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Abstract

Insulin-like growth factor (IGF)-I has been recognized to play
critical roles in the pathogenesis of asthma, whereas IGF-binding
protein (IGFBP)-3 blocks crucial physiologic manifestations
of asthma. IGF-I enhances subepithelial fibrosis, airway
inflammation, airway hyperresponsiveness, and airway smooth
muscle hyperplasia by interacting with various inflammatory
mediators and complex signaling pathways, such as intercellular
adhesion molecule-1, and the hypoxia-inducible factor/vascular
endothelial growth factor axis. On the other hand, IGFBP-3
decreases airway inflammation and airway hyperresponsiveness

through IGFBP-3 receptor–mediated activation of caspases,
which subsequently inhibits NF-kB signaling pathway. It also
inhibits the IGF-I/hypoxia-inducible factor/vascular endothelial
growth factor axis via IGF-I–dependent and/or IGF-I–
independent mechanisms. This Translational Review summarizes
the role of IGF-I and IGFBP-3 in the context of allergic airway
disease, and discusses the therapeutic potential of various
strategies targeting the IGF-I and IGFBP-3 signaling pathways for
the management of asthma.
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Current controllers for treating asthma are
highly effective in approximately 90–95% of
patients, but between roughly 5 and 10%
of patients remain poorly controlled and
account for approximately 50% of the
health care costs of asthma (1). These
patients poorly controlled on current
pharmacologic agents are characterized by:
(1) requirement of intensive treatment to
control the disease; and (2) persistent
symptoms, exacerbations, and airflow
obstruction, which are collectively known
as severe or refractory asthma (2).
Furthermore, current treatment is far from
a cure, as symptoms reappear when
treatment is discontinued, and because it
has little effect on inhibiting airway

remodeling. Thus, new therapeutic
approaches are necessary.

A focus of drug development for
asthma has been to improve currently
available drugs and to find novel
compounds, often targeting T helper
(Th) 2–driven airway inflammation (3).
Although several agents targeting Th2-
driven airway inflammation have been
developed, only omalizumab has been
marketed as a specific, targeted biological
agent. Moreover, the efficacy and indication
of omalizumab may be limited to IgE-
related severe asthma. Therefore, there is
a need for development of other agents
modulating heterogeneous asthmatic
features.

Fortunately, many new therapeutic
approaches for the management of asthma
have been under investigation. Among
them, insulin-like growth factor I (IGF-I)
has been reported as one of the key
molecules in the pathogenesis of asthma.
In fact, IGF-I has been reported to play
important roles, especially in subepithelial
fibrosis, airway inflammation, airway
hyperresponsiveness (AHR), and airway
smooth hyperplasia (Figure 1). Thus,
regulation of the IGF-I signaling pathway
might have therapeutic potential (4–6).
On the other hand, recent studies have
also shown that IGF-binding protein
(IGFBP)-3 plays a critical role in
inflammatory responses through
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IGF-I–dependent and/or IGF-
I–independent mechanisms (7–9).

In this Review, we discuss the roles
of IGF-I and IGFBP-3 in airway
inflammation, AHR, and airway
remodeling of asthma, and scrutinize the
therapeutic potential of targeting IGF-I and
IGFBP-3 for bronchial asthma.

The IGF System

The IGF system has significant effects on cell
growth and differentiation. The IGF system
includes growth hormone (GH), IGF-I/IGF-
II peptides, type I and II IGF receptors
(IGF-IR and IGF-IIR), a family of IGFBPs
(IGFBPs 1–6), and IGFBP proteases (10).
Recently, an IGFBP-3–mediated novel cell
death receptor (namely, IGFBP-3R) has
been identified as a new member of the IGF
system (11).

IGF-I and IGF-II Regulation
GH is the major inducer of IGF synthesis in
the liver. GH is a polypeptide hormone that
is synthesized and secreted by somatotrophs
in the anterior pituitary. The stimulators
of GH secretion are GH-releasing hormone,
which is released from the hypothalamus
(12), and ghrelin, which is released from
the stomach (13). The inhibitors of
GH secretion are IGF-I itself (14) and

somatostatin (15). GH binding to the GH
receptor in the liver stimulates IGF-I
synthesis and release from the liver (14).
The released IGF-I is then transported to
the target organ through the circulation,
and acts as an endocrine factor (14). IGF-I
and IGF-II are small peptide hormones of
roughly 7 kD molecular weight, and are
composed of four domains: B, C, A, and D
(sequentially from the N to the C
terminus). The B and A domains of IGF-I
and IGF-II have approximately 50%
homology to the B and A chain of insulin
(16). The C domain of IGF-I is shown to
be required for high-affinity binding to
IGF-IR (17). IGF-I and IGF-II contain eight
and six amino acids in the D domain,
respectively, and the amino acids form an
extension of the carboxyl terminus (18).

There are two major mechanisms of
IGF-I regulation (19). First, IGF-I is
synthesized and secreted by the liver,
acting as an extension of the GH axis in
an endocrine manner. Second, IGF-I can
be produced locally by many types of
peripheral cells under basal conditions, as well
as in response to inflammation. In this case,
IGF-I acts as an autocrine or a paracrine
factor like many cytokines and growth factors.

IGF-IR and IGF-IIR
IGF-IR is a transmembrane heterotetramer
glycoprotein consisting of an a and a b

subunit (20). The extracellular a subunit
contains an IGF-binding domain, and the b
subunit contains a tyrosine kinase domain
(20). Thus, IGF-IR belongs to a family of
transmembrane tyrosine kinase receptors,
which also include the insulin receptor (IR)
and IR-related receptor (21). There is
roughly 60% homology between IGF-IR
and IR (22). IGF-IR binds IGF-I, IGF-II,
and insulin. However, the affinity of IGF-II
and insulin for IGF-IR is much weaker than
that of IGF-I (22).

Ligand binding to the a subunit of
IGF-IR triggers conformational changes,
leading to autoactivation of tyrosine kinase
activity of the b subunit, followed by
autophosphorylation in the kinase domains
of the receptor (23). This process induces
phosphorylation of the binding sites for
docking proteins, such as IR substrates
(IRSs) 1–4 and Src homology and collagen
protein (24, 25). The phosphorylation of
IRS-1 and Src homology and collagen
protein leads to activation of adaptor
protein Grb-2, which forms a complex with
the Ras-activating protein son of sevenless.
This complex leads to activation of p21 Ras
(26), which then activates mitogen-
activated protein kinase (27). The mitogen-
activated protein kinase pathway is
involved in cell growth.

IRS-1 can also activate phosphoinositol-
3 kinase (PI3K), which generates

Figure 1. Roles of insulin-like growth factor (IGF)-I and IGF-binding protein (IGFBP)-3 in the pathogenesis of asthma. HIF, hypoxia-inducible factor; ICAM,
intercellular adhesion molecule; PI3K, phosphoinositol-3 kinase; VEGF, vascular endothelial growth factor.
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phosphatidyl inositol 1,4,5-trisphosphate by
phosphorylating phosphatidyl inositol 4,5-
bisphosphate (28). Binding of phosphatidyl
inositol 1,4,5-trisphosphate to serine/
threonine kinase Akt, which is also known
as protein tyrosine kinase-B, leads to
activation of mammalian target of
rapamycin, p70/S6 kinase, and glycogen
synthase kinase-3b (29). Thus, PI3K is
involved in the protein synthesis, glucose
transport, cell motility, and inhibition of
apoptosis activated by IGF–IRS signaling.

IL-4 receptor (IL-4R) signaling is well
known as an important participant in Th2
cellular responses in various inflammatory
disorders, including bronchial asthma.
Interestingly, the sequence of amino acids
important for IRS binding to IL-4R was
determined by truncation mutational
analysis (between aa 437 and 557). Within
this interval, there is a homologous sequence
that binds IRS proteins in the insulin and
IGF-IR, known as the insulin and IL-4R
motif, and IRS-1 is also tyrosine
phosphorylated in response to IL-4
stimulation, which is critical for association
of IRS proteins with the insulin and IL-4R
motif of the IL-4R (30–32). This content
suggests that IGF-I can participate in the
pathogenesis of bronchial asthma through
the interaction with IL-4 signaling
(Figure 2).

IGF-IIR, which is identical to the
cation-independent mannose-6-phosphate
receptor, binds IGF-II with 500-fold–higher
affinity than IGF-I (33). Unlike IGF-IR,
IGF-IIR does not bind insulin. IGF-II
binding to IGF-IIR results in internalization
and degradation of extracellular IGF-II,
leading to the suppression of IGF-II
effects (33).

IGFBPs
The IGFBPs are composed of six high-
affinity binding proteins (IGFBP-1 through
IGFBP-6) (10). The IGFBPs transport
IGFs in the bloodstream, regulate IGF
action and bioavailability, and exhibit
unique biological actions, including cell
growth inhibition or promotion and
induction of apoptosis. Among IGFBPs,
IGFBP-3 is the most abundant form, with
the highest affinity for IGF-I in the
circulatory system, and which binds
75–90% of circulating IGF-I in a large
ternary complex consisting of IGFBP-3,
acid-labile subunit (ALS), and IGF-I. ALS
prevents the ternary complex from crossing
the capillary barrier to the extravascular

compartment by stabilizing the structure
(34). IGFBP-5 can also form a ternary
complex with IGF-I and ALS (35). Other
IGFBPs can carry IGF-I as binary forms. As
a result, less than 1% of IGF-I circulates as
a free form in the bloodstream (36).

If ALS dissociates from the ternary
complex, the binary IGF-I/IGFBP complex
crosses the capillary barrier. At local tissues,
the IGFBPs are cleaved by IGFBP proteases,
thereby releasing free IGFs from the binary
complex and, thus, increasing free IGFs.
Several IGFBP proteases, such as serine
proteases, cathepsins, and matrix
metalloproteinases (MMPs), have been
discovered (37).

Biological functions of IGFBPs are
divided into two aspects: those with IGF-
dependent action, and those with IGF-
independent action. First, IGFBPs function
indirectly through modulation of IGFs
(IGF-dependent action of IGFBPs). IGFBPs
enhance the action of IGFs by forming
a slow-releasing pool of IGFs (37).
Conversely, IGFBPs can inhibit the actions
of IGFs, because IGFs bind with higher
affinity to IGFBPs than the IGF-IR, thereby
reducing IGF bioavailability (38). Second,

IGFBPs can also exert their own intrinsic
biological roles, independent of IGFs (IGF-
independent action of IGFBPs) (10, 39),
including anti- (8, 9) or proinflammatory
(7), anti- (40, 41) or proangiogenic (40, 42,
43), or profibrotic responses (7, 44). Among
them, IGFBP-3 is a well documented
inhibitor of cell growth and/or promoter of
apoptosis. In addition, a very recent study
has demonstrated that IGFBP-3 seems to
regulate vascular endothelial growth factor
(VEGF) production implicated in cell
growth as well as vascular leakage via
suppression of hypoxia-inducible factor
(HIF)-1a/HIF-2a activity in ovalbumin
(OVA)-induced allergic airway disease,
resulting in dramatic improvement of
asthmatic features (9). In this Review,
therefore, we focus on IGFBP-3, and it is
discussed in the next section.

IGFBP-3 and IGFBP-3R

IGFBP-3

Structure of IGFBP-3. The gene of IGFBP-3
is located on chromosome 7 (45). Mature

Figure 2. Schematic diagram for IGF-I and its related signaling pathways in bronchial asthma. IRS,
insulin receptor substrate; Shc, Src homology and collagen protein; TGF, transforming growth factor;
Th2, T helper type 2.
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deglycosylated human IGFBP-3 consists of
264 amino acids. IGFBP-3 contains three
distinct domains, in which additional
critical subdomains or functional motifs
exist and contribute to various actions, such
as interacting with IGFs, ALS, IGFBP-3R,
and nuclear localization. IGFBP-3 possesses
distinctive characteristics compared with
other IGFBPs. For example, IGFBP-3 has
heparin binding motifs, nuclear localization
sequences, and serine residues that can be
phosphorylated (10).

The N terminus of mature IGFBP-3
peptide contains 87 amino acids after the
signal peptide. A total of 18 cysteines exist in
IGFBP-3, 12 of which are located in this
domain. IGF binding sites are known to be in
this domain (46, 47), and a subdomain that
mediates IGF-I–independent inhibition of
mitogenesis has been suggested to be located
in this region (48, 49).

The midregion of IGFBP-3 has 95
amino acids, is highly variable within
IGFBPs, and shares less than 15% similarity
with other IGFBPs. Post-translational
modifications have been demonstrated
to occur in this region. Because post-
translational modifications affect cell
interaction, IGF-binding affinity and
susceptibility to proteases, such
modification, might influence IGFBPs
targeting to tissues differentially (50). The
midregion of IGFBP-3 is responsible for
binding to a novel cell death receptor,
IGFBP-3R (11).

The C-terminal domain of IGFBP-3
contains six cysteines, and three disulfide
bonds exist within this domain. It contains
IGF-binding residues (51–53), and may form
an IGF-binding pocket together with the
N-terminal domain (10). IGFBP-3 can also
bind fibrinogen, fibrin, and plasminogen via
this region (54, 55). This domain contains
a functionally important 18-residue basic
motif with heparin-binding activity, and can
bind heparin, other glycosaminoglycans, and
proteoglycans (56, 57). The basic region,
Lys228–Arg232, is essential for interaction
with ALS (58), and additional basic residues
are present that interact with the cell
surface and matrix, the nuclear transporter
importin-b (59), and other proteins.
Moreover, this region contains a short
metal-binding domain (60) and caveolin-
scaffolding domain consensus sequence (10).

Regulation of IGFBP-3. GH stimulates
the production of IGFBP-3 as well as IGF-I,
which is one of the inducers of IGFBP-3

(61, 62). It has been suggested that the liver
is the major source of circulating IGFBP-3,
and that GH is the primary inducer of
hepatic IGFBP-3 expression (63, 64).
However, a recent study has revealed that
increased circulating IGFBP-3 by GH
administration is due to increased
formation of the ternary complex, not via
hepatic IGFBP-3 synthesis (65). The levels
of circulating IGFBP-3 and IGF-I are
affected by many other factors, such as age,
hormones, nutrition, and combined diseases.
Both circulating IGFBP-3 and IGF-I levels
decline with advancing age (66). Circulating
IGFBP-3 level is low in patients with GH
deficiency (67), and is increased in patients
with GH excess (68). Several chronic
diseases and malnutrition are associated
with low IGF-I levels and relatively
unchanged IGFBP-3 levels (37). Insulin also
up-regulates IGFBP-3 levels (61).

IGFBP-3 is also produced by peripheral
tissues (37), and can be induced by a variety
of molecules, such as GH (69), IL-1 (70),
TNF-a (70, 71), transforming growth factor
(TGF)-b1 (72–74), glucocorticosteroids
(75), retinoic acid (73), vitamin D (76),
antiestrogens (77), and antiandrogens (78).
Tumor suppressor genes, including p53
(79) and phosphatase and tensin homolog
(80), have also been shown to up-regulate
IGFBP-3 at the transcriptional level.

Down-regulation of IGFBP-3 can be
achieved by various factors during the
process of translation. Aberrant DNA
methylation and histone acetylation have
been demonstrated to be associated with the
silencing of IGFBP-3 transcriptional
expression in many cancers (81–86). Some
transcription factors, including CDX2
(Drosophila caudal-related homeobox
transcription factor) (87) and EWS/FLI1
(Ewing’s sarcoma fusion protein) (88, 89)
also suppress IGFBP-3 transcription
through binding to the IGFBP-3 gene
promoter. In addition, after the secretion
of IGFBP-3, IGFBP-3 proteases cleave
IGFBP-3, thereby inhibiting both IGF-
I–dependent and –independent action of
IGFBP-3.

Action of IGFBP-3. IGF-I–dependent
action of IGFBP-3. Interestingly, IGFBP-3
can enhance as well as inhibit IGF-I action. As
discussed previously here, IGFBP-3 has
a high affinity for IGF-I, and binds most
of the circulating IGF-I (. 70%). Moreover,
the binding affinity of IGFBP-3 for IGF-I is
greater than that of IGF-IR, so that IGFBP-

3 can sequester the active hormone, thereby
reducing IGF-I/IGF-IR signaling (38). In
addition, another proposed mechanism for
the dual effects of IGFBP-3 on IGF-I action
is that IGFBP-3 might function as
a reservoir of IGF-I, presenting and slowly
releasing IGF-I to interact with its receptor,
while protecting the receptor from down-
regulation (90). Thus, a low level of IGFBP-
3 enhances IGF-I action, whereas a high
level of IGFBP-3 reduces IGF-I action,
decreasing free IGF-I level (37).

IGF-I–independent action of
IGFBP-3. IGFBP-3 has its own biological
actions independent of IGF-I, which are
known as IGF-I–independent actions of
IGFBP-3 (10, 39). Although IGFBP-3 has
been known to inhibit cell growth and/or
promote apoptosis, it can promote cell
growth in various cell types (91, 92). In
addition, IGFBP-3 has other functional
roles, such as a proangiogenic effect on
endothelial precursor cells (42), induction
of a fibrotic phenotype in fibroblasts
in vitro (43, 93), inhibition of human
preadipocyte differentiation and
differentiated adipocyte function (94), and
anti-inflammatory actions in vivo and
in vitro (8, 9, 95).

However, the underlying mechanisms
mediating these biological actions of IGFBP-
3 are largely unknown. To date, IGF-
I–independent actions of IGFBP-3 have
been demonstrated to be mediated
through cell surface receptors, inhibition
of NF-kB, and interaction with retinoid
X receptor-a (10).

IGFBP-3R
Recently, a new cell death receptor, IGFBP-
3R, has been cloned, and mediates cell death
when activated by IGFBP-3. IGFBP-3R,
which is a single-span membrane protein,
binds to IGFBP-3 specifically, but not to
other IGFBPs (11).

IGFBP-3R has two unique
characteristics: (1) a leucine zipper
sequence, which is involved in
dimerization/olimerization of membrane
proteins, and is located in the putative
transmembrane domain; and (2) IGFBP-3R
can interact with the initiator of the
apoptosis cascade, caspase-8, in the absence
of a DD sequence that interacts with
caspase-8 in other death receptors.
Caspase-8 has been known to interact with
the cytoplasmic tail of IGFBP-3R, because
a C-terminal truncated IGFBP-3 mutant
cannot interact with caspase-8. These
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findings suggest that IGFBP-3R and
caspase-8 exist as one complex in the
resting state, and that IGFBP-3 binding to
IGFBP-3R may facilitate dimerization/
oligomerization of IGFBP-3R, resulting
in activation of caspase-8, followed by
activation of executioner caspases
(caspase-3, -6, and -7) and NF-kB
inhibition (8, 11, 96).

It has been suggested that the IGFBP-3/
IGFBP-3R axis can exert different biological
functions depending on cell types (8).
For example, although the IGFBP-3/
IGFBP-3R axis induces growth inhibition
and apoptosis in breast and prostate cancer
cells, this axis does not induce apoptosis,
and actually reduces airway inflammation
in bronchial epithelial cells.

Role of IGF-I and IGFBP-3 in
the Pathogenesis of Asthma

Role of IGF-I in the Pathogenesis
of Asthma
IGF-I is likely to play a crucial role in
asthma, especially in subepithelial fibrosis,
airway inflammation, AHR, and airway
smooth hyperplasia (Figure 1).

A study employing endobronchial
biopsies from patients with asthma has
shown that IGF-I mRNA level is
significantly elevated and is correlated
with subepithelial fibrosis (4). These
observations have suggested that IGF-I may
act as a growth factor involved in airway
inflammation and remodeling. Supporting
this hypothesis, treatment of OVA-
challenged mice with an IGF-I neutralizing
antibody (Ab) inhibited the elevation of
airway resistance, airway inflammation, and
an increase in airway wall thickening,
indicating that inhibition of IGF-I signaling
may be a promising therapeutic
strategy for asthma (6). Furthermore,
administration of the IGF-I–neutralizing
Ab decreased expression of intercellular
adhesion molecule-1 in a dose-dependent
manner without changing the level of IL-4,
-5, and -13. This suggests that anti-
inflammatory effects from neutralization
of IGF-I may be due to suppression
of intercellular adhesion molecule-1
expression, but not alteration of the
expression of Th2 cytokines.

Recently, a noteworthy study has
demonstrated a novel mechanism by which
IGF-I exerts its pathogenic effect in asthma
using a murine model (9). This study has

demonstrated that IGF-I induces airway
inflammation and AHR via enhanced HIF-
a activity and VEGF expression. VEGF
plays a role as a proinflammatory mediator,
as well as a vascular permeability factor (9).
Moreover, VEGF is shown to be
associated with subepithelial fibrosis by
regulation of TGF-b1 expression through
the PI3K/AKT signaling pathway (97).
Taken together, these findings suggest the
intriguing hypothesis that IGF-I may
induce subepithelial fibrosis via the IGF-I/
HIF/VEGF/TGF-b1 axis, and that
inhibition of this axis may reduce
subepithelial fibrosis (Figure 2).

IGF-I is known to be associated with
airway smooth muscle (ASM) hyperplasia
and enhanced contraction. In vitro studies
with rabbit ASM cells have demonstrated
that IGF-I promotes ASM proliferation
(98–100). The mitogenic effect of IGF-I is
enhanced by leukotriene D4 (98).
Moreover, an in vitro study with human
ASM cells has demonstrated that this
enhanced ASM proliferation by leukotriene
D4 is mediated by MMP-1, which is one
of the IGFBP proteases, thus enhancing
IGF-I activity (101). In addition to
these effects, IGF-I induces Rho-
kinase–dependent sustained contraction of
human ASM (100). A subsequent study,
which used airway tissues from patients
with asthma, has shown that MMP-1 levels
and activity are enhanced, and that
IGFBPs exist as cleaved forms in the airway
tissues (5).

Although regulation of IGF-I
expression in allergic airway diseases is not
well defined, IL-17F, a putative mediator of
severe asthma, has been shown to induce
IGF-I gene expression in bronchial
epithelial cells (102). Costimulation with
other Th2 cytokines (IL-4 and IL-13)
enhances IGF-I production, suggesting an
important relationship among the IGF-I
signaling pathway, Th2, and Th17 cells in
asthma (102). In fact, IL-17 has been
reported as one of the key players in
eosinophilic as well as neutrophilic airway
inflammation using animal models of
asthma induced by toluene diisocyanate or
OVA (103, 104). In these airway disorders,
the blockade of IL-17 with neutralizing
Ab significantly suppressed the airway
inflammation, including Th2 responses
and AHR (103, 104). Moreover, IL-17
expression is regulated by peroxisome
proliferator–activated receptor g and PI3K
signaling in antigen-induced airway

inflammation (103, 104). Considering that
these transcriptional factors are also
associated with the IGF-I system, targeting
IGF-I can be a good way to regulate IL-17,
one of the main cytokines in the
pathogenesis of bronchial asthma.

Role of IGFBP-3 in the Pathogenesis
of Asthma
Fragments of IGFBP-3 have been identified
in tissues and bronchoalveolar lavage fluid
from patients with asthma, and an
association between IGFBP-3 and asthma
has been suggested (7). Moreover,
a growing body of evidence has indicated
that IGFBP-3 plays a therapeutic role,
dampening allergic airway inflammation
(8, 9) (Figure 3). As discussed previously
here, IGFBP-3 has its own biological
activities, known as IGF-I–independent
actions, such as suppression of NF-kB
signaling pathway via IGFBP-3R and
antitumor action via interaction with
retinoid X receptor-a.

As for bronchial asthma, a study with
wild-type and IGFBP-3 transgenic mice
has demonstrated that IGFBP-3 inhibits
airway inflammation and AHR via
activation of IGFBP-3R signaling and cross-
talk with NF-kB (8). In addition, the study
has shown that IGFBP-3 is suppressed in
OVA-challenged mice, and that restoration
of IGFBP-3 by administration of
recombinant human IGFBP-3 (rhIGFBP-3)
or transfer of the IGFBP-3 gene normalizes
crucial manifestations of asthma, such
as antigen-induced inflammation,
proinflammatory cytokine production in
lung tissues and bronchoalveolar lavage
fluid, and AHR. These unique effects of
IGFBP-3 are likely to be IGF-I independent,
because a non–IGF-binding IGFBP-3
mutant (IGFBP-3GGG) shows similar
results. Regarding the mechanism of
IGFBP-3 action, IGFBP-3 not only inhibits
phosphorylation of IkBa, but also degrades
IkBa and p65–NF-kB through activation
of caspases, in particular caspase-8 and
caspase-3/-7. This caspase-dependent
action of IGFBP-3 appears to be mediated
through IGFBP-3R, because knockdown of
endogenous IGFBP-3R completely negates
the biological effect of IGFBP-3. During
this process, it seems that binding of
IGFBP-3 to IGFBP-3R extracellularly
activates the IGFBP-3R intracellular
signaling into caspase, which results in
reduction of total NF-kB protein levels as
well as phospholylated ones in airway
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epithelial cells. In fact, previous studies
have also demonstrated that IGFBP-3
inhibits TNF-a–induced NF-kB activity
(105). IGFBP-3 significantly enhances
TNF-related apoptosis–inducing
ligand–induced cell death by inhibiting
NF-kB activation in response to the
induction of apoptosis by TNF-related
apoptosis–inducing ligand in cancer cells
(106). Considering that NF-kB plays an
important role in the pathogenesis of
bronchial asthma, it is noteworthy that
IGFBP-3 treatment results in inhibition of
the nuclear translocation of NF-kB in
bronchial asthma.

In addition, a recent study has provided
another mechanism of IGFBP-3 action in
allergic airway inflammation, in which
exogenous recombinant IGFBP-3 attenuates
asthmatic features through the inhibition of
VEGF and HIF expression (9). A study with
OVA-challenged mice has revealed that
administration of rhIGFBP-3 reduced levels
of IGF-I, VEGF, Th2 cytokines, and activity
of HIF-1a and HIF-2a in the lung (9).
Administration of rhIGFBP-3 also
decreased infiltration of inflammatory cells
in the airway, production of Th2 cytokines
in the lung, OVA-specific IgE production in
serum, plasma exudation, and AHR. Using
IGF-I–neutralizing Ab and PI3K inhibitors,
LY294002 and wortmannin, we have also
revealed that IGFBP-3 signaling involves
the HIF-1a/HIF-2a–VEGF axis through
IGF-I–dependent and/or IGF-

I–independent mechanisms, thereby
attenuating asthmatic features, including
vascular permeability.

Based on these mechanisms of IGFBP-
3 action in the pathogenesis of bronchial
asthma, there can be speculation on the
potential roles of IGFBP-3 in subepithelial
fibrosis and mucus metaplasia. First,
VEGF is known to induce subepithelial
fibrosis in the lung (107) and to enhance the
production of TGF-b1, which plays an
important role in the pathogenesis of
structural changes, including fibrosis, in
a number of chronic lung diseases (108).
Furthermore, VEGF has been reported to
regulate TGF-b1 expression through the
PI3K/Akt signaling pathway in a murine
model of bronchial asthma (97).
Therefore, the inhibitory effects of IGFBP-
3 on VEGF expression/production may
result in the prevention of airway
subepithelial fibrosis.

Second, the IGF-I signaling pathway
can cross-talk with the epidermal growth
factor pathway (109) that is involved in the
development of mucus metaplasia (110).
The activation of HIF-1a and inhibition of
forkhead box transcription factor 2, which
are inducible by IGF-I, have been suggested
to induce mucus metaplasia through
activation of the muc5ac promoter
(111–114). These observations suggest that
IGFBP-3 may also play a role in the
pathogenesis of mucus metaplasia by
modulating IGF-I signaling.

Finally, IGFBP-3 may also have an
antiproliferative effect on ASM cells in
allergic airway diseases. A study with
human bronchial and tracheal smooth
muscle cells has shown that an IGFBP
protease, MMP-1, degrades intact
IGFBP-3 and promotes ASM
hyperplasia (5).

IGFBP-3 and HIF/VEGF Signaling
in the Respiratory System
As described previously here, IGFBP-3 as
well as IGF-I appear to be closely associated
with HIF/VEGF signaling in bronchial
asthma. VEGF has been shown to stimulate
endothelial cell mitogenesis, cell migration,
vasodilatation, and vascular permeability.
In addition, VEGF is a mediator of vascular
and extravascular remodeling, and plays
a crucial role in Th2-mediated inflammation
(107). With many reports that an increase
in VEGF level has been observed in tissues
and biological samples from individuals
with asthma (115–117), mounting evidence
has demonstrated that VEGF is a pivotal
player in the pathogenesis of various airway
disorders (107, 118, 119). As for HIF-1a/
HIF-2a, they have been well known as
a transcriptional factor for VEGF in various
pathologic conditions. Determination of
HIF-1a and/or HIF-2a protein level in
nuclear extracts has revealed that these
protein levels are increased in several
pulmonary inflammations, including
allergen-induced asthma or exogenous
oxidant–inhaled lung injury (118–122).
On the basis of these observations, the
control of HIF/VEGF signaling via the
IGFBP-3 and IGF-I system seems to be
promising for the development of
therapeutics for inflammatory lung
disorders.

Targeting IGF-I and IGFBP-3
for Treatment of Asthma

Because IGF-I and IGFBP-3 signaling
pathways are implicated in the
pathogenesis of asthma, targeting IGF-I
and IGFBP-3 can be an attractive
therapeutic strategy for asthma. There are
two major potential strategies: (1)
inhibition of IGF-I action; and (2) up-
regulation of IGFBP-3.

Inhibition of the IGF-I System
The inhibition of IGF action can be achieved
at several different levels: suppression of

Figure 3. Roles of IGFBP-3 and its related signaling pathways in bronchial asthma.
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ligands with antibodies, induction of
IGFBPs, and signaling blockade using
IGF-IR inhibitors (123). Although in vitro,
preclinical, and early clinical studies have
suggested therapeutic potential for the
inhibition of IGF-I action in particular
cancers, these modalities do not benefit all
patients uniformly (124). A neutralizing Ab
for IGF-I, MEDI-573 (a dual IGF-I/IGF-
II–neutralizing Ab), has been developed
and evaluated as a possible anticancer drug
for patients with advanced cancers (125). In
addition, some small-molecule tyrosine
kinase inhibitors and anti–IGF–IR
monoclonal Abs have been evaluated in
clinical trials for patients with cancers (124,
126). However, to date, there are no
available data on the therapeutic effects of
these pharmacologic agents and clinical
trials for patients with bronchial asthma,
although an IGF-I–neutralizing Ab has
been reported to reduce airway resistance,
airway inflammation, and airway wall
thickening in a murine model of
asthma (6). We eagerly await clinical trials
to evaluate whether the recently

developed pharmacologic agents that
inhibit IGF-I action can improve features of
asthma, including airway inflammation,
AHR, subepithelial fibrosis, mucus
metaplasia, and ASM hyperplasia. Some
potential compounds are listed in Table 1.

Up-Regulation of IGFBP-3
As we discuss here, IGFBP-3 is a very
promising target for management of
bronchial asthma, although there is scant
clinical information on the role of IGFBP-3
in bronchial asthma. In fact, studies with
animal models have demonstrated that
administration of rhIGFBP-3 inhibits
crucial manifestations of asthma in mice (9).
An IGFBP-3 mutant that does not bind
IGF-I binds to IGFBP-3R and acts as an
IGFBP-3R agonist, thus enhancing
IGFBP-3R–mediated anti-inflammatory
responses (8). To sum up, it is expected
that reinforcement of IGFBP-3 action can
be provided by treatment with rhIGFBP-3
or other IGFBP-3R agonists/activators for
patients with asthma (127). Therefore, the
discovery and development of such novel

agents should have a high priority in the
management of asthma, specifically
severe or refractory asthma.

Conclusions and
Perspectives

Despite enormous improvements in our
understanding and insight into the causative
mechanisms implicated in bronchial
asthma, especially severe or refractory
asthma, treatment of patients with asthma is
still challenging. Recently, accumulating
findings suggest that IGF-I and IGFBP-3 are
prospective molecular therapeutic targets
for various pulmonary disorders, including
bronchial asthma. Despite success in mice,
there are no published clinical trials that
have evaluated the therapeutic effects of the
pharmacologic agents targeting IGF-I and
IGFBP-3 in humans. In addition, because
the IGF-I system and IGFBP-3 play essential
roles in the body, such as in glucose
metabolism and growth, the side effects of
the pharmacologic intervention targeting

Table 1: Targeting IGF-I for Treatment of Asthma

Agent Mechanism
Side

effects
Development

phase Route References

IGF-I neutralizing Abs MEDI-573 Human monoclonal Ab,
which inhibits both
IGF-I and IGF-II, thus
inhibits IGF-IR, IR-A,
and IGF-IR/IR-A hybrid
signaling

Anorexia, nausea, diarrhea,
fatigue, and anemia

Phase II IV (125)

IGF-IR inhibitors
IGF-IR specific
tyrosine-kinase
Inhibitors

BMS-754807 Tyrosine kinase
inhibitors prevent
autophosphorylation
of the tyrosine kinase
domain of cell surface
receptors

To be determined Phase I/II PO (128, 129)
Insm-18 (NDGA) Nausea, vomiting, and

syncope due to
dehydration

Phase I/II PO (126)

Monoclonal Ab
against IGF-IR

MK-0646
(dalotuzumab)

Inhibits IGF-induced
IGF-IR activation
and induces
receptor internalization
and degradation

Fatigue, nausea, rash,
diarrhea, neutropenia,
thrombocytopenia,
hyperglycemia, and
diarrhea

Phase III IV (126)

AMG 479
(ganitumumab)

Thrombocytopenia,
neutropenia,
hyperglycemia,
transaminitis, fatigue,
fever, and rash

Phase III IV (130, 131)

AMG A12
(cixutumumab)

Hyperglycemia, anemia,
thrombocytopenia,
and fatigue

Phase III IV (132–135)

Definition of abbreviations: Ab, antibody; IGF, insulin-like growth factor; IGF-IR, IGF-I receptor; IR-A, insulin receptor isoform A; IV, intravenous; NSCLC,
non–small cell lung cancer; PO, per oral.
Search strategy: ongoing or planned trials registered on ClinicalTrials.gov per March 2013.
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IGF-I and IGFBP-3 must be considered.
Therefore, it may be desirable to develop
novel agents that manipulate IGF-I/IGFBP-
3 actions for the treatment of bronchial
asthma as an inhaled formulation allowing
local action while minimizing systemic side
effects.

In summary, IGF-I and IGFBP-3 are
potentially exciting targets for the
development of compounds to achieve
better management of bronchial asthma,
especially severe or refractory asthma in
which steroids and other current agents are
less effective. n
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