel approach to control connexin

expression. Indeed, adenoviral-mediated enhanced Cx43 ex-
pression attenuates impaired electrical conduction and de-
creases AF inducibility (18, 66). Regarding the mechanisms
underlying gap-junction remodeling in AF, TNF-a infusion in
mice proved to be sufficient to induce sustained atrial fibrosis
and decrease Cx40 expression, thus suggesting that down-
regulation of gap junctions might contribute to the inflam-
mation-induced increase in AF susceptibility (90).

Possible mechanisms by which oxidative stress and in-
flammation contribute to the formation of the electrical and
structural substrate for AF are summarized in Figure 5.

What Is the Role of Myocardial Endogenous
Oxidase Systems in AF?

Direct myocardial generation of ROS appears to play a
crucial role in initiating and sustaining AF in animal models
and humans (26, 112). Among the several potential sources of
ROS present in the atrial myocardium, NADPH oxidases or
NOXs, mitochondria, xanthine oxidase (XO), and ‘‘un-
coupled’’ NOS have been associated with both the new onset
of AF and the AF-induced atrial remodeling (9, 40, 76, 77, 131).

NOXs are multi-subunit transmembrane enzymes that
utilize NADPH as an electron donor to reduce oxygen to su-
peroxide anion and hydrogen peroxide. NOX2 was initially
discovered in phagocytes several decades ago (83) and since
then, six more family members have been identified (176).
NOX-dependent ROS production depends on the expression
level and the activity of the enzyme. The mode of activation
differs among NOX enzymes, but NOX-dependent ROS
production in cardiovascular pathology usually involves
stimulation by Rac1 and protein kinase C (20). Besides playing
a critical role in the microbicidal activity of neutrophils, NOX2
in the myocardium has been involved in the pathogenesis of
AF. For example, induction of AF by rapid atrial pacing in
pigs was associated with increased NOX-dependent ROS
production in the LA (40). AF develops spontaneously in mice
with cardiac-specific overexpression of a constitutively active
Rac1, which activates NOX2 (3). Kim et al. showed that NOX2
was the main source of ROS in human RA myocytes and that

FIG. 5. A diagram depicting possible
mechanisms by which oxidative stress
and inflammation contribute to the
formation of the electrical and struc-
tural substrate for AF. Some of the de-
scribed targets of statin therapy (S) are
shown in red. To see this illustration in
color, the reader is referred to the web
version of this article at www.lie
bertpub.com/ars
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NOX-derived ROS production was increased in RA samples
from patients with (mostly paroxysmal) AF (76). Further-
more, atrial NOX2-dependent superoxide production is in-
dependently associated with an increased risk of
postoperative AF and other in-hospital complications in pa-
tients undergoing cardiac surgery (9, 77). More recently,
Reilly et al. (131) reported an increase in atrial Rac1 and NOX2
protein level and activity 2 weeks after induction of AF in
goats and in cardiac surgery patients who go on to develop
postoperative AF (Fig. 6). On the other hand, ‘‘uncoupled’’
NOS activity and mitochondrial oxidases become the most
important sources of ROS in the setting of longstanding AF
and atrial structural remodeling (131). In keeping with these
findings, oxidative stress assessed by NOX2 activity and
urinary isoprostanes (which result from the interaction of
arachidonic acid with ROS) was found to be increased in
patients with paroxysmal and recent AF. By contrast, patients
with longstanding AF showed similar values of urinary iso-
prostanes and a modest increase in NOX2 activity compared
with controls (25). NOX2 expression in leucocytes is several
orders of magnitude higher than that of other cells (16), ren-
dering urinary NOX2 activity a likely marker of neutrophil
activation.

Xanthine oxidoreductase has emerged as a relevant source
of ROS in cardiovascular diseases and, in particular, in AF.
Under physiological conditions, the enzyme functions as a
dehydrogenase with NAD + as an electron acceptor. After
oxidation of critical cysteines or partial cleavage of the en-
zyme, xanthine oxidoreductase switches to XO and facilitates
one- as well as two-electron transfer onto oxygen (117). Thus,
in situations of pre-existing oxidative stress or inflammation,
XO catalyzes the conversion of hypoxanthine to xanthine and
of xanthine to uric acid, and simultaneously produces super-
oxide anions as well as hydrogen peroxide (52). In addition to
increasing oxidative stress, by producing uric acid, XO pro-
motes inflammation through activation of pro-inflammatory
cytokines and stimulation of the renin-angiotensin system
(166). In keeping with the mechanism of redox-induced con-
version from the dehydrogenase to the oxidase form, XO-

dependent endothelial superoxide production is promoted by
angiotensin II and the resulting activation of NOX2 (84).
Notwithstanding the controversy concerning the role and
localization of XO in the heart of nonrodent mammalian
species (126), XO has been found in capillary endothelial cells,
vascular smooth muscle cells, macrophages, and mast cells
(61). Interestingly, the mRNA level of XO in the heart and the
vascular system is low, whereas the liver expresses a high
level of XO, particularly in the presence of inflammation. As
XO binds to the endothelial glycocalyx after secretion into the
blood, it is possible that a significant proportion of cardiac XO
might originate in the liver and reside in the extracellular ra-
ther than the intracellular compartment (168). With regard to
AF, XO seems to play different roles in different species. In a
porcine model, atrial tachypacing caused a significant in-
crease in XO-dependent superoxide production in the left
atrium (40). However, these findings failed to be replicated in
RA appendages of patients with AF (76). In a canine model of
atrial tachypacing, inhibition of XO with allopurinol abro-
gated atrial fibrosis and the reduction in endothelial NOS
(eNOS), without affecting LA diameter (135). Besides pre-
venting atrial structural remodeling, allopurinol attenuated
the electrical remodeling induced by atrial tachypacing (135).
In line with these experimental findings, a small cross-sec-
tional study showed a correlation between uric acid levels and
LA diameter ( p < 0.001), a conventional but rather question-
able marker of atrial structural remodeling (87). Indeed, uric
acid appeared to be an independent predictor of permanent
but not paroxysmal AF (adjusted odds ratio [OR] = 0.34, 95%
CI: 0.137–0.949, p = 0.039) (87), thus reinforcing its potential
association with atrial structural remodeling. Moreover, an
increasing body of epidemiological data has identified uric
acid as a marker of AF risk (79). This association was further
supported by the Atherosclerosis Risk In Communities study
in which elevated serum uric acid was associated with greater
AF risk (adjusted hazard ratio [HR] = 1.16, 95% CI: 1.06–1.26
per SD increase of serum uric acid differences), particularly in
women and blacks (153). This gender difference was con-
firmed in a Japanese cohort study (152), but the mechanisms

FIG. 6. After 2 weeks of AF (2W-AF),
NOX2 protein expression and NADPH-
stimulated superoxide production were
increased in the goat left atria (LA) (A, B)
compared with SR. Ex vivo incubation
with atorvastatin caused a mevalonate-
reversible inhibition of Rac1 activity (C,
D) and of NADPH-stimulated superoxide
production (E) in patients who went on to
develop AF after cardiac surgery. RLU,
Relative Light Units; postop AF, postop-
erative AF; RA, right atria; SR, sinus
rhythm. Modified from Reilly et al. (131).
*P < 0.05 vs. SR, 1-way ANOVA (n = 10
to 19); #P < 0.05 for the mevalonate-
reversible effect of atorvastatin; 1-way
ANOVA (n = 8 to 19).
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underlying it as well as the role of ethnicity remain elusive.
Finally, uric acid has also been shown to predict AF recur-
rence after electrical cardioversion (88). However, whether
uric acid is directly involved in the pathogenesis of AF is far
from being settled (166), as uric acid is influenced by diet and
renal function, two factors that also impact cardiac disease
development. Finally, given the dual function of xanthine
oxidoreductase, whether the uric acid level is a surrogate for
increase XO-mediated oxidative stress remains to be estab-
lished.

NOS catalyze the generation of NO through the conversion
of l-arginine into l-citrulline in the presence of oxygen and
several cofactors, such as tetrahydrobiopterin (BH4), flavin
cofactors (flavin mononucleotide, flavin adenine dinucleo-
tide), and NADPH. There are three NOS isoforms: NOS1 or
neuronal NOS (nNOS); NOS2 or inducible NOS (iNOS); and
NOS3 or endothelial NOS (eNOS), two of which (nNOS and
eNOS) are constitutively expressed in the cardiovascular
system (27). Under physiological conditions, NO generated
by NOSs in a tightly regulated manner participates in several
cellular signaling pathways. In disease states, increased oxi-
dative stress can lead to an increase in arginase activity, BH4
oxidation (131), and/or S-glutathionylation of the NOS re-
ductase domain (29), all of which can ‘‘uncouple’’ the en-
zyme’s activity, leading to the production of superoxide
rather than NO (48). The reaction of the remaining NO with
superoxide (to form highly reactive nitroso-oxidant species
such as ONOO - ) further reduces NO availability.

Pacing-induced short-term AF has been associated with a
46% reduction in LA endocardial eNOS and a significant
decrease in NO production (by 73%) (23), whereas long-
standing AF in goats or humans is associated with NOS un-
coupling secondary to a reduction in atrial BH4 content and
an increase in arginase activity (131). It should be noted that
atrial mitochondrial and NOS-mediated ROS production in
goats was observed both in long-term AF and in the presence
of sinus rhythm and atrial remodelling due to atrioventricular
block, suggesting that structural atrial remodeling (rather
than AF in itself) was responsible for these findings (131).

Others have reported induction of inducible NOS (iNOS)
and increased 3-nitrotyrosine (a OONO - biomarker) in RA
samples from patients with permanent AF (59) with little or
no difference in eNOS expression (26, 59). In addition, the
plasma level of the endogenous NOS inhibitor, ADMA, has
been shown to be elevated in animals and individuals with
persistent AF and to decrease after cardioversion (53). In

failing canine hearts, atrial iNOS uncoupling due to BH4 de-
pletion increased myocardial oxidative stress and was asso-
ciated with shortening of the atrial effective refractory period
and development of a substrate for inducible AF (116). BH4
and l-arginine supplementation restored normal iNOS ac-
tivity and BH4 level and decreased AF inducibility, implying
a potentially important role for NOS-generated ROS in the
development of an AF substrate in HF.

Do Anti-Inflammatory and Antioxidant
Agents Prevent AF?

Interventional trials of anti-inflammatory agents support a
causal link between inflammation and postoperative AF. In a
canine model of sterile pericarditis, topical application of the
anti-inflammatory drugs ibuprofen and methylprednisolone
significantly reduced the incidence of AF (155). In another
canine model of atrial tachypacing, administration of pred-
nisone was associated with attenuation of atrial electrical re-
modeling (resulting in lower AF inducibility), whereas
ibuprofen or cyclosporin-A had no effect (144). In keeping
with these findings, a double-blind randomized trial of hy-
drocortisone (100 mg a day for 4 days, starting on the evening
before surgery) in 241 consecutive patients with sinus rhythm,
undergoing on-pump cardiac surgery (coronary revasculari-
zation and/or aortic valve replacement), showed a significant
reduction in the new onset AF during the first 84 h after sur-
gery (58) (Fig. 7). This finding is in keeping with that of a meta-
analysis of controlled trials (including 621 patients), which
shows an average risk reduction of postoperative AF with
steroid treatment (at various doses, preparation and duration)
of 33% (risk ratio = 0.67, 95% CI: 0.54, 0.85, p = 0.001) (58).
Besides preventing new-onset AF, steroids have also been
shown to reduce AF recurrence early after radiofrequency
ablation (80) (Fig. 7).

Ascorbate supplementation has also been shown to atten-
uate the pacing-induced atrial electrical remodeling in dogs
and the incidence of postoperative AF or atrial flutter (16.3%
vs. 34.9% in the ascorbate and control group, respectively) in a
nonrandomized, nonplacebo-controlled comparison in 43
patients undergoing cardiac surgery; however, these prelim-
inary findings are still awaiting confirmation in larger con-
trolled trials. A more recent study reported no effect of
ascorbate and vitamin E supplementation on AF inducibility
in paced dogs, whereas simvastatin prevents both electrical
remodeling and AF inducibility in the same model (146).

FIG. 7. Kaplan–Meier curve show-
ing the effect of corticosteroid treat-
ment on the incidence of AF after
cardiac surgery (A) or recurrence of
AF after pulmonary vein isolation
(B). Reprinted with permission from
Halonen et al. (58) (A) and modified
from Koyama et al. (80) (B). To see
this illustration in color, the reader is
referred to the web version of this
article at www.liebertpub.com/ars
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How do statins reduce inflammation?

Statins inhibit the 3-Hydroxy-3-methylglutaryl-coenzyme
A reductase, the rate-limiting enzyme of the mevalonate
pathway. Mevalonate is required for both cholesterol bio-
synthesis and the generation of isoprenoids that are involved
in the activation of small guanosine triphosphate (GTP)ase
signaling molecules. Several large clinical trials have provided
evidence supporting the use of statins for the primary and
secondary prevention of ischemic heart disease and stroke
because of their low density lipoprotein (LDL)-cholesterol-
lowering effect (14, 111). In addition, statins have anti-
inflammatory and antioxidant properties that are both
dependent and independent of cholesterol lowering (122, 128,
175) but which are not independently associated with the
beneficial effects on patients’ outcome.

The statin-mediated attenuation of isoprenylation reduces
the tethering of small GTPases to the plasma membrane al-
ready at clinical relevant concentrations (33). This prevents
the interaction of guanine nucleotide exchange factors with
the GTPase and, thus, attenuates signaling by growth factor
and cytokine receptors, as well as integrins, resulting in a
global anti-inflammatory effect (177). Moreover, small
GTPases of the Rho family, such as RhoA, Rac1, and CDC42,
control the cytoskeleton by locally regulating actin polymer-
ization, which impacts mRNA stability, cellular vesicle traf-
ficking, and stress signaling. This aspect might explain why
statins in endothelial cells activate a similar signaling cascade
as shear stress. For example, similar to laminar flow, statins
induce the transcription factor, Kruppel-like factor 2 (KLF2) in
endothelial cells, which is an important mediator of cellular
quiescence (12). KLF2, in turn, regulates the expression of
multiple target genes, thus promoting an anti-inflammatory
and anti-thrombotic endothelial phenotype (12). Several
mechanisms have been proposed to mediate the up-
regulation of KLF2 by statins, such as activation of the Ras
homolog pathway, inhibition of mammalian target of rapa-
mycin complex 1 (MTORC1) (147). MTORC1 activation
requires Ras homolog enriched in brain (Rheb), an iso-
prenylated GTPase of the Ras family, and statin inhibition of
Rheb was shown to prevent MTORC1 activation in vascular
smooth muscle cells (161). In agreement with this, statin ef-
fects were abrogated by geranylgeranyl pyrophosphate but
not farnesyl pyrophosphate, thereby implicating inhibition of
geranylgeranyl pyrophosphate synthesis, and thus the Ras
homolog pathway, in KLF2 induction. Inhibition of protein
isoprenylation by statins has been found to influence the
JAK/Signal transducer and activator of transcription signal-
ing pathway, an intracellular signalling pathway that is acti-
vated by inflammatory cytokines in the endothelium (69).
Furthermore, growth factor signaling, as activated by angio-
tensin II, thrombin, endothelial growth factor, platelet-derived
growth factor, and the pro-fibrotic transforming growth factor
b, is also attenuated by statin treatment (177). More recently,
two alternative pathways have been implicated in the inter-
action between statins and KLF2. Lee et al. demonstrated that
statins reverted hyperglycemia-induced overexpression of
FOXO1, both in vitro and in a mice model of type 2 diabetes
mellitus, and thus relieved the negative effect of FOXO1 on
KLF2 expression (86). McLean et al. (108) showed that apelin/
apelin receptor (APJ) signaling mediated statin-induced up-
regulation of KLF2, eNOS, and thrombomodulin and the KLF2

increased expression of APJ, in a positive feedback loop.
However, further studies are warranted to determine whether
statins directly activate APJ or potentiate apelin-mediated ac-
tivation of APJ (108).

Besides the aforementioned direct effects on the endothe-
lium, statins can also act indirectly, for instance, by reducing
T-cell cytotoxic activity against endothelial cells (136). On the
other hand, statins can exert a strong anti-inflammatory and
anti-thrombotic effect on blood monocyte-macrophages by
decreasing the expression of many pro-inflammatory cyto-
kines and coagulation factors. Those effects depend on mod-
ulation of several transcription factors, such as induction of
peroxisome proliferator-activated factor (PPAR)-a, PPAR-c,
and KLF2 and inhibition of nuclear factor kappa-light-chain-
enhancer of activated B cells and c-ets (172).

KLF4, another member of the Kruppel-like family, has also
been identified as a key regulator of endothelial homeostasis
(143). Akin to KLF2, it seems to mediate the anti-inflammatory
actions of statins in both endothelial cells and macrophages
through the MEK5/mitogen-activated protein kinase pathway
(118, 158), but its precise functions as well as the putative in-
teraction with KLF2 remain poorly understood.

Finally, statins can activate the phospholipase A(2)-
cyclooxygenase pathway, shifting the balance toward in-
creased synthesis of the vasodilator and anti-inflammatory
prostacyclin instead of other vasoconstrictor and thrombo-
genic prostaglandins (170).

How do statins reduce oxidative stress?

Oxidative stress can induce inflammation and senescence
in endothelial cells, and statins can prevent those effects and
thus improve endothelial function (120, 177). Indeed, various
intracellular signaling pathways have been proposed to un-
derlie statin-enhanced expression and activity of NOS3, sir-
tuin 1, and catalase. The best characterized are activation of
PI3K/Akt and AMP-activated protein kinase signaling (51,
82, 151), inhibition of geranylgeranylation of the small
G-protein Rho and its downstream target Rho-associated
protein kinase (85), and suppression of caveolin-1 (124). In
addition, statins improve eNOS function by increasing intra-
cellular BH4 bioavailability and, possibly, by reducing
ADMA levels (101) and arginase expression (63). An increase
in NO bioavailability would then be expected to inhibit
overexpression of adhesion molecules involved in leukocyte-
endothelial cell interaction, and preserve mitochondrial
membrane potential in response to oxidative stress in cardiac
myocytes (68, 105). Furthermore, statins improve differenti-
ation, survival, and functional activity of endothelial pro-
genitor cells, which are disturbed by oxidative stress and
inflammatory stimuli (97). In this way, they may contribute to
angiogenesis and re-endothelialization of injured vessels (47,
164). Statins can also prevent oxidative stress by inhibiting
NOX2 activity. Indeed, in addition to inhibiting transcription
of NOX2 subunits, statins inhibit geranylgeranylation and thus
membrane translocation of Rac1 GTPase (141, 160), which is
required for activation of NOX2 (165) (Fig. 6). Ex vivo, ator-
vastatin has been shown to prevent the angiotensin-II-mediated
increase in L-type Ca channels (LTCC) and Ca transient am-
plitude in HL-1 cells by inhibiting protein kinase C and NOX2
activity (171); however, the significance of these findings in the
pathogenesis of AF (which is characterized by a reduction in
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atrial LTCC and sarcolemmal Ca current) remains to be ad-
dressed.

It should be noted that the anti-inflammatory and anti-
oxidant pleiotropic effects of statins in animal models have
generally been observed with doses/concentration of statins that
are higher than those employed in the clinical setting, thereby
casting some doubt on their relevance to patients on statin
therapy.(19) However, in keeping with previous results obtained
in vitro and in mice models, a randomized, double-blind, placebo
controlled study in patients undergoing cardiac surgery showed
that 3-day treatment with atorvastatin 40 mg once daily (od)
before surgery attenuated oxidative stress by inhibiting vascular
and atrial Rac1-mediated activation of NOX2 (8, 9) (Fig. 1). Of
note, these effects occurred before an LDL cholesterol reduction
could be detected, and they were reproduced by incubation with
atorvastatin ex vivo and reversed by mevalonate (8, 9, 131).

The putative effects of statins on oxidative stress and in-
flammation in AF are schematically summarized in Figure 5.

What is the Role of Statins in the Management of AF?

A number of observational studies and small clinical trials
have assessed the efficacy of statins in a variety of settings and
populations; however, the results are far from being consen-
sual and there is still controversy regarding the role of statins
in the primary and secondary prevention of AF.

Primary prevention of AF

Data from the nationwide French Registry of Acute ST Ele-
vation or Non-ST Elevation Myocardial Infarction register, an
observational study of patients hospitalized for acute myo-
cardial infarction, provided the first link between statin therapy
and a reduction in acute AF risk (OR = 0.64, 95% CI: 0.45–0.92,
p = 0.017). Furthermore, results suggested a dose-response re-
lationship, with intensive statin therapy achieving greater risk
reduction than conventional therapy (36). The protective effect
of statins on incident AF was further supported by a large
epidemiological study (involving 27,002 subjects older than 65
years from the Taiwanese National Health Insurance research
database followed up for 9 years) (65), in which the highest risk
reduction associated with statin treatment was found in pa-
tients with a CHADS2 score ‡ 2 (adjusted HR = 0.69, 95% CI:
0.57–0.85, p < 0.001). Even though patients on statins had more
cardiovascular comorbidities than controls, statin therapy re-
mained a protective factor against new-onset AF after adjusting
for potential confounders (adjusted HR = 0.81, 95% CI: 0.69–
0.95, p = 0.009). However, a recent meta-analysis (nine ran-
domized controlled trials with almost 60,000 patients) refuted
this association and reported similar AF incidence regardless of
statin treatment (OR = 1.00, 95% CI: 0.86–1.15, p = 0.95) (46). The
protective role of statins in AF prevention in patients with
coronary artery disease remains a matter of heated debate (2,
81, 125, 174). Indeed, in the Myocardial Ischemia Reduction
with Acute Cholesterol Lowering (MIRACL) trial, the protec-
tion afforded by statin treatment in patients with acute coro-
nary disease did not reach statistical significance (OR = 0.97,
95% CI: 0.72–1.31) (78). More recently, a meta-analysis sug-
gested that statins could reduce the AF risk in patients with
acute coronary syndrome. Pooled results from six studies, with
more than 160,000 patients (four studies with new-onset AF
and two with AF in baseline), revealed an overall risk reduction
of 35% with statin therapy (95% CI: 0.55–0.77, p < 0.0001), with

the benefit being more conspicuous for new-onset AF
(RR = 0.59, 95% CI: 0.48–0.73, p = 0.096) than for secondary
prevention of AF (RR = 0.70, 95% CI: 0.43–1.14, p = 0.085) (178).
Finally a meta-analysis including all large-scale statin trials did
not show a significant reduction in atrial fibrillation in the ac-
tive treatment group (RR = 0.95, 95% CI: 0.88–1.03, p = 0.24),
and seven longer-term trials of more intensive versus standard
statin regimens also showed no evidence of a reduction in the
risk of atrial fibrillation (RR = 1.00, 95% CI: 0.90–1.12, p = 0.99)
(129). Taken together, these findings suggest that statin treat-
ment is not effective in the primary prevention of AF; however,
it should be noted that AF was either not recorded or not in-
cluded among the outcomes of the largest statin trials and event
information for these analyses was mostly based on routinely
collected data on adverse events.

AF recurrence after cardioversion
or radiofrequency ablation

Taking into account the relatively high rate of AF recurrence
after catheter ablation and the postprocedural inflammatory
state, 125 patients undergoing catheter ablation of AF were
randomized in a prospective, double-blind, placebo-controlled
trial to receive 80 mg atorvastatin or placebo for 3 months (150).
There was no difference in symptomatic AF between groups
(5% in atorvastatin vs. 6.5% in placebo, p = 0.75) or in the re-
currence of atrial arrhythmia after ablation (15% in atorvastatin
vs. 12% in placebo, p = 0.37). Failure to suppress arrhythmia
occurred despite a significant decrease in LDL-cholesterol and
mean CRP levels (mean change - 0.75 – 3, p = 0.02) with statins,
pointing to a reduction in systemic inflammation (150).

Electrical cardioversion remains the most commonly used
method for sinus rhythm restoration in patients with persistent
AF, albeit with a fairly modest rate of success even in conjunction
with new antiarrhythmic drugs (137). Contrary to the absence of
benefit on AF recurrence after ablation, there is a trend toward a
protective role of statins against arrhythmia after successful
cardioversion. In a meta-analysis of six studies (515 patients with
persistent AF), upstream statin therapy achieved a significant
reduction in AF relapse after successful electrical cardioversion
(OR = 0.662, 95% CI: 0.45–0.96, p = 0.03) (99). Even though the
results of this meta-analysis are of potential interest, the studies
included were small, of low quality, and very heterogeneous
concerning type and dosage of statin. Therefore, more than
changing clinical practice, these findings provide a useful back-
ground for planning future larger studies. Taken together, these
findings are in line with a previous meta-analysis that compared
efficacy of statins for secondary prevention of AF, either after
electrical cardioversion or after ablation, which showed that
statin treatment had no effect on AF recurrence after ablation
(four studies, including 750 patients; RR = 1.04, 95% CI: 0.85–
1.28, p = 0.71) but appeared to reduce the risk of AF relapse after
cardioversion (12 studies, including 1790 patients; RR = 0.78, 95%
CI: 0.67–0.90, p = 0.0003). Nonetheless, the latter result was no
longer significant when the analysis was restricted to random-
ized controlled trials (five studies, 458 patients, RR = 0.76, 95%
CI: 0.48–1.20) (38). In summary, there is no indication for statin
therapy solely on the basis of prevention of AF recurrence.

AF in HF

AF is a common comorbidity in patients with HF and each
adversely affects the other, as their co-existence is associated
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with worse long-term prognosis (109). Despite the apparent
benefit of angiotensin-converting enzyme inhibitors and an-
giotensin receptor blockers in reducing AF in patients with HF
(102, 104, 157), the role of statins for AF prophylaxis in HF is
far from being completely understood (103). The double-
blind, placebo-controlled trial GISSI-HF found that rosuvas-
tatin marginally reduced the incidence of AF in 3690 patients
with HF (13.9% on rosuvastatin vs. 16.0% on placebo), even
though the difference only reached statistical significance af-
ter adjustment for clinical variables, laboratory examinations,
and background therapies (p = 0.038) (103). This study raises
the possibility that statins may prevent the development of
AF in patients with HF, but larger studies, considering AF as
primary endpoint, are warranted to confirm this finding. The
Gruppo Italiano per lo Studio della Sopravvivenza nell’
Infarto miocardico on heart failure (GISSI-HF) trial confirmed
that history of earlier AF enhanced susceptibility to new ep-
isodes of AF over the follow up (103), but did not show any
difference in the efficacy of rosuvastatin between groups.

Postoperative AF

Postoperative AF is the most common postoperative ar-
rhythmic complication, occurring in approximately 40% of
cardiac surgery patients. Since postoperative AF is associated
with adverse cardiovascular events (e.g., HF, stroke), pro-
longed hospitalization and increased overall morbidity and
mortality, prevention of its development improves prognosis
of patients undergoing cardiac surgery (89).

Numerous observational studies [e.g., (28, 62, 107, 121)]
suggest that pre- or perioperative statin treatment reduces the
occurrence of AF and improves clinical outcome in patients
undergoing cardiac or major vascular surgery (by causing a
50%–70% reduction in perioperative myocardial infarction or
mortality). However, in two large cohort studies, statin therapy
failed to decrease (159) or even increased (110) incidence of
postoperative AF. The first controlled clinical trial attesting the
efficacy of perioperative statin treatment in the prevention of
postoperative AF was ARMYDA-3 (Atorvastatin for Reduction

of MYocardial Dysrhythmia After cardiac surgery), there was a
61% reduction in AF risk (evaluated by continuous electro-
cardiogram (ECG) monitoring) in 200 statin naı̈ve patients un-
dergoing elective cardiac surgery but there was no effect on
postoperative CRP or cardiac/cerebrovascular events (123). In a
recent meta-analysis of 10 randomized trials (of which only four
had postoperative AF as a predefined outcome) (46) evaluating
the use of perioperative statin treatment in patients undergoing
cardiac surgery (n = 1001 patients in total–study size between 40
and 200 patients), statin use was found to reduce patients’ rel-
ative risk of developing postoperative AF by 63% (RR = 0.37,
95% CI: 0.28–0.51) (Fig. 8). Although these findings would be
consistent with a rapid and, possibly, lipid-independent anti-
arrhythmic effect of statins, they have important limitations
(e.g., small size, nonsystematic use of continuous ECG moni-
toring, mostly ‘‘ancillary findings’’) and are less bearing on
current day-to-day clinical practice, as they only randomized
patients who were not on statin treatment. A large, placebo-
controlled, randomized clinical trial of the effect of rosuvastatin
(20 mg od) in patients undergoing cardiac surgery (www.cli-
nicaltrials.gov/ct2/show/NCT01573143?term=STICS&rank=1)
will address these pending issues. Noteworthy, the beneficial
effects of statins seem to go beyond the prevention of post-
operative AF. A meta-analysis of 15 randomized controlled
trials (2292 patients undergoing cardiac and noncardiac sur-
gery) showed that statins not only decrease the incidence of
postoperative AF but also reduce postoperative myocardial
infarction (RR = 0.53, 95% CI: 0.38–0.74), in-hospital length
of stay (standardized mean difference = - 0.32, 95% CI: - 0.53 to
- 0.11), and mortality (RR = 0.62, 95% CI: 0.34–1.14), albeit not
meeting the threshold for statistical significance in this case (31).

Together, these findings suggest that aggressive perio-
perative statin treatment may be a risk-reducing intervention
in patients undergoing major surgery.

Conclusions

In conclusion, the clinical impact of the anti-inflammatory
and antioxidant effects of statin therapy remains to be

FIG. 8. A meta-analysis of 10
randomized trials (only four of
which had postoperative AF as a
predefined outcome) suggests that
statin therapy might reduce the
risk of developing postoperative
AF by 63%. CI–confidence interval,
OR–odds ratio. Modified from
Fauchier et al. (46).
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demonstrated. As their anti-arrhythmic effects are concerned,
statins appear to attain the highest benefit in the prevention of
postoperative AF, although this finding needs to be confirmed
by larger clinical trials. The efficacy for secondary prevention
of AF by statin therapy, albeit lower, might still be significant
in some settings but not after ablation. On the other hand,
statins seem to have a fairly limited benefit, if any, in the
primary prevention of AF. To date, the antiarrhythmic effect
of statins does not hitherto support prescribing these agents
for the sole purpose of preventing incident AF or its recur-
rence. Large-scale randomized clinical trials are warranted to
shed light on some unsolved issues, particularly regarding the
benefit of statins for the management of AF in specific pa-
tients’ subgroups.

Innovation

Antioxidant and anti-inflammatory effects of statins have
been extensively described in animal models and humans;
however, their relevance to patients’ outcome remains un-
proven. A scattering of small clinical trials suggests that
perioperative statin treatment may prevent the new onset of
AF after cardiac surgery. However, the efficacy of statin
therapy in AF’s secondary prevention might only be signifi-
cant in some settings; similarly, statins appear to be of little or
no benefit in AF’s primary prevention. Nevertheless, the
available evidence is not robust (single-center studies of small
size or ‘‘ancillary’’ finding’’ from studies designed to detect
other outcomes), and larger dedicated trials are needed to
conclusively test this hypothesis.
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Abbreviations Used

95% CI¼ 95% confidence interval
ADMA¼ asymmetric dimethylarginine

AF¼ atrial fibrillation
APD¼ action potential duration
APJ¼ apelin receptor
BH4¼ tetrahydrobiopterin

CaMKII¼ calmodulin-kinase II
CPB¼ cardiopulmonary bypass
CRP¼C-reactive protein

Cx40¼ connexin 40
Cx43¼ connexin 43

df¼degrees of freedom
HF¼heart failure

HMG-CoA¼ 3-hydroxy-3-methylglutaryl-coenzyme A
HR¼hazard ratio

IL¼ interleukin
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Abbreviations Used (Cont.)

KLF2¼ kruppel-like factor 2
LA¼ left atrial

LTCC¼L-type Ca channels
MEK¼MAP kinase kinase
MPO¼myeloperoxidase

MTORC1¼mammalian target of rapamycin complex 1
NO¼nitric oxide

NOS¼nitric oxide synthase
NOX¼NADPH-oxidase

OR¼ odds ratio
PKA¼protein kinase A

PKC¼protein kinase C
PPAR¼peroxisome proliferator-activated factor

RA¼ right atrial
Rheb¼ ras homolog enriched in brain
RLU¼ relative light units
ROS¼ reactive oxygen species

RR¼ relative risk
RyR2¼ ryanodine receptor
SMD¼ standardized mean difference

TGF-b¼ transforming growth factor b
TNF-a¼ tumor necrosis factor a

XO¼ xanthine oxidase
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