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Abstract 34 

Integrated Stress Response (ISR) facilitates cellular adaptation to variable environmental conditions by 35 

reprogramming cellular response. Activation of ISR was reported in neurological disorders and solid tumours, but 36 

its function in hematological malignancies remains largely unknown. Previously we showed that ISR is activated 37 

in chronic myeloid leukemia (CML) CD34+ cells, and its activity correlates with disease progression and imatinib 38 

resistance. Here we demonstrate that inhibition of ISR by small molecule ISRIB, but not by PERK inhibitor 39 

GSK2656157, restores sensitivity to imatinib and eliminates CM Blast Crisis (BC) D34+ resistant cells. We found 40 

that in Patient Derived Xenograft (PDX) mouse model bearing CD34+ imatinib/dasatinib-resistant CML blasts with 41 

PTPN11 gain-of-function mutation, combination of imatinib and ISRIB decreases leukemia engraftment. 42 

Furthermore, genes related to SGK3, RAS/RAF/MAPK, JAK2 and IFN pathways were downregulated upon 43 

combined treatment. Remarkably, we confirmed that ISRIB and imatinib combination decreases STAT5 44 

phosphorylation and inhibits expression of STAT5-target genes responsible for proliferation, viability and stress 45 

response. Thus, our data point to a substantial effect of imatinib and ISRIB combination, that results in 46 

transcriptomic deregulation and eradication of imatinib-resistant cells. Our findings suggest such drug 47 

combination might improve therapeutic outcome of TKI-resistant leukemia patients exhibiting constitutive STAT5 48 

activation. 49 

 50 
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Introduction 68 

Chronic myeloid leukemia (CML) which is driven by oncogenic BCR-ABL1 tyrosine kinase, is an example of a 69 

disease that is successfully treated with molecular targeted therapy. Introduction of imatinib significantly improved 70 

CML treatment, patients’ life expectancy and overall survival 1,2
. However, although imatinib shows remarkable 71 

clinical efficacy in the chronic phase, the effects in advanced phases are short-lived, complete remissions are 72 

rare, and relapse occurs often 
3–5

. Many patients show primary or secondary resistance to imatinib or second 73 

generation tyrosine kinase inhibitors (TKIs), such as dasatinib, nilotinib or bosutinib. The resistance originates in 74 

majority from cellular intrinsic mechanisms. Apart from BCR-ABL1 point mutations (e.g. T315I) which affect drug 75 

binding affinity 
6,7

, the BCR-ABL1 gene amplification or clonal evolution may lead to relapse driven by both BCR-76 

ABL1-dependent and -independent mechanisms.  77 

The most recognized pathways responsible for resistance are mediated by activation of JAK2/STAT5, 78 

RAS/RAF/MAPK or PI3K/Akt/mTOR 
3,8,9

. They activate proliferation, anti-apoptotic response and survival, 79 

cytokine and growth factors signaling, altogether strongly promoting resistance to treatment and disease relapse. 80 

Therefore, targeting these pathways is one of the current strategies for eradication of resistant cells 
10–12

.  81 

Previously, we identified that the PERK-eIF2 pathway related to Integrated Stress Response (ISR) is activated in 82 

CD34+ CML-BP cells 
13

. ISR is a highly conserved signaling responsible for cell adaptation and survival upon 83 

stress conditions 
14–17

. This is achieved by phosphorylation of the eukaryotic translation initiation factor eIF2 84 

remodelling of translation 
18

 and transcription of stress response effector genes, including CHOP and GADD34, 85 

which are ISR markers. 86 

Under physiological conditions, the ISR is one of the mechanisms sustaining homeostatic balance in a healthy 87 

cell. Cancer cells can utilize ISR to survive and develop drug resistance. Previous reports demonstrated that ISR 88 

is active in solid tumors in which it correlates with hypoxia and metastasis 
19

. However, ISR has not been deeply 89 

studied in leukemia. Since recognized, ISR is proposed as a therapeutic target in cancer 
20–22

. Nevertheless, no 90 

efficient and specific strategy has been proposed still, especially for hematological malignancies.  91 

We report here that inhibition of ISR signaling by small molecule ISRIB combined with imatinib has potential to 92 

eradicate imatinib-resistant CML-BP cells. We show that such treatment specifically changes gene expression 93 

profile and inhibits oncogenic STAT5 signaling. Therefore the combination of ISRIB and imatinib was identified as 94 

a possible therapeutic strategy when aiming to eradicate TKI-resistant leukemic cells exhibiting constitutive 95 

STAT5 activation.  96 

 97 

 98 

 99 
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Methods 101 

Cell culture 102 

The K562 cells (CCL-243) and LAMA84 cells (CRL-3347) were purchased from American Type Culture Collection 103 

(ATCC) and cultured 
13

. Cells were authenticated at ATCC service and were regularly tested for Mycoplasma 104 

contamination. Detailed description of the two-step generation of cells expressing non-phosphorylable form of 105 

eIF2is provided in the Supplementary Information. 106 

 107 

Isolation of CD34+ CML-BP patient cells 108 

CML CD34+ cells were obtained from the Institute of Hematology and Blood Transfusion in Warsaw, Poland, in 109 

accordance with the Declaration of Helsinki and with patients’ consent and approval of the local Ethical 110 

Committee (Ethical and Bioethical Committee UKSW, Approval No.WAW2/059/2019 and WAW2/51/2016, 111 

Approval No. KEiB-19/2017). The characteristics of patient is detailed in the Supplementary Information. 112 

Peripheral blood mononuclear cells (PBMC) were isolated by density gradient centrifugation and CD34+ cells 113 

were separated using EasySep human CD34+ selection cocktail (StemCell Technologies, Inc.). CD34+ cells were 114 

short-term cultured in IMDM medium (Invitrogen) with 10% FBS, 1 ng/ml of granulocyte-macrophage colony-115 

stimulating factor (GM-CSF), 1 ng/ml of stem cell factor (SCF), 2 ng/ml of interleukin-3 (IL-3). Cells were 116 

cryopreserved and kept in -180C until usage.  117 

 118 

Cell treatment 119 

Thapsigargin (Sigma) was used at 100 nM; imatinib (gift from Lukasiewicz Pharmaceutical Institute, Warsaw) at 120 

0,5 or 1 M concentrations in vitro or at given doses in vivo. ISRIB (Merck, SML0843) was given as indicated. 121 

GSK2656157 (GSK157) (Calbiochem) for in vitro test was dissolved in DMSO and given as indicated. For in vivo 122 

studies, first the step general stock of GSK157 was made (53,3 g of GSK157 to 1523 μl DMSO). In the second 123 

step 20 μl of the general stock of GSK157 was added to 44 μl of PEG400 (MERC, #8074851000) and 40 μl of 124 

saline (not PBS).  125 

 126 

In vivo experiments  127 

Experiments were performed using immunodeficient NOD.Cg-PrkdcscidIl2rgtm1WjL/SzJ mice, in accordance with 128 

the Animal Protection Act in Poland (Directive 2010/63/EU) and approved by the Second Local Ethics Committee 129 

(Permission No. WAW/51/2016). Cells (10
6
) were injected subcutaneously or into tail vain. Mice were treated with: 130 

imatinib - twice a day (50 mg/kg); GSK157 - once a day (20 mg/kg); ISRIB - once a day (2 mg/kg) or in 131 

combination with the same doses, as indicated. Experimental schemes are presented as part of Figures. 132 

 133 
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Flow cytometry 134 

Apoptotic cell death was detected using Annexin V-PE Apoptosis Detection Kit I (BD Biosciences #559763) as 135 

described 
13

. To detect phosphorylation of STAT5 and S6K, cells were incubated with eBioscience™ Fixable 136 

Viability Dye eFluor™ 455UV (Thermo Fisher) to discriminate dead cells, followed by staining using Transcription 137 

Factor Phospho Buffer Set (BD Pharmingen) and antibodies: anti-phospho-STAT5 (Tyr694)-PE, and anti- 138 

phospho-S6 (Ser235, Ser236) – eFluor450 (eBioscience, Thermo Fisher). Events were acquired using BD LSR 139 

Fortessa cytometer (Becton Dickinson) and then analysed by FloJo Software (Becton Dickinson).  140 

 141 

Western Blot 142 

Western blot analysis was performed in a standard conditions, as previously described 
13

. List of antibodies is 143 

presented in the Supplementary Information.  144 

 145 

RT-qPCR analysis  146 

Total RNA was extracted using TRI Reagent (Sigma #T9424) or by Renozol (Genoplast #BMGPB1100-2) 147 

followed by Total RNA Mini column purification kit (A&A Biotechnology #031-100). 2 µg of RNA was subjected to 148 

reverse transcription using M-MLV enzyme (Promega #M1705), dNTP mix 100 mM each (BLIRT #RP65) and 149 

oligo (dT)18 primers (Bioline #BIO-38029). The RT-qPCR reaction was performed using SensiFAST SYBR Hi-150 

ROX Kit (Bioline #BIO-92020) on the StepOnePlus™ platform (Thermo Fisher Scientific) according to MIQE 151 

guideline. Primers sequences are listed in the Supplementary Information. The comparative 2
-ΔΔCt

 method was 152 

used to determine the relative mRNA level using StepOnePlus software. 18SrRNA was used as a reference 153 

control. Data are presented as mean values ± SD; n = 3-5). Statistical significance was assessed using unpaired 154 

Student’s t-test with Welch’s correction and p ≤ 0,05 was estimated as significant (*p ≤ 0.05; **p ≤ 0.005; ***p ≤ 155 

0.001; ****p ≤ 0.0005). 156 

 157 

RNA Sequencing and data analysis  158 

RNA was isolated as described in RT-qPCR section. The library was prepared using NEB Next Ultra II Directional 159 

RNA library Prep kit for Illumina (#E7335S/L). Sample analysis: the quality of raw data was verified in FASTQ 160 

format from RNA-Seq experiments with FastQC 
23

. Because of observed high quality of the raw data, no further 161 

processing of reads was performed. Data analysis was done using the SquIRE 
24

 pipeline. Human genome hg38 162 

and corresponding refseq gene annotations were downloaded from UCSC (https://genome.ucsc.edu/; 
25

 with 163 

SQuIRE. STAR version 2.5.3a 
26

, StringTie version 1.3.3b 
27

, and DESeq2 version 1.16.1 
28

 were used within the 164 

SQuIRE pipeline for alignment of reads, transcript assembly and quantification, and differential gene expression 165 

analysis, respectively. Differentially expressed genes with false discovery rate (FDR) < 0.05 were reported here. 166 

Principal component analysis of all samples (11 replicates in total from 4 conditions) based on gene expression 167 
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data (transcripts per kilobase million or TPM) was performed with 
29

. The Clust tool 
30

 was used for co-expressed 168 

gene clusters identification across all samples. The default normalization procedure of Clust for RNA-seq TPM 169 

data (quantile normalization followed by log2-transformation and Z-score normalization, code “101 3 4”) was 170 

applied. gProfiler 
31

 was utilized for the simultaneous functional enrichment analysis of the genes from all clusters 171 

in multi-query mode. The RNA-Seq data from this publication have been deposited to the NCBI GEO repository 172 

(https://www.ncbi.nlm.nih.gov/geo) and can be accessed with the dataset identifier GSE171853. 173 

 174 

Statistical analysis 175 

Data were analysed using GraphPad Prism (GraphPad Software, La Jolla, CA, USA) Single comparisons were 176 

tested using unpaired Student’s t-tests for normal distributed samples or Mann–Whitney-U tests when normal 177 

distribution was not given. One-way or two-way ANOVA was applied for multiple comparison analysis, with 178 

Bonferroni’s multiple comparison post-test. For RT-qPCR unpaired Student’s t-test with Welch’s correction was 179 

applied. P values  < 0.05 were estimated as significant (*p<0.05; **p <0.005; ***p<0.0005). Data are presented as 180 

mean ± SD. 181 

 182 

Results 183 

GENETIC ISR INHIBITION SENSITIZES CML CELLS TO IMATINIB IN VITRO 184 

To study the impact of Integrated Stress Response globally, ISR was inhibited by targeting the main regulatory 185 

hub - eIF2. This was achieved by expression of non-phosphorylable (S51A) eIF2 form (visible as additional 186 

band on western blot), followed by overexpression of shRNA against eIF23’UTR (S51A shUTR) to inhibit 187 

expression of endogenous wt eIF2, leading altogether to complete lack of eIF2 phosphorylation (Fig. 1A, 188 

detailed procedure of generation of genetically modified cells is provided in Supplementary Information). Both 189 

generated cell lines had unaffected levels of PERK, an UPR kinase acting upstream of eIF2and expressed 190 

GFP necessary for FACS sorting (Fig. 1A). The functional influence on ISR confirmed by detection of mRNAs 191 

encoding ISR markers CHOP and GADD34 showed that inhibition of the eIF2 phosphorylation attenuates 192 

dynamics of the ISR activation (Fig. S1A). In addition, inhibition of the eIF2 phosphorylation itself decreased cell 193 

viability (Fig. 1B), and associated with increased basal GADD34 and CHOP mRNA levels indicating stress-194 

induced cell death (Fig. S1B). This indicated that the lack of ISR pathway itself is cytotoxic for CML cells. 195 

Furthermore, imatinib-induced apoptosis was higher in S51A and further increased in S51A shUTR cells, 196 

compared to wt (Fig. 1C). This implies that indeed K562 cells utilize the eIF2 phosphorylation-dependent 197 

mechanism and that ISR inhibition sensitizes CML cells to imatinib. 198 
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ISRIB, BUT NOT GSK157, SENSITIZES CML CELLS TO IMATINIB IN VIVO 199 

Even if the genetic approaches are useful, the pharmacological inhibition still gives the highest possibility for the 200 

clinical applications targeting the signaling pathways. Thus, we tested two ISR inhibitors: GSK2656157 (GSK157) 201 

and ISRIB (Fig. 2A). GSK157 is an ATP-competitive inhibitor of PERK kinase, which stops the PERK-dependent 202 

ISR activation. Small molecule ISRIB blocks the eIF2-P-dependent downstream signaling and inhibits the 203 

executive part of ISR, without the cytotoxic effects 
32–35

. Both drugs have not been tested in leukemia, including 204 

CML. Pre-conditioning of K562 CML cells with either GSK157 or ISRIB, followed by ISR induction by thapsigargin, 205 

revealed that both ISR inhibitors significantly reduced expression of CHOP and GADD34 mRNAs in leukemia 206 

cells (Fig. 2B, C).  207 

The results obtained in vitro (Fig. 2) imply that ISR inhibitors might improve the imatinib efficacy and eliminate 208 

CML cells. To test this hypothesis and verify cell survival and growth potential in vivo, xenograft studies were 209 

performed using NSG immunodeficient mice and GFP+ K562 cells (experimental scheme and treatment - Fig. 210 

3A). After the time period necessary for leukemia cells growth, tumors were found in all untreated mice. 211 

Remarkably, only combination of imatinib and ISRIB significantly decreased number of animals with tumors (41% 212 

of mice developed tumors) (Fig. 3B). This was associated with the decreased tumor mass by more than 70% (Fig. 213 

3C, D). Conversely, imatinib or imatinib with GSK157 exerted only moderate inhibitory effect, and the average 214 

tumour mass was not significantly different between those conditions. These results show that ISRIB but not 215 

GSK157 sensitizes CML to imatinib in vivo.  216 

 217 

ISRIB COMBINED WITH IMATINIB ATTENUATES ENGRAFTMENT OF PRIMARY TKI-REFRACTORY CML 218 

CD34+ BLASTS 219 

Since the results in Fig. 3 implicated that combination of ISRIB and imatinib might eradicate imatinib-resistant 220 

CML cells and decrease the leukemia development, it was of paramount importance to verify this in the PDX 221 

model using NSG mice as a host bearing CD34+ CML cells resistant to imatinib and dasatinib. CD34+ cells were 222 

isolated from patient diagnosed in Blast Phase (BP), who initially responded to high dose imatinib, but 223 

subsequently developed resistance to imatinib, despite lack of detected (at the time of resistance) mutations 224 

within the kinase domain of BCR-ABL1. Dasatinib was introduced, but yielded only a transient effect. Next-225 

generation sequencing revealed pathogenic variant in PTPN11 gene described in hematological malignancies 226 

36,37
. The detailed patient characteristics are provided in the Supplementary Information. PTPN11 gain-of-function 227 

mutations result in overactivation of the RAS/RAF/MAPK/ERK and the JAK/STAT pathways, in addition to their 228 

possible activation caused by BCR-ABL1. Thus, such cells represent a BCR-ABL1-independent, imatinib/TKI 229 

resistant phenotype.  230 
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A short and aggressive 7-day regimen was applied to test the beneficial effects, followed by treatment with 231 

imatinib or ISRIB alone or with drug combination (experimental scheme - Fig. 4A). All variants showed noticeable 232 

but not significant decrease in the spleen weight (Fig. 4B). To estimate the short-term engraftment, the 233 

percentage of human CD45+ (hCD45+) was detected within the bone marrow or spleen populations (Fig. 4C, 4D, 234 

4E; Fig. S2). Combination of imatinib and ISRIB significantly decreased percentage of hCD45+ cells in the bone 235 

marrow, showing a 2- to 3-fold lower level compared to the treatment with imatinib or ISRIB alone. In addition, the 236 

combined treatment treatment decreased the engraftment into the spleen (which is considered as a secondary 237 

niche), compared to imatinib alone (Fig. 4E). These results showed that the combined treatment eradicates 238 

resistant blasts and decreases leukemia engraftment, therefore confirming the synergistic effect of imatinib and 239 

ISRIB.  240 

 241 

COMBINATION OF ISRIB AND IMATINIB REPROGRAMMES THE GENE EXPRESSION PROFILE OF 242 

PRIMARY TKI-RESISTANT BLASTS  243 

To investigate the molecular effects of the double treatment, RNA-seq was performed on FACS-sorted hCD45+ 244 

CML cells isolated from the PDX bone marrow. Principal component analysis (PCA) indicated that cells treated 245 

with imatinib and ISRIB are transcriptionally distinct (Fig. 5A). This was confirmed by hierarchical clustering of 246 

significantly changed genes between pairs of tested conditions (treatment vs control), and supported by the 247 

Pearson correlation values, which showed higher correlation between sole ISRIB and sole imatinib treatment 248 

compared to control (r = 0.69), than between each of the single treatments and the combined imatinib+ISRIB 249 

treatment compared to control (r = 0.32 and 0.37, respectively; Fig. 5B). The SGK3 and SNURF/SNRPN genes 250 

regulating alternative RNA processing were identified as significantly downregulated upon the double treatment. 251 

Upregulated genes in majority encoded proteins regulating transcription and RNA processing.  252 

To identify genes responsible for the increased sensitivity, the gene expression profiles for imatinib versus 253 

imatinib + ISRIB were compared. In addition to the previously described (Fig. 5B), genes encoding proteins from 254 

the small GTP-binding RAS superfamily (RGPD5 and RGPD8) were significantly downregulated (Fig. 5C, for all 255 

treatment combinations see Fig. S3A). 256 

Since genes that are co-expressed are often co-regulated, clusters of co-expressed genes (C0-C12) across all 257 

variants of treatment were identified (all genes included, regardless of their statistical significance of change in 258 

expression) (Fig. 5D). Clusters with the highest number of genes represented the groups in which drug 259 

combination led to either sharp decrease (C0, C1) or increase (C5, C6) of gene expression (Fig. 5D, 5E). Those 260 

four clusters represented about 72% of all detected genes (Fig. 5E). This clearly indicated that the gene 261 

expression pattern for ISRIB + imatinib combination is specific and different from the other treatment conditions.  262 

 263 
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COMBINATION OF IMATINIB AND ISRIB DOWNREGULATES GENES RELATED TO PROLEUKEMIC 264 

SIGNALING  265 

To predict the cellular mechanisms altered by combined treatment, all 13 defined gene clusters underwent the 266 

functional enrichment analysis. The C0 and C1 clusters which included genes downregulated upon combined 267 

treatment, were significantly enriched in terms related to RAS/RAF/BRAF/MAPK signalling (Fig. 6, marked in red, 268 

and Fig S5; for all clusters see Fig. S3). Specifically, for Ras and MAPK signaling (detailed member genes in Fig. 269 

S4A, S4B), genes encoding RAF1, ARAF, ERK2, KRAS, SRC, JAK2 and a number of proteins involved in 270 

activation of MAPK cascade such as: MEK1, MAPK1, MAP4K1, MAP3K3, MADD were downregulated upon 271 

combined treatment. The drug combination attenuated also IFN signalling and immune response, which in 272 

leukemia can additionally mediate activation of the JAK2/STAT5 pathway and inflammatory response (Fig. 6, 273 

marked in blue; for all clusters see Fig. S3B). Downregulation of processes essential for leukemia-promoting 274 

kinase-dependent signaling and immune response was also confirmed by Gene Ontology Biological Processes 275 

(BP) terms (Fig. S5, see C0 and C1 clusters).  276 

While SGK3 gene encoding serine/threonine-protein kinase SGK3 was significantly downregulated after the 277 

combined treatment (Fig. 5B), expression of the SGK3 interaction partners, selected based on the interaction 278 

partner datasource: BioGRID, IntAct (EMBL-EBI) and APID databases (see Supplementary Information), showed 279 

rather moderate inhibition upon combined treatment (Fig. S6). Among the downregulated genes, we found 280 

GSK3what may suggest its regulatory connection with SGK3 and specific downregulation upon combined 281 

treatment.  282 

Altogether, these results showed that genes related to oncogenic pro-leukemic signaling were downregulated 283 

upon combination of imatinib and ISRIB, presumably enhancing targeting of leukemia cells by imatinib.  284 

 285 

COMBINATION OF ISRIB AND IMATINIB INHIBITS STAT5 SIGNALING IN CML CELLS  286 

Transcriptomic data indicated that the combined treatment can downregulate oncogenic RAS/RAF/MAPK, JAK2, 287 

SGK3 and IFN signalling. In addition, genes that are mediators of JAK2/STAT5 signalling were attenuated (Fig. 288 

6, Fig. S4, S5). This indicated that the combined treatment might inhibit the STAT5 pathway.  289 

To obtain direct evidence that treatment with imatinib + ISRIB shows synergistic effect, STAT5 phosphorylation 290 

was assessed in K562 and LAMA84 cell lines, which were shown to activate the above signaling pathways 
13,38

. 291 

To better visualize the effects, strong ISR response in vitro was activated by thapsigargin. In both cell lines, 292 

combination of ISRIB with imatinib decreased STAT5 phosphorylation detected by western blot (Fig. 7A, 7B), and 293 

confirmed by phospho- flow cytometry (Fig. 7C). On the other hand, ISRIB alone did not change, whereas 294 

imatinib alone only partially decreased phosphorylation of STAT5, compared to double treatment, with effectivity 295 
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lower in K562 cells, which were more resistant. Conversely, the significant additive effect (estimated by the 296 

phosphorylation levels) of the combined therapy combined to imatinib alone was not observed for other pro-297 

leukemic related regulators such as: AKT, mTOR, S6K, SGK3, GSK3 or ERK (Fig. S7). So, the genetic data 298 

indicating downregulation of the SGK3 - GSK3 link were not confirmed in vitro. Interestingly, inhibition of AKT 299 

and ERK phosphorylation by imatinib (Fig. S7A and S7F, respectively), associated with decreased BCR-ABL1 300 

activity (Fig. S8A), but not BCR-ABL1 protein level (Fig. S8B), indicated that either pAKT or pERK are not 301 

involved in acquiring the BCR-ABL1-independent resistance.  302 

The results presented in Fig. 7A-7D imply that the combined treatment attenuates the STAT5-dependent 303 

signaling. To test this, the fold change analysis of the STAT5 target genes expression was performed within the 304 

C0 and C1 clusters (downregulated upon imatinib + ISRIB). The list of possible STAT5 target genes was created 305 

based on ChIP-Seq data from malignant/hematopoietic cells (see Supplementary Information). As expected, the 306 

combined treatment decreased expression of STAT5 target genes (SSH2, CCND3, MAP3K5, SGK1, DOCK8, 307 

DUSP1 and HBEGF), compared to control or single treatments (Fig. 7E, 7F). Negatively regulated STAT5-target 308 

genes encoded regulators of cell cycle/proliferation, stress response and survival, including Slingshot Protein 309 

Phosphatase, Cyclin D3, ZIR8, MAP kinase phosphatase 1, EGF-like growth factor, MAP3K5 and SGK1. Data for 310 

all clusters are presented in Fig. S9. Conversely, such inhibitory effect was not observed for imatinib and ISRIB 311 

alone. Altogether, obtained data clearly support the conclusion that combination of imatinib and ISRIB shows the 312 

substantial synergistic effect and inhibits the proleukemic STAT5 signaling in CML-BC TKIs resistant cells. 313 

 314 

Discussion 315 

Development of imatinib has revolutionised CML treatment and patients’ overall survival. Despite the clinical 316 

success of imatinib in the CML-CP treatment, the disease is still not fully curable and eradication of all leukemic 317 

cells is not efficient. Imatinib intolerance or primary resistance occurs, as well as many patients develop 318 

secondary resistance due to activation of signaling pathways, including JAK/STAT5, GSK3 or RAS/MEK/ERK 319 

3,8,9
. Importantly, such activation might occur in a BCR-ABL1-independent manner, thus upon imatinib treatment 320 

of even BCR-ABL1 non-mutated cells, those oncogenic pathways still remain active. Therefore, one of the current 321 

strategies to eradicate leukemic blasts, is to target BCR-ABL1 together with oncogenic signaling pathways, to 322 

resensitize cells to TKIs 
5,39–41

.  323 

Here we provide evidence that inhibition of Integrated Stress Response by ISRIB combined together with imatinib 324 

might significantly break the resistance by targeting both, the stress response adaptative signaling as well as the 325 

STAT5-dependent intrinsic signaling. This can result in effective elimination of imatinib-refractory cells in CML.  326 

Unexpectedly, only ISRIB but not another ISR inhibitor - GSK157 belonging to the PERK inhibitors family, was 327 

effective in vivo. This is consistent with recent studies of amyotrophic lateral sclerosis which showed similar data 328 
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indicating that ISRIB but not GSK157 inhibitor, was more effective and improved neuronal survival 
42

. Such effect 329 

can be a result of an eIF2α phosphorylation-independent effects 
43

, moderate specificity of GSK157, as its affinity 330 

to RIPK1 was shown to be significantly higher than to PERK kinase 
44

, as well as the pancreatic toxicity reported 331 

recently 
45

. Moreover, as PERK inhibitors target only one of four ISR arms, it can not be neglected that another 332 

parallel signaling leading to ISR is still active in vivo. In addition, ISRIB may have other, yet undescribed, targets. 333 

Results presented here provided several possible signaling pathways which may be altered by ISRIB in malignant 334 

cells.  335 

ISRIB molecule, discovered in 2013, in contrast to PERK inhibitors, acts below eIF2 and directly reverses 336 

attenuation of the eIF2B by phosphorylated eIF2 
33,46,47

. ISRIB has been proposed as a promising drug in the 337 

brain malignant conditions and age-related memory decline 
48,49

, as well as in some metastatic tumours 
50,51,52,53

. 338 

Recent studies showed that chemotherapy combined with ISRIB abrogates breast cancer plasticity and improves 339 

the therapeutic efficacy 
19

. This observation strongly supports the statement presented here. Studies of the clinical 340 

potential of ISRIB in hematological malignancies are limited 
54,55

. This study is the first to show ISRIB 341 

effectiveness in a combined therapy against CML-BP TKI-resistant blasts. 342 

Mechanistically, we have discovered that the combined treatment inhibits STAT5 phosphorylation and decreases 343 

expression of STAT5 target genes, that regulate proliferation, apoptosis and stress response. Targeting STAT5, 344 

which is an oncogenic signaling in imatinib resistant forms of CML 
3,9,56

, effectively overcomes resistance and 345 

eradicates leukemic cells 
57–59

. The experimental therapy proposed by us, not only inhibits ISR but also attenuates 346 

the STAT5-dependent signaling in CML. It is to note, that the overactivated STAT5 has also been detected in 347 

other hematopoietic malignancies, such as non-CML chronic myeloproliferative disorders correlating with JAK2 348 

V617F mutation 
60

 or Flt3-ITD positive AML 
61

. Therefore, it is worth considering that the proposed strategy might 349 

be effective also in other blood disorders.  350 

In striking contrast, even if downregulation of related genes was observed in the transcriptomic analysis, the 351 

mTOR, SGK3, GSK3, AKT and ERK activity was not specifically targeted by the double treatment in vitro. 352 

Notably, even though the regulatory ISR-SGK3 link was shown in glioma 
62

, and our transcriptomic data indicated 353 

SGK3 downregulation by the combined treatment, this was not confirmed in the model studies in vitro. On the 354 

other hand, pAKT and pERK, together with BCR-ABL1 activity were inhibited already by imatinib alone, and not 355 

further downregulated by drug combination. Therefore, those pathways were probably not responsible for the 356 

resistant phenotype. Nevertheless, in other leukemias in which the resistance developed due to AKT or ERK 357 

overactivation, such effect might help to eradicate the resistant blasts. 358 

Interestingly, differential expression of genes responsible for the immune modulation (visible even in the xenograft 359 

model, which excludes involvement of T and B lymphocytes, but still encompasses functional myeloid cells) 360 

suggests possible involvement of the immune system remodelling in the therapeutic outcome. This data support 361 

the idea of targeting the innate immune system or immune checkpoints in myeloid malignancies, including CML 362 
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63–65
. Thus, even though experiments were performed in immunodeficient (lacking adaptive, lymphocyte-mediated 363 

response) mice, signaling and functional effects related to the innate immune responses (mediated by e.g. 364 

macrophages) were possibly functional leading to the observed changes. Although interesting, this has to be 365 

verified in subsequent studies using the syngenic mouse model.  366 

In conclusion, we discovered a novel strategy to break the resistance and eradicate imatinib-refractory CML 367 

blasts, which is based on therapeutic combination of ISR inhibitor ISRIB together with imatinib. We postulate that 368 

such strategy can improve therapeutic outcomes in CML patients showing TKI resistance related to overactivated 369 

STAT5 and stress adaptation signaling. Possibly, a similar approach based on ISRIB combined with a typical 370 

chemotherapy may also be applied to other hematological malignancies with constitutively activated STAT5 371 

signaling and STAT5-dependent resistance. 372 
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Figure Legends 554 

 555 

Figure 1.  Genetic ISR inhibition by targeting eIF2α phosphorylation increases apoptosis induction and 556 

sensitizes K562 CML cells to imatinib in vitro. 557 

A. Left panel: transfection levels estimated by GFP fluorescence detection by flow cytometry. Overlay of 558 

representative histograms of K562 CML cells expressing wt eIF2 (green line), mutated non-phosphorylable form 559 

eIF2S51A (orange line) and mutated form together with construct containing shRNA sequence against 3’UTR 560 

region of eIF2S51A shUTR – red line); Right panel: The levels of PERK, eIF2and phosphorylated 561 

eIF2(S51P) protein estimated by western blot in wt, or stably transfected eIF2S51A and S51A shUTR mutants. 562 

Arrows indicate wt (lower) and mutated (40 kDa higher) eIF2bands. Tubulin was used as a loading control. B,C. 563 

Cell death detected by flow cytometry in K562 wt, eIF2S51A and S51A shUTR mutant cells in untreated 564 

conditions (B) or after treatment with 0,5 and 1 M imatinib (C). Data are shown as a percentage of dead cells 565 

measured using AnnV/7AAD assay. Statistical analysis: Unpaired t test with Welch's correction (*p ≤ 0.05; **p ≤ 566 

0.005; *** p ≤ 0.0005). 567 

 568 

Figure 2. Pharmacological treatment with ISRIB or GSK157 impairs the ISR activation in K562 leukemic 569 

cells in vitro.  570 

A. Schematic graph of the ISR signaling pathway with the site of ISRIB and GSK157 action. B, C. CHOP and 571 

GADD34 mRNA expression levels measured by RT-qPCR in K562 cells. Cells were preconditioned with either 572 

ISRIB or GSK157 inhibitors in indicated concentrations, followed by ISR induction by 100nM thapsigargin for 2 573 

hours. The level of not treated cells (CTR) was used as a reference =1. Statistical analysis: unpaired Student’s t-574 

test with Welch’s correction and p ≤ 0,05 was estimated as significant (*p ≤ 0.05; **p ≤ 0.005; ***p ≤ 0.001; ****p ≤ 575 

0.0005). 576 

 577 

Figure 3. ISRIB, but not GSK157, sensitizes K562 CML cells to imatinib in vivo.  578 

A. The workflow of the in vivo experiment. Mice were: not treated (n=12); or treated with: imatinib (n=14); imatinib 579 

and GSK157 (n=13); imatinib and ISRIB (n=12). B. The number of mice which were injected with K562 cells and 580 

mice which developed tumors upon all tested conditions. C. The pictures of tumors isolated form representative 581 

experiment presenting the differences in proliferation potential of K562 cell in indicated variants. D. Corresponding 582 

graph showing the tumor mass. Tumors grown in mice injected with K562 cells and treated with imatinib were 583 

used as a control = 100%. Statistical analysis: Unpaired t-test, F-test to compare variances (*p ≤ 0.05; **p ≤ 584 

0.005). 585 

 586 
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Figure 4. ISRIB in combination with imatinib attenuates engraftment of primary TKI refractory CML CD34+ 587 

blasts.  588 

A. The workflow of the in vivo experiment. PDX mice were: not treated/vehicle administrated (n=7); or treated 589 

with: imatinib (n=6); ISRIB (n=7); or combination of imatinib and ISRIB (n=7). B. Weight of spleens isolated from 590 

mice not treated or treated as indicated. C. Representative density plots showing the engraftment of hCD45+ 591 

CML primary cells into the bone marrow population under therapeutic treatment, detected by flow cytometry. 592 

hCD45+ population is gated on the hCD45 vs SSC dot plots, the percentage of hCD45+ cells is indicated. D, E. 593 

Corresponding graphs showing the bone marrow (D) or spleen (E) engraftment estimated by flow cytometric 594 

detection of hCD45+ CML primary cells in bone marrow or spleen, respectively, in given variants of treatment. 595 

The percentage of hCD45+ cells is shown. Statistical analysis: Unpaired t test, F test to compare variances (*p ≤ 596 

0.05; **p ≤ 0.005; ***p ≤ 0.0005). 597 

 598 

Figure 5. Combination of ISRIB and imatinib results in reprogramming of gene expression profile of 599 

primary TKI-resistant blasts.  600 

A. Two-dimensional principal component analysis plot of samples based on gene expression (TPM) data obtained 601 

from FACS-sorted hCD45+ CML cells isolated from untreated control mice (n=2, blue), or treated with ISRIB (n=3, 602 

red), imatinib alone (n=3, orange) or with combination of imatinib and ISRIB (n=3, green). B. Hierarchically 603 

clustered heatmap of fold-changes in expression (log2FoldChange) of significantly differentially expressed genes 604 

between the indicated pairs of conditions. Pairwise correlations of expression fold-changes are also shown. C. 605 

Significantly altered genes upregulated (positive value on x-axis) or downregulated (negative value on x-axis) in 606 

combined imatinib and ISRIB treatment versus with imatinib alone. D. Clusters (C0-C12) of co-expressed genes 607 

with varying patterns of gene expressions across all variants of treatment. Clusters C0, C1 displaying sharp 608 

downregulation or C5, C6 showing sharp upregulation of gene expression after combined treatment are marked in 609 

blue frame. E. Diagram showing the percentage of genes identified in four selected clusters C0, C1, C5, C6 (blue) 610 

and the rest (grey).  611 

 612 

Figure 6. Co-expressed genes downregulated upon combined treatment are related to RAS/RAF/BRAF 613 

and Interferon gamma signaling.  614 

 Functional enrichment Reactome (REAC 
66

) terms significantly enriched in C0, C1, C5 and C6 clusters. 615 

Downregulated genes belonging to C0, C1 clusters are indicated. RAS signaling is marked in red color, Interferon 616 

gamma signaling is marked in blue color. 617 

 618 

 619 

 620 
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Figure 7. Combination of imatinib and ISRIB attenuates STAT5 signaling in CML cells.  621 

A, B. Left panels: Protein levels of STAT5 and phosphorylated form of STAT5 (pSTAT5) detected by western blot 622 

in K562 (A) or LAMA84 (B) CML cells untreated (control) or treated with drugs as indicated (all variants 623 

tapsigargin treated). The ratio of phosphorylated to total STAT5 forms (P/T) calculated based on the densitometry 624 

signal is given for each condition. A, B. Right panels: Adequate graphs showing pSTAT5/STAT5 ratios in K562 625 

cells (A) and LAMA84 CML cells (B). Signal for control cells (without drug treatment) =1. Statistical analysis: 626 

unpaired T-test with Welch's correction (*p ≤ 0.05; **p ≤ 0.005; ***p ≤ 0.0005). C. Flow cytometry analysis of 627 

pSTAT5 levels in K562 (left panel) and LAMA84 (right panel) cells untreated (control) or treated as indicated. 628 

Data were calculated based on gMFI, fluorescence signal for untreated cells=1. Statistical analysis: repeated-629 

measures one-way ANOVA, with Tukey’s multiple comparisons test (*p ≤ 0.05). D. Overlay of the representative 630 

histograms presenting fluorescence signals for pSTAT5 estimated in control cells or in cells after treatment. gMFI 631 

values are indicated for each condition. E. The heat map showing expression level (transcript per kilobase million 632 

or TPM, standardized with z-score) of STAT5-target genes belonging to C0, C1 clusters shown for each gene 633 

across all replicates of untreated (control) and treatment conditions. F. The change in expression of STAT5-target 634 

genes belonging to cluster C0 and C1 in treatments comparison: expression fold change (log2FoldChange) in all 635 

comparisons.  636 
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